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Abstract
Quantitative models have several advantages compared to qualitative methods for pest risk assessments 
(PRA). Quantitative models do not require the definition of categorical ratings and can be used to com-
pute numerical probabilities of entry and establishment, and to quantify spread and impact. These models 
are powerful tools, but they include several sources of uncertainty that need to be taken into account by 
risk assessors and communicated to decision makers. Uncertainty analysis (UA) and sensitivity analysis 
(SA) are useful for analyzing uncertainty in models used in PRA, and are becoming more popular. How-
ever, these techniques should be applied with caution because several factors may influence their results. 
In this paper, a brief overview of methods of UA and SA are given. As well, a series of practical rules are 
defined that can be followed by risk assessors to improve the reliability of UA and SA results. These rules 
are illustrated in a case study based on the infection model of Magarey et al. (2005) where the results of 
UA and SA are shown to be highly dependent on the assumptions made on the probability distribution 
of the model inputs.
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Introduction

Different types of mathematical models are commonly used for pest risk analysis. Some 
models are used for calculating probability of entry (e.g., Roberts et al. 1998). Others 
are used to estimate pest establishment potential (e.g., Dupin et al. 2011; Phillips et 
al. 2006, Roura-Pascual et al. 2009; Sutherst 2003; Webber et al. 2011; Young et al. 
1999). Models are also used to model spread (e.g. Pitt et al. 2010, Robinet et al. 2012) 
or pest impacts under different scenarios (e.g., Stansbury et al. 2002, Cook et al. 2012; 
Kriticos et al. 2013). These models are powerful tools, but they include several sources 
of uncertainty that need to be taken into account by risk assessors and communicated to 
decision makers, namely uncertainty associated with input variables, parameter values 
estimated from expert knowledge, parameter values estimated from data, and equations, 
for example, uncertainty about the best equation to use for a given model application.

Uncertainty and sensitivity analysis are two techniques for evaluating models. Al-
though both techniques are often mixed together, they each have a different purpose. 
Uncertainty analysis (UA) comprises a quantitative evaluation of uncertainty in model 
components, such as the input variables and parameters for a given situation, to de-
termine an uncertainty distribution for each output variable rather than a single value 
(Monod et al. 2006; Vose 2000, de Rocquigny et al. 2008). Uncertainty in input vari-
ables and parameters is usually described using probability distributions. The objective 
of an uncertainty analysis is to study the consequence of uncertainty by computing a 
probability distribution on model output from the set of probability distributions on 
model inputs. UA aims to answer the following question, “what is the uncertainty as-
sociated with the output resulting from the uncertainty associated with the inputs?”

The use of formal uncertainty analysis was recently considered as one of the most 
important accomplishments in risk analysis since the 1980s (Greenberg et al. 2012). 
Uncertainty analysis allows one to take uncertainty into account when calculating an 
output variable of interest (e.g., number of spores entering in a given area, Peterson et 
al. 2009). Uncertainty analysis should be a key component of model-based risk analy-
sis because it provides risk assessors and decision makers with information about the 
accuracy of model outputs.

The main purpose of sensitivity analysis (SA) is to determine how sensitive the 
output of a model is with respect to elements of the model subject to uncertainty. 
The objective of a sensitivity analysis is to rank uncertain inputs according to their 
influence on the output. Sensitivity analysis can be seen as an extension of uncertainty 
analysis. Its purpose is to answer the following question “What are the most important 
uncertain inputs?”. Sometimes, SA is also used for a more general purpose such as to 
understand how the model behaves when some input or parameter values are changed.

Uncertainty and sensitivity analysis are becoming more popular, especially due to de-
velopment of Bayesian methods and of specialized software and packages (e.g., the sensi-
tivity package of R). However, these techniques should be applied with caution because 
several factors may influence their results (de Rocquilly et al. 2008; Saltelli et al. 2008) such 
that in some cases, the validity of conclusions derived from UA or SA may be limited. In 
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this paper, a brief overview of methods of UA and SA are given. Then, a series of practical 
rules that can be followed by risk assessors to improve the reliability of UA and SA results 
are defined. These rules are illustrated with the infection model of Magarey et al. (2005).

Brief overview of methods for uncertainty and sensitivity analysis

For some simple models, it is possible to calculate the exact probability distribution of 
the model output from the probability distributions of the uncertain input variables 
and/or parameters. However, in most cases, it is not possible to calculate the prob-
ability distribution analytically and other methods should be used. One method is to 
linearise the model from its derivatives in other words the derivatives of the model out-
put with respect to its inputs and parameters. If the uncertain factors are all assumed 
normally distributed, then it is possible to estimate the probability distribution of the 
linearised model analytically which is a normal distribution whose mean and variance 
are functions of the means and variances of the uncertain factors. A limitation of this 
method is that its application is restricted to the cases where the uncertain factors are in 
fact normally distributed. It is sometimes more appropriate to use other distributions, 
especially when the random variables are discrete or when they are bounded. Another 
limitation is that this method can be unreliable when the linear approximation is not 
accurate. For these reasons, the use of a four-step method, based on Monte Carlo simu-
lations, adapted from de Rocquilly et al. (2008), described below is recommended.

A four-step method for uncertainty analysis

Step 1. Define probability distributions for the uncertain model inputs and parameters
The uncertainty about a quantity of interest is frequently described by defining this 

quantity as a random variable. Uncertainty about model parameter/input values can be 
described using different types of probability distributions. The uniform distribution, 
which gives equal weight to each value within the uncertainty range, is commonly 
used when the main objective is to understand model behaviour, but more flexible 
probability distributions are sometimes needed to represent the input and parameter 
uncertainty. When the model input corresponds to a discrete variable, for example, 
the number of imported consignments, or number of successful incursions, discrete 
probability distributions such as the Poisson are often appropriate (e.g., Yen et al. 
2010). Among continuous distributions, the well-known Gaussian distribution is of-
ten convenient, since it requires only the specification of a mean value and a standard 
deviation. It is often replaced by the truncated Gaussian distribution, triangular, or by 
beta distributions, which give upper and lower bounds to the possible values (e.g., Pe-
terson et al. 2009; Yen et al. 2010). When the distribution should be asymmetric, for 
example, when input factors are likely to be near zero, log-normal, triangular, or beta 
distributions offer a large range of possibilities (e.g., Peterson et al. 2009). When the 
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input variables and parameters are not independent, it is sometimes possible to define 
multidimensional probability distributions, for example, the multidimensional Gauss-
ian distribution, with non-zero covariances. Probability distributions can be derived 
from expert knowledge and/or from experimental data. Frequentist statistical methods 
can be used to estimate standard deviations and confidence intervals reflecting uncer-
tainty due to measurement errors and data sampling procedures. Bayesian statistics 
offer a variety of methods and algorithms to calculate probability distributions by com-
bining expert knowledge and data (e.g., Makowski et al. 2010; Makowski et al. 2011).

In some cases, it is difficult to define reliable probability distributions for all uncer-
tain model inputs, i.e., probability distributions correctly reflecting the current state of 
knowledge about input values based on available data and expert knowledge. In such 
cases, it is useful to define several probability distributions and, when possible, to run 
the analysis for all of them and to compare the results. This method is illustrated in the 
example below. When the computation time is too long or when it is not possible to 
run the analysis several times with different distributions, it is important to present the 
assumptions explicitly, and to acknowledge that the results of the analysis may have 
been different if other probability distributions had been defined.

Step 2. Generate values from the distributions defined at step 1
Simple random sampling is a popular method for generating a representative sample 

from probability distributions. This sampling strategy provides unbiased estimates of 
the expectation and variance of random variables. Other sampling techniques like Latin 
hypercube can also be used, especially when the number of variables is large. It is also 
possible to generate combinations of values of uncertain factors by using experimental 
designs, for example, complete factorial designs. The latter technique was used by the 
European Food Safety Authority (EFSA) (2008) to combine estimated minimum, maxi-
mum, and most likely values of several uncertain input factors. The choice of the sample 
size, N, is critical as the reliability of the results of the analysis depends on it. The use of 
a small N value may lead to inaccurate estimated mean, variance, or quantiles because all 
of the space defined by the uncertain inputs or parameters may not be sampled, such that 
the resulting approximation of the probability distribution of the model output may be 
inaccurate. On the other hand, the use of a very high N value will lead to a large number 
of model simulations that may be time consuming without adding new information. The 
choice of the value of N is thus a compromise between computation time and accuracy.

Step 3. Compute the model output(s) for each generated input set
Once the parameter/input values have been generated, the next step consists of 

running the model for each unique set of parameter/input values. For example, if 
N was set equal to 100, the model must be run 100 times leading to 100 values per 
output variable. This step may be difficult when computation of model output is time-
consuming and, with some very complex models, the value of N must be set equal to 
a small value due to computation time constraints. This third step will be easier with 
more simple and less computationally intensive models.
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Step 4. Describe the distributions of the model outputs
The distribution of the model output values generated at step 3 can be described 

and summarized in a number of ways. It is possible to present the distribution graph-
ically using, for example, scatterplots, histograms, density plots. It is also useful to 
summarize the distribution of the model output values by its mean, median, stand-
ard deviation, and quantile values. All these techniques have been applied in several 
quantitative risk assessments (e.g., Koch et al. 2009; Peterson et al. 2009; Makowski 
and Mittinty 2010). When several outputs are considered, it is often useful to study 
the relationship between different outputs using scatterplots and correlation coef-
ficients.

Methods of sensitivity analysis

Sensitivity analysis can be seen as an extension of uncertainty analysis. It comprises 
computing sensitivity indices to rank uncertain input variables or parameters accord-
ing to their influence on the model output. Two types of sensitivity analysis are usu-
ally distinguished: local sensitivity analysis and global sensitivity analysis (Saltelli et al. 
2000). Local SA focuses on the local impact of uncertain quantities on model outputs, 
and is carried out by computing partial derivatives of the output variables with respect 
to the inputs/parameter values. With this method, the uncertain quantities are allowed 
to vary within small intervals around nominal values, but these intervals are not related 
to the uncertainty ranges of the uncertain model inputs and parameters. Contrary to 
local SA, global SA considers the full domain of uncertainty of the uncertain model 
quantities (Saltelli et al. 2008). In global SA, the uncertain inputs and parameters are 
allowed to vary independently within their whole range of variation.

A sensitivity index is a measure of the influence of an uncertain quantity on a 
model output variable. Model inputs and parameters whose values have a strong 
effect on the model are characterized by high sensitivity indices. Less influential 
quantities are characterized by low sensitivity indices. Thus, sensitivity indices can 
be used to rank uncertain inputs and parameters, and identify those that deserve 
more accurate measurements or estimation. A large number of global SA methods 
are available, for example, ANOVA, correlation between input factors and model 
outputs, methods based on Fourier series, and methods based on Monte Carlo simu-
lations (Saltelli et al. 2000). Sensitivity indices can be computed using statistical 
software (e.g., the package sensitivity of the statistical software R http://cran.r-pro-
ject.org/web/packages/sensitivity/index.html) or more specialized software such as 
Simlab (http://simlab.jrc.ec.europa.eu/), @Risk, or Crystalball. @Risk and Crystal-
ball can be used with spreadsheet software and include user-friendly interfaces. With 
all analyses, users will have to define the probability distributions of the uncertain 
input variables and parameters or, at least, their possible ranges of variation. The 
users will also have to define the values of some tuning parameters, as shown in the 
example below.

http://cran.r-project.org/web/packages/sensitivity/index.html
http://cran.r-project.org/web/packages/sensitivity/index.html
http://simlab.jrc.ec.europa.eu/
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Example

In this section, we present a simple example to show how uncertainty and sensitivity 
analysis can be used in practice. We consider the simple generic infection model for 
foliar fungal plant pathogens defined by Magarey et al. (2005):

W = min Wmax , Wmin

g(T )
and

g(T ) =
Tmax −T

Tmax −Topt

T −Tmin

Topt −Tmin

(Topt−Tmin )/(Tmax−Topt )

 if min maxT T T≤ ≤  and zero otherwise

where T is the mean temperature during wetness period (°C), W is the wetness dura-
tion required to achieve a critical disease intensity (5% disease severity or 20% disease 
incidence) at temperature T. The model output is W and it is computed as a function 
of the input T. Tmin, Topt, Tmax are minimum, optimal, and maximum temperature for 
infection respectively, Wmin and Wmax are minimum and maximum possible wetness 
duration requirement for critical disease intensity respectively. This model was used to 
compute the wetness duration requirement as a function of the temperature for many 
species and was included in a disease forecast system (Magarey et al. 2005, 2007).

Tmin, Topt, Tmax, Wmin and Wmax are five species-dependent parameters whose val-
ues were estimated from experimental data and expert knowledge for different foliar 
pathogens (e.g., Magarey et al. 2005; EFSA 2008). However, for some species, these 
parameters are uncertain due to the limited availability of data (Magarey et al. 2005), 
and in such cases, it is important to perform uncertainty and sensitivity analysis.

In this case study, uncertainty and sensitivity analysis techniques were applied to 
the model defined above for infection of citrus by the fungal pathogen Guignardia 
citricarpa Kiely. According to EFSA (2008), the parameter values are uncertain for this 
pathogen. The uncertainty ranges considered in this case study for these parameters are 
presented in Table 1. All computations were done using R (http://cran.r-project.org) 
and the code is available on request.

Three series of probability distributions were defined from Table 1:

i.	 Independent uniform distributions (with lower and upper bounds set equal to 
the values reported in Table 1)

ii.	 Independent triangular distributions (with lower and upper bounds set equal 
to the values reported in Table 1, and the most likely values set equal to the 
medians of the uncertain ranges)

iii.	 Triangular distributions with positive correlation between Tmin and Topt. Values of 
Tmin were first sampled from the triangular distribution defined in ii. Values of Topt 
were then generated by adding values sampled from a uniform distribution (14, 

http://cran.r-project.org
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16) to the values of Tmin. With this method, Topt values were always higher than 
24°C and lower than 31°C, and were correlated to Tmin. The parameter Topt does 
not follow a triangular distribution anymore, but the other parameters are still 
distributed according to the triangular distributions defined in ii.

These probability distributions were based on the same information; the lower and 
upper bounds defined for each model parameter in Table 1. Nonetheless, these distri-
butions describe uncertainty in different ways; the triangular distribution gives higher 
weights to values located in the middle of the range, and the last distribution considers 
that two parameters out of five are not independent.

An uncertainty analysis was performed by generating N=1,000 parameter values 
from the three probability distributions defined above successively. Results are pre-
sented in Figures 1 (probability distribution i), 2 (probability distribution ii), and 3 
(probability distribution iii). The sampled parameter values are more concentrated 
in the central parts of their uncertainty ranges with the independent triangular dis-
tributions (Figure 2) than with the independent uniform distributions (Figure 1). 
Figure 3 clearly shows that, with distribution iii, Tmin and Topt were positively corre-
lated. The 99%, 90% 10% and 1% percentiles and mean values of the model output 
W reported for different temperatures show that, with all probability distributions, 
uncertainty about fungus wetness duration requirement is quite small if the tem-
perature is close to 27–28 °C, but much larger for temperature below 25 or above 
32 (Figures 1–3). Uncertainty about the wetness duration requirement is reduced 
with the triangular distribution (Figure 2) compared to the uniform (Figure 1).

A sensitivity analysis was performed using the Morris method to identify the most 
influential parameters of the model. The method of Morris is frequently used to quick-
ly screen among all uncertain inputs (Saltelli et al. 2000; Monod et al. 2006; Morris 
1991). The main steps of the method are:

•	 Define a design by combining k values of the p uncertain parameters
•	 Add a small incremental step Δ to one uncertain parameter zi
•	 Compute an “elementary effect” defined by 

Table 1. Uncertainty ranges of the five model parameters for Guignardia citricarpa Kiely

Parameter Lower bound Upper bound

Tmin (°C) 10 15

Topt (°C) 25 30

Tmax (°C) 32 35

Wmin (h) 12 14

Wmax (h) 35 48
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Figure 1. Results of an uncertainty analysis performed with 1,000 Monte Carlo simulations. The up-
per graphics show the values of four model parameters sampled from uniform distributions. The lower 
graphics show the resulting distribution of model outputs, their means (think black line), 10 and 90% 
percentiles (dashed lines), and 5 and 95% percentiles (dotted lines).

where y() is the model function and z1, ..., zp are the p uncertain parameters
•	 Repeat the procedure several times for all uncertain parameters
•	 Compute the mean and variance of elementary effects from r replicates. A 

high mean indicates a parameter with an important influence on the output. 
A high variance shows that the elementary effect is highly dependent on the 
value of the uncertain parameter. It indicates either a parameter interacting 
with another parameter or indicates a parameter whose effect is non-linear. 
The tuning parameters of the Morris method were set equal to the following 
values: k=4, p=5, Δ=2, and r=100. The lower and upper bounds of the model 
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Figure 2. Results of an uncertainty analysis performed with 1,000 Monte Carlo simulations. The upper 
graphics show the values of four model parameters sampled from independent triangle distributions. The 
lower graphics show the resulting distribution of model outputs, their means (think black line), 10 and 
90% percentiles (dashed lines), and 5 and 95% percentiles (dotted lines).

parameters were set equal to the values reported in Table 1. Note that it was 
implicitly assumed here that the uncertain model parameters were uniformly 
distributed.

Figure 4 shows the mean and the standard deviation of the elementary effect 
computed using k=4, p=5, Δ=2, and r=100. Results show that the two most influ-
ential parameters are Tmax and Topt. The high standard deviations obtained for both 
parameters reveals the existence of either strong nonlinear effects or strong interac-
tions between the two parameters. This result shows that the effects of a change of 
Tmax and Topt on wetness duration requirements depend on the values of these pa-
rameters (non linearity) and/or on the values of the other parameters of the model 
(interaction).
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Practical rules

Five rules are presented below to improve the reliability of uncertainty and sensitivity 
analysis.

Rule 1: Be transparent about assumptions and methods

In some cases, conclusions of UA and SA depend on assumptions made on probabil-
ity distributions of uncertain model inputs. Results may also depend on the selected 
method used to perform UA or SA. Ranking of parameters obtained by SA may thus 

Figure 3. Results of an uncertainty analysis performed with 1,000 Monte Carlo simulations. The 
upper graphics show the values of four model parameters sampled from triangle distributions assu- 
ming a positive correlation between Tmin and Topt. The lower graphics show the resulting distribution of 
model outputs, their means (think black line), 10 and 90% percentiles (dashed lines), and 5 and 95% 
percentiles (dotted lines).
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depend on the method used to compute sensitivity indices. For these reasons, it is im-
portant to be transparent about assumptions made on probability distributions and to 
present in detail the methods used for UA/SA.

Rule 2: Define precisely the model output of interest

Figures 1–3 show that the uncertainty range depends highly on the temperature T. In 
this example, the uncertainty level can be considered as very low or very high depend-
ing on the model output; simulated wetness duration requirements were characterized 
by low uncertainty levels for temperatures around 27 °C but by high uncertainty levels 
for more extreme temperatures. This example shows that the conclusions obtained for 
a given output may not be valid for others.

Rule 3: Assess the accuracy of the estimates

The accuracy of the estimated mean, variance, and quantiles of the probability distri-
bution of the model output depends on the number of simulations. Figure 4 shows 
the 99%, 90%, 50%, 10%, and 1% percentiles of wetness duration requirements esti-
mated using different numbers of simulations from 10 to 2 000 for T=25 °C. Estimates 
of the 99% percentiles of model output W were highly unstable when the number 
of simulations was lower than 500. In this example, at least 1 000 simulations were 
required to obtain accurate estimate of the 99% percentile. This result shows that it 
is important to check that a sufficiently high number of simulations were used in all 
analysis. The stability of the computed quantities can be assessed either graphically, or 
by computing variances, confidence intervals either analytically or by using nonpara-
metric techniques (e.g., bootstrapping) (Saltelli et al. 2008).

Rule 4: Assess the robustness of results to distribution assumptions

Another important point to keep in mind is that results of uncertainty analysis may 
depend on distribution assumptions. Table 2 shows the values of the median, 95% and 
99% percentiles obtained with N=10 000 Monte Carlo simulations for T=25 °C using 
the three different types of probability distributions described above. The 99% percen-
tiles obtained with the three distributions were quite different. The 99% percentile was 
equal to 39.61 h with independent uniform distributions, but the same percentile was 
lower with the two other distributions, especially with distribution ii. This example 
illustrates the importance of assessing the robustness of results to assumptions made 
on probability distributions. The first step of the uncertainty analysis method specified 
above (Step 1: Define probability distributions for the uncertain model inputs and 
parameters) is a key step, and it is important to use all available information to derive 
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reliable probability distributions reflecting correctly the current state of knowledge. 
Although this step is often difficult, the recent development of methods of expert 
elicitation and of Bayesian techniques offer new possibilities (Makowski et al. 2010; 
Makowski et al. 2011).

Rule 5: Be aware of the capabilities of different sensitivity analysis techniques and, 
when possible, compare results

As mentioned above, several methods are available for uncertainty analysis and, even 
more, for sensitivity analysis. All methods do not have the same capabilities. For ex-
ample, the Morris method illustrated in Figure 4 is an SA method that can be used to 
screen quickly among all uncertain inputs. However, this method cannot be used to 
distinguish between interaction and nonlinear effects, and other techniques for exam-
ple Fourier amplitude sensitivity testing (FAST) and ANOVA should be applied when 
a precise analysis of interactions between model inputs is required.

Table 2. Estimated median, 95%, and 99% percentiles of wetness duration requirements (hours) ob-
tained under three different assumptions of probability distributions (N=10,000)

Prob. distribution Median 95% 99%
i. Uniform 14.52 27.75 39.61
ii. Triangular 14.51 20.82 26.20
iii. Triangular + correlation 14.44 23.35 32.38

Figure 4. Results of the Morris method.
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Conclusion

This paper shows that several factors may influence the results of uncertainty and 
sensitivity analysis, especially the assumptions made about the probability distribu-
tions of the uncertain model inputs and parameters, the number of simulations 
performed with the model, and the type of model output analyzed by the risk asses-
sor. Due to the influence of each of these factors, the validity of the conclusions of 
an uncertainty or sensitivity analysis may be limited. Practical rules were presented 
and illustrated in this paper in order to improve the reliability of uncertainty and 
sensitivity analyses.
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