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Abstract
Biological invasions are most effectively managed when identified in their early stages, which often hinges 
on robust surveillance programs. The recent invasion of the European grapevine moth (Lobesia botrana) 
in California suggests that viticultural areas in the western United States may face severe economic conse-
quences from this and other Tortricid and Pyralid moth species if they were to establish. To gain insights 
into the risk these grapevine pests pose, we used occurrence records for L. botrana and four other moths 
native to Europe or the eastern United States and selected environmental variables to predict the extent 
of climatically suitable areas and potential pest co-occurrence along the West Coast of the United States. 
A suite of models was generated using MaxEnt with species-specific tuning of model settings. Overall, 
the results confirmed high suitability for L. botrana to establish across much of the study region, driven 
largely by high monthly variability in precipitation and low elevation. Two species were predicted to have 
intermediate suitability to establish over the study region (i.e., grape tortrix moth, Argyrotaenia ljungiana; 
grape berry moth, Paralobesia viteana), while two others had low suitability (i.e., European grape berry 
moth, Eupoecilia ambiguella; Christmas berry webworm, Cryptoblabes gnidiella). The highest predicted 
potential for co-occurrence was between L. botrana and P. viteana, accounting for 19% of the total viti-
culture area, followed by L. botrana and A. ljungiana for 11% of the study area. These results may help 
with the optimization of surveillance efforts by indicating which species or areas should be prioritized for 
the deployment of invasive pest detection programs with pheromone traps. Indeed, given the apparent 
potential for co-occurrence of multiple moth pests in certain areas, our results may inform where single or 
multi-lure traps should be deployed as a more cost-efficient monitoring tool.
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Introduction

Invasive species are a significant threat to global biodiversity (Richardson et al. 2000; 
Gurevitch and Padilla 2004) that can have detrimental effects on other species and 
economic productivity (Meyerson et al. 2019; Shackleton et al. 2020). Human-me-
diated mechanisms of pest invasions, which include the introduction of pest species 
into new environments, naturalization, and further spread disturb many native species 
through predation, competition for limited resources, transmission of pathogens, and 
disruption of behavioral processes (Pyšek and Richardson 2010; Hoffmann and Cour-
champ 2016). For agroecosystems, invasive species may precipitate increased costs and 
substantial production and revenue losses (Paini et al. 2016; Savary et al. 2019). As a 
result, government agencies and industry groups devote enormous resources to iden-
tifying and eradicating established invasive species. However, invasive species manage-
ment is most efficiently achieved during the initial stages of an invasion, when invader 
abundance is low (Simberloff et al. 2013; Bradley et al. 2019). Further research is 
needed to expedite robust responses to invasive species arrival (Leung et al. 2002).

Biological invasions in the United States cost more than $100 billion annually 
and are increasing in frequency (Pimentel et al. 2005; Simberloff et al. 2013; Meyer-
son et al. 2019; Crystal-Ornelas et al. 2021). According to the United States Animal 
and Plant Health Inspection Service (APHIS; https://www.aphis.usda.gov/), invasive 
insects have caused significant losses to the US environment and economy, particularly 
with respect to native forests and a wide range of annual and perennial crops. Such 
effects may be pronounced in states with large agricultural enterprises, such as Cali-
fornia. Between 1990 to 2010, it is estimated that approximately 10 exotic arthropod 
species were introduced into California each year, 20% of which became significant 
pests (Dowell et al. 2016). This represents a 62% increase in introductions compared 
to 1970–1989 despite more rigorous border controls and monitoring programs, rein-
forcing the need for additional research to anticipate the arrival and ultimate impact 
of invasive species.

A recent invader of particular importance to California’s wine, raisin, and table 
grape industry is the European grapevine moth (EGVM), Lobesia botrana (Lepidop-
tera: Tortricidae) [Denis & Schiffermüller]; one of several Lepidopteran agricultural 
pests that have proven capable of rapid geographic range expansion (Suckling et al. 
2017). This phytophagous species uses multiple plant species but particularly cultivat-
ed grapevines, where its larvae feed on flowers and grape berries, causing direct damage 
and introducing fungal rots, which can dramatically reduce yields (Delbac and Thiéry 
2016). Although the native range of EGVM includes much of Europe, it has success-
fully invaded other regions, such as western and northern Africa (Ioriatti et al. 2012; 
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Lucchi and Scaramozzino 2022) and grape-growing regions in the Americas, including 
Chile, Argentina, and the United States (Varela et al. 2010; Gilligan et al. 2011).

In the United States, EGVM was first detected in California in late 2009 (Gilligan 
et al. 2011). Following initial detections in select areas of Napa County, more exten-
sive monitoring showed it had spread to several surrounding areas. In 2010, more 
than 100,000 male moths were caught on nearly 4,000 pheromone traps. EGVM 
was ultimately recorded in 11 counties in Northern and Central California, up to 
approximately 300 km from where it was initially detected (Simmons et al. 2021). In 
response, an eradication program was established that included state-wide monitoring 
with pheromone traps, insecticide treatments, mating disruption, and a regulatory 
control program. Subsequently, sharp declines in EGVM captures were seen over the 
next few years to the point that it was declared eradicated in 2016, following two years 
without any detections (Schartel et al. 2019; Simmons et al. 2021).

As part of a larger study evaluating the factors that contributed to the successful 
eradication of EGVM in California, Schartel et al. (2019) used occurrence records 
from the state-wide monitoring program to develop a suite of habitat suitability mod-
els for EGVM in Napa County. The results showed select climatic, landscape, and 
anthropogenic variables explained observed patterns in EGVM occurrence, but gen-
erated uncertainty regarding EGVM suitability in the study region, perhaps due to 
confounding effects of generating suitability estimates during an eradication program 
(Schartel et al. 2019). Moreover, occurrence records from the program data were in-
sufficient to evaluate suitability for EGVM in other areas of California, let alone for 
viticultural areas in neighboring states along the West Coast. Thus, while EGVM is 
considered a threat should it be reintroduced into the region, questions remain about 
the magnitude of that risk and the specific locations most likely to be affected.

EGVM is only one of several moth pests of grapevines with the potential to be 
highly destructive. Other species in the families Tortricidae and Pyralidae have proven 
to be significant pests in other viticultural regions (Ioriatti et al. 2012; Isaacs et al. 
2012), and are considered high risk by the California grape industry (Napa County 
California 2022) or have been included as priority targets by the national Cooperative 
Agricultural Pest Survey (2022). These species may threaten vineyards along the West 
Coast of the United States should they be introduced: grape tortrix moth (GTM); 
Argyrotaenia ljungiana (Lepidoptera: Tortricidae) [Thunberg]), grape berry moth 
(GBM); Paralobesia viteana (Lepidoptera: Tortricidae) [Clemens]), European grape 
berry moth (EGBM); Eupoecilia ambiguella (Lepidoptera: Tortricidae) [Hübner]), and 
Christmas berry webworm (CBW); Cryptoblabes gnidiella (Lepidoptera: Pyralidae) 
[Millière]). EGBM, GTM and CBW occur naturally in Europe (similar to EGVM) but 
have invaded portions of Asia, Africa and Oceania (Ostrauskas et al. 2008; Ioriatti et al. 
2012). Meanwhile, GBM is native to central and eastern United States, where it shows 
high fidelity to wild and cultivated grapes, causing significant yield losses (Botero-Gar-
cés and Isaacs 2003; Isaacs et al. 2012). Damage to grapevines varies among species but 
is generally a function of larval infestation levels that are themselves influenced by char-
acteristics of the grapevine (e.g., cultivar) and climatic conditions that influence moth 
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phenology and voltinism (Ioriatti et al. 2012). Direct damage from larval feeding can 
result in minor to extensive reduction in fruit yields, and can facilitate fungal infections 
or secondary pest infestations (Moschos 2006; Ioriatti et al. 2012; Isaacs et al. 2012).

Monitoring using pheromone-baited traps is commonly employed for pest manage-
ment, and for early detection of invasive insects (McNeil 1991; Vacas et al. 2011). Main-
taining long-term surveillance programs for high-risk pests is costly, but the costs of 
missing the detection of a newly arrived pest may quickly exceed surveillance costs if the 
new pest is allowed to spread beyond a point where eradication is feasible (Chase et al. 
2018). Hence, there is a need to prioritize the placement of traps in areas that are most 
conducive to pest establishment so that the limited resources available for pest detection 
are optimized. Yet, current knowledge gaps regarding the invasive potential of EGVM 
and these other grape pest moths hamper optimization of those surveillance programs.

We gathered occurrence records from the native and invaded ranges of five high-
risk lepidopteran pests of grapevines and selected a number of environmental variables 
to quantify invasion risk along the West Coast of the United States (Cooperative Agri-
cultural Pest Survey 2022; Napa County California 2022) (Suppl. material 1: fig. S1). 
The goals of these analyses were to a) estimate the overall invasive potential of each 
species throughout viticultural areas in the Western United States, b) identify those 
locations most at risk to the establishment of each species and the environmental con-
ditions that underlie them, and c) identify areas where multiple moth species are likely 
to co-occur if introduced. Although none of these species currently occur in the re-
gion, the threats posed by their introduction, and the potential for multiple species to 
establish in the same region, warrant further investigation to inform implementation 
of early detection and surveillance efforts (Cooper et al. 2014; Simmons et al. 2021).

Methods

Study region and focal species

We focused on the invasive potential of five grapevine pests (EGBM, EGVM, GBM, 
GTM, and CBW) in grape-growing regions along the West Coast of the United States, 
in portions of California, Oregon, and Washington (5–40°N, 70–118°W; Suppl. mate-
rial 1: fig. S1). Overall, the study region represents a substantial portion of the high-value 
grape acreage in the United States and is the only region where one of these moth pests 
has successfully invaded (Gilligan et al. 2011). Moreover, states along the West Coast 
include many pathways that could contribute to pest arrival and spread (Dowell et al. 
2016). The West Coast covers approximately 835,905 km2 and has a wide variety of 
physiographic characteristics. The climate varies across the study region, but overall, 
the region receives most precipitation during the winter months (Neiman et al. 2008). 
Most grape-growing regions have been officially classified into American Viticulture Ar-
eas (AVAs), which are established by the Alcohol and Tobacco Tax and Trade Bureau 
under the US Department of the Treasury. Shapefiles of AVAs were obtained from the 
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American Viticultural Area Project at the University of California-Davis (https://github.
com/UCDavisLibrary). We supplemented California AVAs boundaries with California 
Department of Water Resources (DWR) polygons depicting 2016 wine-grape grow-
ing vineyards (https://gis.water.ca.gov), which included wine, raisin and table grapes 
areas. The boundaries of DWR polygons were dissolved and a 10 km radius buffer was 
added to grape-growing locations to capture newly established vineyards (since 2016) in 
the immediate vicinity. Then, these supplemental vineyards were joined with the AVAs 
boundary polygons to create a final GIS-referenced shapefile of viticultural areas in the 
study region, which encompassed 21.4% (178,922 km2) of the West Coast of the United 
States. All study analyses were conducted with the R statistical language V 4.2.2 (R Core 
Team 2022) and ArcGIS Pro 3.0.1 (ESRI Redlands, CA, USA). Country-level shapefiles 
were obtained from the Database of Global Administrative Areas (https://gadm.org).

Occurrence datasets and predictor variables

Risk assessments based on extrapolations of species distribution model (SDM) predic-
tions to regions and periods different from the conditions used to calibrate the model 
(i.e., model transferability) are effective for pest management and species conservation 
planning (Heikkinen et al. 2012; Barbet-Massin et al. 2018). It is recommended that 
species occurrences in both native and non-native ranges be used when developing 
SDMs to assess invasion risk in newly invaded or at-risk regions (Jiménez-Valverde et 
al. 2011; Peterson 2011; Jarnevich et al. 2022).

We downloaded occurrence data for all five pest species in their native and other in-
vaded ranges from 1960 to the present date from the Global Biodiversity Information 
Facility (GBIF; www.gbif.org; Suppl. material 1: figs S2–S6). For EGVM occurrences 
we also included records from its invasion into Napa County (Schartel et al. 2019). 
Regarding GBIF records, we only considered those provided by 1) official institutions 
and biological collections and 2) data citizen science platforms only when the species 
ID was previously confirmed by specialists. Then, occurrence datasets were cleaned by 
checking for typos, removing unreferenced records, cross-checking geographic coordi-
nates, and removing coordinates with a geographic inaccuracy > 10000 m. A collection 
of background points to specific areas was generated by buffering known occurrences 
in pest native and non-native ranges with a 50 km radius buffer (i.e., calibration areas). 
The final number of background points differed among species because of the differ-
ent sizes of the calibration areas and corrections for sampling bias. To reduce the effect 
of spatial autocorrelation in both occurrence and background datasets, we excluded 
points that were separated by a distance < 1 km. Final presence-only datasets consisted 
of 467 occurrence records for EGBM, 459 for EGVM, 54 for GBM, 644 for GTM, 
and 121 for CBW. Final background datasets consisted of 12331 background points 
for EGBM, 6741, for EGVM, 3125 for GBM, 14991 for GTM, and 1784 for CBW.

All 19 BIOCLIM variables (Booth et al. 2014) and the global elevation layer were 
downloaded from WorldClim 2.1 (Fick and Hijmans 2017; https://www.worldclim.
org/), along with 12 of the 14 environmental raster layers from ENVIREM (Title 
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and Bemmels 2018; https://envirem.github.io/). All raster layers were downloaded at 
5 min spatial resolution (Suppl. material 1: table S1). Multicollinearity among predictors 
at moth occurrence and background locations was assessed by estimating the variance 
inflation factor (VIF) with the R package ‘usdm’ 1.1–18 (Naimi 2015) . Specifically, we 
excluded from our analysis highly correlated variables using a VIF threshold of 0.7.

Species distribution modeling

Here, we provide an overview of our climatic suitability modeling methodology fol-
lowing the ODMAP (Overview, Data, Model, Assessment, and Prediction) protocol 
for species distribution models (Zurell et al. 2020). Specific methodological details 
for all ODMAP sections are presented as supplementary material (Suppl. material 1: 
table S2). We used the MaxEnt algorithm (Phillips et al. 2006) with species-specific 
tuning of model settings implemented through the R package ‘ENMeval’ 2.03 (Kass 
et al. 2021) to generate continuous predictions of climatic suitability across the native 
and invaded range (e.g., Zeng et al. 2016; Zumbado-Ulate et al. 2022). The follow-
ing settings were used to parametrize and generate 16 candidate models for each spe-
cies: algorithm = maxent.jar; partition method = block; regularization of multiplier 
values = 1–4 with increments of 1; feature classes = L, H, Q, LQH; where L = Linear, 
H = Hinge, Q = Quadratic, Clamping = True.

Model selection was conducted using the highest average of the area under the 
curve of the receiver-operating characteristic (‘AUC mean’), the standardized true skill 
statistic (sTSS), and the average of the 10-percentile training omission rate (‘10.or.pt 
mean’). For selected models, we estimated the percent contribution of each selected 
abiotic predictor and generated response curves by comparing the probability of each 
pest species’ presence relative to each abiotic predictor (Elith et al. 2006; Syfert et al. 
2013). The Boyce index (Boyce et al. 2002), and the slope of the regression of the re-
sponse variable on the logit of predicted probabilities according to Miller’s calibration 
statistics (Miller et al. 1991) were estimated to evaluate how much model predictions 
differed from the random distribution of the observed presences across the prediction 
gradients and extrapolation of our predictions outside the training data.

Species co-occurrence

To identify areas that may be susceptible to the establishment of multiple moth species, 
we used two alternative thresholds to generate binary predictions (raster absence-pres-
ence maps) of the potential range of each species across the study region. Binary predic-
tions were transformed into polygons to quantify the extent of climatically suitable areas 
(ESH; Brooks et al. 2019) of each species in square kilometers (km2). Specifically, we 
used the 10-percentile lowest omission rate logistic threshold (10.or.pt; Radosavljevic 
and Anderson 2014), which excludes those occurrence points with suitability in the low-
est 10 percentile, and the maximum training sensitivity plus specificity logistic threshold 
(maxSS), which performs an overall true occurrence prediction (Liu et al. 2005). This 
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approach allowed us to quantify ESH across the study region under two scenarios with 
different degrees of conservativeness: 1) removing only the 10 percent of the localities 
having the lowest predicted values of climatic suitability, or 2) maximizing the true 
positive prediction, resulting in a more restricted definition of climatically suitable areas.

To identify areas of co-occurrence, binary predictions were combined into a single 
raster. Because the binary predictions only had values of zero and one, the resulting 
cumulative raster displayed values between zero (no pest species predicted to occur in a 
pixel) and five. Then, this cumulative raster was transformed into a polygon to estimate 
the potential co-occurrence of multiple species, from two to five species. To calculate 
ESH we transformed the projected coordinate system of binary predictions and AVAs 
from WGS84 to NAD 1983 Albers contiguous USA (ESRI 102003).

Finally, a principal component analysis (PCA) was generated to visualize the envi-
ronmental space where multiple pest species are predicted to overlap. For this, we selected 
the ten predictors with highest contributions to the SDMs (Table 1) and simulated 1000 
pseudo-occurrences for each study species across the environmental space by generating 
1000 random points throughout their climatically suitable areas based on the binary pre-
dictions built with the 10.or.pt threshold. All pseudo-occurrences were spatially filtered 
using a distance of 10 km. Remaining pseudo-occurrences were transformed into cell 
centroids in grids of 10 km2 resolution. This method allowed us to generate a weighted 
sample size for each pest species according to their ESH and full environmental space.

Results

One preferred model was identified for each species (Suppl. material 1: table S3) from 
the total set of candidate models (5 species, 80 total models). Selected models varied 
in feature classes (L, Q, and LHQ), and four of them scored the highest AUC with 
the regularization multiplier at 1. Overall, both independent and dependent threshold 
evaluation metrics (Suppl. material 1: table S3) showed that the most robust model 
for each species exhibited a good fit and performed better than random models: AUC 
mean values between 0.71 and 0.89, sTSS values between 0.66 and 0.82, and low 
omission rates (10.or.pt mean values between 0.01 and 0.1). Similarly, the Boyce Index 
values (between 0.90 and 0.98), and the slope of Miller Calibration statistics (between 
0.6 and 1) showed that model predictions were consistent with the distribution of pres-
ences in the evaluation dataset and transferred efficiently into a new geographic area.

Sixteen abiotic predictors were retained among the five models selected (Table 1). 
Elevation was the only predictor featured in all five species models, but mean diurnal 
range, precipitation seasonality, precipitation of the warmest quarter, minimum tem-
perature of the warmest month, mean monthly potential evapotranspiration of driest 
quarter, and monthly variability in potential evapotranspiration appeared in four of the 
selected models. In general, the percent contribution of each selected abiotic predictor 
matched the percent of permutation importance of each selected abiotic predictor, but 
with some inconsistencies that may be attributable to modest multicollinearity (Table 1).
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Of the five focal species evaluated, the area estimated to be moderate to highly cli-
matically suitable for establishment was highest for EGVM, especially along the coast-
line, in western and central areas of Washington and Oregon, and central regions of 
California (Fig. 1A, B). The two abiotic predictors with the strongest contribution to 
EGVM model predictions (Table 1) were seasonal precipitation (58%) and elevation 
(13%). The highest predicted suitability (0.9) occurred in areas with the high monthly 
variability in precipitation, and climatic suitability decreased rapidly as elevation in-
creased from a maximum of 0.4 near sea level (Suppl. material 1: fig. S7). The ESH 
varied between 36 and 65% of the total viticultural area in the study region, depending 
on which threshold was considered (Table 2).

Climatic suitability was relatively moderate throughout the study region for two 
pest species. For GBM, the most climatically suitable regions occurred in small patches 
across viticulture areas in Washington and Oregon, and very small portions along the 
coast of California (Fig. 2A, B). The minimum temperature during the warmest month 
(57%) and precipitation during the warmest quarter (27%) had the highest contribu-
tions to GBM model predictions (Table 1). Estimated climatic suitability increased 
gradually as temperature increased, reaching a maximum of 0.8 at approximately 25 °C 
(Suppl. material 1: fig. S8a). Conversely, estimated climatic suitability decreased rap-
idly for locations with higher precipitation during the warmest quarter, from a maxi-
mum of 0.8 between 0- and 200-mm precipitation to 0.3 at approximately 500 mm 
(Suppl. material 1: fig. S8b). The ESH predicted for GBM represented between 0% 

Table 1. Percent contribution (% C) and permutation importance (% P) of selected abiotic predictors in 
species-specific climatic suitability models (EGBM = European grape berry moth, Eupoecilia ambiguella; 
EGVM = European grapevine moth, Lobesia botrana; GBM = Grape berry moth, Paralobesia viteana; 
GTM = Grape tortrix moth, Argyrotaenia ljungiana; CBW = Christmas berry webworm, Cryptoblabes 
gnidiella). The two predictors with the highest contributions are in bold.

Predictor EGBM EGVM GBM GTM CBW
% C (% P) % C (% P) % C (% P) % C (% P) % C (% P)

BIO2; Mean diurnal range (°C) 2.7 (0.5) – 10.5 (25.6) 32.2 (47) 69.5 (20.1)
BIO3; Isothermality (°C) 7.7 (6.8) 6.1 (5.3) – 35.5 (35.6) –
BIO7; Temperature annual range (°C) – 11.4 (13.9) – – –
BIO8; Mean temperature of wettest quarter (°C) 6 (7.8) 3.9 (5.3) – 0 (0) –
BIO13; Precipitation of wettest month (mm) 7.1 (14.7) 6.1 (7.2) – – –
BIO14; Precipitation of driest month (mm) – – 0 (0) – 0.7 (7.4)
BIO15; Precipitation seasonality (mm) 2.2 (5.9) 57.6 (42.1) – 13.5 (2.4) 0.5 (3.7)
BIO18; Precipitation of warmest quarter (mm) – 0 (0) 27.1 (41.2) 0.2 (0.4) 0 (0.2)
BIO19; Precipitation of coldest quarter (mm) 3.8 (0) – – – 1.2 (0.1)
Elevation (m) 57.6 (57.6) 12.6 (10) 0 (0) 14.4 (1.6) 7.9 (6.1)
EPQ; Emberger’s pluviothermic quotient – – – 0.3 (2.1) –
gDD5; growingDegDays5 (°C)1 4.4 (5.1) – – – –
mTW; Minimum temperature of warmest month (°C) – 0.3 (1.3) 56.5 (23) 3.8 (10.5) 12 (0)
PETDQ; PET of driest quarter (mm)2 – 1.4 (14.1) 3.7 (2.7) 0.1 (0.4) 3.4 (42.1)
PETS; PET seasonality (mm)2 8.5 (1.6) 0.6 (0.9) 2.2 (7.4) – 4 (18.2)
PETWQ; PET of wettest quarter (mm)2 – – – – 0.9 (2.1)

1sum of mean monthly temperature for months with mean temperature greater than 5 °C multiplied by the number of days.
2potential evapotranspiration.
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and 21% of the total viticulture area (Table 2). For GTM, only the viticulture areas in 
far northern Washington and small portions of central and southern California were 
climatically suitable for establishment (Fig. 2C, D). The two abiotic predictors with 
the highest contribution to the model predictions (Table 1) were isothermality (36%) 
and mean diurnal range (32%). Estimated climatic suitability across the native and 
invaded range of the GTM increased as the ratio of diurnal variation to annual varia-
tion in temperatures increased, reaching maximum suitability of 0.8 near 50 °C, and 
decreased for locations where the mean differences between maximum and minimum 
temperatures were the greatest (Suppl. material 1: fig. S9). The ESH of the GTM rep-
resented between 0.1 and 13% of the viticulture areas (Table 2).

Finally, the vast majority of the study region was projected to have relatively low 
climatic suitability for two focal species. For EGBM, the most climatically suitable 

Figure 1. Climatic suitability map for the European grapevine moth (EGVM), Lobesia botrana, in viticul-
tural regions along the West Coast of the United States A continuous climatic suitability estimates B bi-
nary predictions of climatically suitable areas based on the 10-percentile lowest omission rate threshold.
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regions for establishment occurred in central Washington and far northern Oregon 
(Fig. 2E, F). The two abiotic predictors with the highest contribution to EGBM model 
predictions were elevation (58%) and monthly variability in potential evapotranspira-
tion (9%; Table 1). Climatic suitability was predicted to be highest (0.8) near sea level 
and decreased at higher elevations as well as increased over a gradient of increasing pre-
cipitation (Suppl. material 1: fig. S10). The ESH represented between approximately 
1 and 12% of all viticulture area (Table 2). For CBW, most of the study region was 
predicted to be climatically unsuitable (Fig. 2G, H). The mean diurnal range and the 
minimum temperature of the warmest month had the highest contributions to model 
predictions (Table 1). Estimated climatic suitability gradually decreased as the mean 
difference between maximum and minimum temperatures increased. Estimated cli-
matic suitability also increased at higher temperatures (Suppl. material 1: fig. S11). The 
predicted ESH ranged between just 0.1 and 0.7% of the total viticulture area (Table 2).

Implementing the 10.or.pt binary threshold revealed that approximately 25% of the 
overall area of viticulture regions was predicted to be climatically suitable for pest co-oc-
currence (Fig. 3A). Less than 7% was climatically suitable for the co-occurrence of three 
or more species (Table 2). The highest predicted potential for co-occurrence based on 
this threshold occurred between EGVM and GBM, accounting for 19% of the total viti-
culture area, followed by EGVM and GTM for 11% of the area (Fig. 3B, Suppl. material 
1: table S4). All remaining pairs of focal species were predicted to co-occur in between 
0.1 and 6% of areas. Results based on the more restrictive maxSS threshold, suggest-
ed that just 0.1% of the total viticultural area is climatically suitable for co-occurrence 
of multiple species, and never for more than two-species (Table 2, Suppl. material 1: 

Table 2. Extent of climatically suitable areas (ESH) and corresponding percent of the total area of viticul-
ture regions (% VR) for five moth species (EGBM = European grape berry moth, Eupoecilia ambiguella; 
EGVM = European grapevine moth, Lobesia botrana; GBM = grape berry moth, Paralobesia viteana; 
GTM = grape tortrix moth, Argyrotaenia ljungiana; CBW = Christmas berry webworm, Cryptoblabes gni-
diella) using two binary thresholds for suitability: 10-percentile lowest omission rate threshold (10.or.pt) 
and the maximum training sensitivity plus specificity threshold (maxSS).

Species Threshold
10.or.pt maxSS

ESH (km2) % VR ESH (km2) % VR
EGBM 21640 12.1 1134.1 0.6
EGVM 115605 64.6 64894.6 36.3
GBM 36940 20.6 64.8 0.0
GTM 22776 12.7 109.6 0.1
CBW 1074 0.6 123.0 0.1
Number of species1 ESH (km2) % VR ESH (km2) % VR
0 37917.8 21.2 113329.8 63.3
1 95758.2 53.5 65396.1 36.6
2 34154.6 19.1 115.5 0.1
3 9586.5 5.4 79.6 0.0
4 1402.6 0.8 0.0 0.0
5 101.3 0.1 0.0 0.0

1number of the five moth species predicted to co-occur in an area.
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table S4). A PCA (Fig. 3C) was used to visualize clustering of species pseudo-occurrences 
relative to PCA loadings to assess qualitatively the environmental conditions underlying 
areas of predicted moth species co-occurrence. The results indicated: 1) an overlap in the 
environmental envelopes of EGBM and GBM (top left quadrant), driven mostly by an-
nual temperature range; 2) overlapping environmental envelopes for EGVM and GTM 
(top right quadrant) based on mean diurnal range and minimum temperature during 
the warmest month; 3) an environmental envelope with less apparent multispecies over-
lap (i.e., more diffuse spread of pseudo-occurrences; bottom right quadrant), and 4) an 
environmental envelope where between three (most often EGVM, GBM, GTM) and 
five species may coexist (bottom left quadrant), which is driven by precipitation of the 
warmest quarter and to a lesser degree by precipitation during the wettest month.

Figure 2. Climatic suitability estimates and binary predictions based on the 10-percential lowest omis-
sion rate threshold for four moth species A, B grape berry moth, Paralobesia viteana C, D grape tortrix 
moth (GTM), Argyrotaenia ljungiana E, F European grape berry moth (EGBM), Eupoecilia ambiguella 
G, H Christmas berry webworm (CBW), Cryptoblabes gnidiella.
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Figure 3. Regions predicted to be climatically suitable for multiple species A occurrence or co-occurrence 
of up to five of the moth species based on 10-percentile lowest omission rate thresholds B regions of po-
tential co-occurrence of the three species with the highest overall suitability in the study region: European 
green vine moth (EGVM) Lobesia botrana, grape berry moth (GBM), Paralobesia viteana, and grape tortrix 
moth (GTM), Argyrotaenia ljungiana C principal component analysis depicting climatic envelopes and en-
vironmental predictors (Table 1) associated with climatically suitable areas for multispecies co-occurrence.
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Discussion

Traditionally, researchers have concentrated on understanding biological invasions at 
large scales (Hoffmann and Courchamp 2016; Lewis et al. 2016). This approach pro-
vides fundamental knowledge of the biology of invasive species, but may offer limited 
predictive power at finer spatial scales (Novoa et al. 2020). Other studies have focused 
on the combination of pathways, invasive species traits, and characteristics of the in-
vaded environments that underlie dynamics at finer scales, which can be used to apply 
specific management at regional and species levels (Kueffer et al. 2013). Identifying 
the environments that are most susceptible to invasion, pathways, routes, and other 
mechanisms that allow invasive species to establish and spread can help limit their 
damage (Simberloff et al. 2013; Novoa et al. 2020).

Once invasive species settle, effective management becomes difficult and costly to 
carry out, especially in regions affected by multiple pest species (Navia et al. 2013). 
Here, we focused on assessing the risk of invasion of multiple species considered to 
be high risk to grape-growing areas of the world, where they have caused large losses 
to industry (Ioriatti et al. 2012; Isaacs et al. 2012). Our analyses drew upon a com-
prehensive and updated collection of occurrences and utilized robust methods and 
strict criteria to reduce impacts of unbalanced sampling, spatial autocorrelation, and 
multicollinearity, to improve prediction accuracy. Our study is applicable to different 
invasive taxa for which the objective is to guide early detection efforts to mitigate their 
potential impacts (Lennox et al. 2015; N’Guyen et al. 2016).

Scientists have linked successful invasive species to high abundance, wide distribu-
tion in their native ranges, and distinct traits that ease establishment and spread (e.g., 
Williamson and Fitter 1996). Although all five focal species may fulfill these criteria to 
varying degrees, our results suggested that EGVM poses the greatest risk of establishing 
if reintroduced into the study region. Previous studies have shown EGVM to be highly 
damaging for the grape industry across its native distribution in Europe (Thiéry and 
Moreau 2005; Ioriatti et al. 2012; Delbac and Thiéry 2016). Our results indicate that a 
large portion of the study region is likely to be climatically suitable for EGVM establish-
ment. Predicted climatically suitable areas include most viticultural areas of California, 
Oregon, and western Washington; particularly locations with relatively low elevations, 
and dry and warm seasonal conditions. Most areas of eastern Washington, where most 
of the grape wines are grown, were found to be climatically unsuitable for EGVM.

Our results are consistent with those of a prior global analysis of EGVM suit-
ability (Rank et al. 2020) and a physiologically-based demographic model (Gutier-
rez et al. 2012, 2018), which showed high suitability for EGVM in dry and warm 
seasonal habitats. Our predictions also coincided in most of our study region with a 
new large-scale, physiologically-based demographic model developed by the Spatial 
Analytic Framework for Advanced Risk Information Systems (SAFARIS) for EGVM 
(SAFARIS 2022). Overall, the major differences in predicted climatic suitability ob-
served between our model and the models described above can be attributed to differ-
ent approaches used to generate models (correlative vs process-based), the spatial scale, 
as well as the selected environmental predictors. Given that management strategies 
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derived from predictive models are scale dependent, our model can serve as a precise 
framework for grape-growing regions across the West Coast of the United States. For 
the small set of regions that showed conflicting values of suitability among suitability 
maps, combined prevention strategies can be applied to prevent pest establishment. 
Given limited resources, higher risk areas can be prioritized for surveillance as an aid 
to decision making. Finally, we expect it may be important to consider horticultural 
practices or other management activities within specific grape-growing regions. For ex-
ample, irrigation, a widespread strategy in vineyards across the Western United States, 
may affect suitability at very fine spatial scales, but potential effects would depend on 
local factors such as the frequency and quantity dependent on weather, soil type and 
variety. Future monitoring of environmental predictors at the site level, development 
of fine-scale models (e.g., remote sensing derived models), and identification of po-
tential pathways for pest introduction and spreading would complement our analyses.

The prior invasion of EGVM in California, and its ultimate eradication, may yield 
important lessons for future responses to invasive insects (Schartel et al. 2019). A retro-
spective analysis suggested that the success of the program was attributable to a combina-
tion of efficient transfer of knowledge gained from research conducted in EGVM’s native 
range, appropriate implementation of regulatory and control strategies, and coordinat-
ed responses among researchers, cooperative extension personnel, regulatory agencies, 
members of industry, and the general public (Zalom et al. 2013; Schartel et al. 2019; 
Simmons et al. 2021). Habitat suitability modeling using occurrence records from the 
most heavily invaded area, in Napa County, showed certain locations to be highly suit-
able for EGVM contingent on a combination of climatic conditions, attributes of the 
surrounding landscape, and anthropogenic variables (e.g., proximity to transportation 
corridors). Yet, the persistence of statistical hotspots in EGVM occurrences over time 
was not strongly tied to habitat suitability (Schartel et al. 2019). This pair of apparently 
contradictory results left open questions regarding the true suitability of the region for 
EGVM establishment, perhaps reflecting underlying challenges with drawing inferences 
in the midst of an active eradication program. Fortunately, the present study provides 
some clarity on this issue. Specifically, the climatic suitability predictions for EGVM 
indicated that not only is it well suited to those areas most heavily affected in the prior in-
vasion, but a substantial fraction of vineyard acreage in other areas of California, Oregon, 
and Washington are likely at risk of EGVM establishment should it be reintroduced.

We found that in addition to EGVM, two other moth species, GBM and GTM, 
might find moderate expanses of climatically suitable areas. Since the expansion of grape-
growing regions in North America, GBM has increased in abundance and distribution, 
but it has not been observed in the western United States. However, viticulture regions 
in Washington and Oregon seem to offer suitable conditions, as this species performs 
well in temperatures in seasonal humid environments (Botero-Garcés and Isaacs 2003; 
Isaacs et al. 2012). On the other hand, climatically suitable areas for GTM mostly occurs 
in Central and Southern California, specifically in dry regions with more stable tempera-
tures across the year, which coincides with the habitats described for this species in its 
native and invaded range throughout the Palearctic (Ioriatti et al. 2012). Although our 
results showed that much of the study region is unlikely to be climatically suitable for 
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EGBM and CBW establishment, their inclusion in this assessment is substantiated due 
to their high invasiveness and similar ecology to EGVM. While EGBM has been highly 
successful invading mainland and islands in Asia, CBW has been reported in Asia, Af-
rica, the Americas, and New Zealand (Ioriatti et al. 2012). Based on occurrence records, 
EGBM and CBW overlap and potentially interact with EGVM, at least historically, in 
most of their native range in Europe. Similar studies have assessed the potential distribu-
tion of invasive pathogens (Lötters et al. 2009; Turbill and Welbergen 2020), and pests 
(Narouei-Khandan et al. 2016) and illustrate the utility of SDMs to inform the location 
and timing of monitoring for potentially invasive species (Srivastava et al. 2019).

An additional benefit of this work was to model multiple species’ pest risk establish-
ment probabilities which can also aid efforts to develop tools, such as multi-lure phero-
mone traps, that can simultaneously monitor multiple species while reducing the costs 
and time-intensive nature of monitoring efforts (Epanchin-Niell et al. 2014). Ongoing 
research (A. Lucchi, personal communication; G. Simmons, unpublished data) is evalu-
ating the effectiveness of pheromone traps for each moth species alone and in multi-
lure combinations, given that interference between certain pheromones may influence 
multi-lure traps’ ability to attract and detect focal species (Brockerhoff et al. 2013; 
Chase et al. 2018; Rowley et al. 2018). Further developments concerning the efficacy 
of multi-lure traps, coupled with the results of the PCA that complement the climatic 
suitability maps of our study species and identify variables associated with the potential 
suitable habitat for multispecies co-occurrence across the West Coast of the U.S., may 
lead to more targeted, and ultimately effective, multi-pest monitoring programs.

Although a growing number of studies have modeled the distribution of multiple 
species or assessed co-occurrence of multiple species through joint SDMs or occu-
pancy models (Pollock et al. 2014; Norberg et al. 2019), the use of SDMs to assess 
the distribution and co-occurrence of multiple pest species remains unexplored (e.g., 
Briscoe Runquist et al. 2021). The accurate prediction of species co-occurrence has 
methodological limitations and effectiveness relies on exploratory analyses and robust 
methods of data collection and cleaning (Dormann et al. 2018). Previous studies have 
shown overlapping distributions and apparent coexistence of EGVM, EGBM, GTM, 
and CBW (Ioriatti et al. 2012). Similarly, the ecology and habitat characteristics of the 
North American GBM suggest this species might successfully invade grape-growing 
regions where it could potentially co-occur with other moth pests (Ioriatti et al. 2012; 
Isaacs et al. 2012). For invasive agricultural pests, there are always limitations on the 
amount of funding available to mount bio-surveillance efforts. Pest risk analysis re-
sources and tools such as the Cooperative Agricultural Pest Survey (2022) and the cli-
mate suitability model in SAFARIS (2022), have been designed to aid decision makers 
to choose which pests, and in which parts of the country, to mount detection programs 
in order to effectively dedicate funding. While these tools are valuable to make deci-
sions on which states may be at risk of pest establishment, the models presented here 
refine which grape production areas have the highest relative risk of pest establishment 
for several key pests to allow optimal use of scarce resources to design pest surveys. 
Adding information about invasion pathways would further refine efforts to optimize 
detection efforts in areas of the highest risk of pest arrival and establishment.
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Conclusions

Detection and surveillance efforts are important components of early pest management 
strategies but are often costly and time-intensive (Blackburn et al. 2017). The still-sub-
stantial cost and potentially reduced efficacy of multi-lure traps means that informed 
decisions must be made about where to implement these efforts in at-risk regions. To 
this end, predictive methods such as SDM may guide pest monitoring efforts. This sug-
gests predictive methods will still be of practical value in guiding early detection and 
surveillance efforts for entire pest complexes. Results of this work can be used to make 
preventive management more effective by identifying high and moderate risk areas for 
pest invasion and potential pathways of pest introduction and spread. Furthermore, 
this study can be used as a reference for the assessment of other pest complexes.

Our findings suggest that most resources should be used to avoid a secondary 
spread of EGVM in the viticulture regions of the West Coast of the United States. 
Additionally, given the apparent potential for coexistence of the European species in 
some areas (Ioriatti et al. 2012), traps embedded with multiple species’ pheromones 
may offer a logistically easier and more cost-effective way to monitor for multiple 
species (Chase et al. 2018). Ongoing studies with different combinations of lures are 
evaluating the potential virtue of these multi-lure traps in grape moth pest monitoring 
programs (A. Lucchi, Personal Communication; G. Simmons, unpublished data). The 
results of this work can be integrated with important management tools, such as the 
USDA Office of Pest Management Policy (OPMP) that serve as valuable inputs into 
setting pest control strategies.
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tive and invaded range in Europe. figure S6. Known occurrences (orange dots) and 
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