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Abstract
For greater preparedness, pest risk assessors are required to prioritise long lists of pest species with potential 
to establish and cause significant impact in an endangered area. Such prioritization is often qualitative, 
subjective, and sometimes biased, relying mostly on expert and stakeholder consultation. In recent years, 
cluster based analyses have been used to investigate regional pest species assemblages or pest profiles to 
indicate the risk of new organism establishment. Such an approach is based on the premise that the co-
occurrence of well-known global invasive pest species in a region is not random, and that the pest species 
profile or assemblage integrates complex functional relationships that are difficult to tease apart. In other 
words, the assemblage can help identify and prioritise species that pose a threat in a target region. A com-
putational intelligence method called a Kohonen self-organizing map (SOM), a type of artificial neural 
network, was the first clustering method applied to analyse assemblages of invasive pests. The SOM is a 
well known dimension reduction and visualization method especially useful for high dimensional data 
that more conventional clustering methods may not analyse suitably. Like all clustering algorithms, the 
SOM can give details of clusters that identify regions with similar pest assemblages, possible donor and 
recipient regions. More important, however SOM connection weights that result from the analysis can 
be used to rank the strength of association of each species within each regional assemblage. Species with 
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high weights that are not already established in the target region are identified as high risk. However, the 
SOM analysis is only the first step in a process to assess risk to be used alongside or incorporated within 
other measures. Here we illustrate the application of SOM analyses in a range of contexts in invasive spe-
cies risk assessment, and discuss other clustering methods such as k-means, hierarchical clustering and the 
incorporation of the SOM analysis into criteria based approaches to assess pest risk.

Keywords
Invasive pest assemblages, prioritisation, self-organising maps, hierarchical clustering, k-means, multi-
criteria analysis, plant pathogens

Introduction

Global tourism, trade and climate change continue to drive invasive species impact by 
increasing opportunities for species dispersal and establishment in new regions of the 
world. Nonindigenous invertebrates, vertebrates, plants, bacteria, fungi and viruses 
continue to establish in regions where they are not normally found (Vitousek et al. 
1997), threatening both cultivated and indigenous species. Invasive species are capable 
of doing irreparable damage to the biodiversity of natural and agricultural ecosystems 
and to human and animal health, but for many nations, protecting the biological po-
tential and production of managed systems is of particular concern, as well as increas-
ingly urgent, as climate change threatens global food security. For greater preparedness 
and prevention, important decisions about invasive species need to be supported by a 
range of approaches that are integrative and capable of converting scientifically relevant 
data into data that is also decision relevant.

Regulators and pest risk assessors face the unenviable task of providing pest lists 
to policy makers based on their assessment of risk of pest establishment in endangered 
areas. When creating such lists it is difficult to ignore species that have a recent history 
of invasiveness. The result can be compilations that are often qualitative, subjective and 
frequently biased toward current knowledge and expertise of the panel involved in the 
creation process. Despite such drawbacks, regulators use such lists to allocate scarce 
resources to the prevention of perceived high risk species establishing.

Many attempts have been made to address the shortcomings of pest prioritisation 
but few have delivered anything that approaches a rigorous quantitative process. For 
example, a range of tools for prioritisation can be found in plant risk management (see 
Skurka Darin et al. 2011 for a brief review). Very few new tools have centred on arthro-
pod pests or plant pathogens. Trait-based categorisation of invasive pests that aspire to 
give some predictive capability have been attempted with little success. For example, a 
study by Simberloff (1989) attempted to characterise the traits that lead to successful 
establishment of insects. As well, Peacock and Worner (2008) compared a selection of 
insect species that are often intercepted at the New Zealand border that have estab-
lished, with species that, despite numerous interceptions over many years, have not yet 
established. The latter were used as a proxy for “failed” introductions. More recently, 
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Philibert et al. (2011) used species–level traits of forest pathogenic fungi to predict 
invasion success using a combination of ecological and biological traits.

However, data associated with invasive species, as for most ecological data, involve 
features that are complex, dynamic and nonlinear. Many conventional multivariate 
statistical approaches used to analyse such data often involve linear methods that are 
affected by noise and outliers (Chon 2011). The purpose of this study is to review the 
use of the co-occurrence of pest species that make up regional species assemblages or 
profiles for knowledge discovery. We also review the application of novel nonlinear 
methods such as a neural network called Kohonen self-organising map (SOM) (Ko-
honen 1982) and other clustering methods, to the problem of prioritising pest species 
by profiling pest assemblages in target regions. Additionally, future research require-
ments if such methods are to be used to influence policy decisions, will be highlighted.

The idea of clustering pest complexes or assemblages of species to identify do-
nor and recipient regions in an invasive species context was described by Worner and 
Gevrey (2006) using a self-organising feature map. Using species assemblages as indi-
cators of environmental conditions is not new. Assemblages of fossil organisms such 
as Radiolaria and Foraminifera are used in petroleum geology and oil exploration to 
indicate presence of fossil hydrocarbon reservoirs (Gregory et al. 2007) as well as past 
climates (Heiri and Lotter 2005). Species assemblages are also well used in fresh water 
studies and other ecosystem studies to determine changes in composition or behaviour 
in response to toxic substances and responses to natural and other anthropocentric 
changes (Chon 2011, Lek and Guégan 2000). A SOM is an artificial neural network 
that can detect patterns and similarity in complex data. SOMs have found application 
in a range of disciplines from image recognition (see Chon 2011 for a short review) to 
detecting shifts in climate (Schmidt et al. 2012).

A basic assumption underpinning the Worner and Gevrey (2006) and Gevrey et al. 
(2006) studies is that a grouping or assemblage of pest species integrates complex vari-
ables that are difficult to tease apart. Some might question that assumption on the basis 
that such groupings are not natural and have come about mainly by anthropogenic influ-
ences. Despite that a history of transport, trade and food production has largely influenced 
which pests are where in the world, it is clear that those species able to establish viable 
populations rely on a complex interaction of biotic and abiotic variables. Indeed, Watts 
and Worner (2009a) have shown that such pest groupings are not random assemblages of 
species. Co-occurrence of species forming a particular pest profile for a region indicates 
suitable environmental conditions, and in the case of arthropod pests and plant pathogens, 
co-occurrence indicates suitable hosts and a particular invasion history of the region. In 
their 2006 study, Worner and Gevrey first used a conventional cluster analysis to identify 
global donor and recipient regions, using more than 800 species over 456 geopolitical ar-
eas (Worner and Gevrey 2006). The analysis resulted in long drawn out clusters that were 
difficult to interpret. They then applied a self-organising map (SOM) that appeared to 
have a number of advantages. The first is that the high dimensional data set was reduced to 
a 2- dimensional map or visualisation that greatly improved interpretation (Fig. 1). In ad-
dition, the analysis created a separate map for each species in the assemblage with a weight 
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or value that indicated the strength of association that species has for the pest profiles or 
assemblages associated with the cells in the map. These weights allow the species complex 
for a region to be filtered into high risk established species and high and low risk non-
established species. The high weight allocation for a species in a region indicates it is closely 
associated with the particular pest complex of that region. In other words, the species co-
occurs globally with similar assemblages of pests. For species that are not established but 
allocated a high weight, the weight is interpreted as an index of high risk of establishment.

Clearly, clustering can be done using a number of approaches and SOM clustering 
can be used in a number of contexts to address the problem of pest risk assessment. We 
discuss some recent studies that further explore SOM analysis or are variations of that 
approach, along with some alternative clustering methods in more detail.

Clustering methods and applications to risk analysis

Data

The data used in all the studies reviewed here comprised the presence and absence of 
pest species in different countries and regions in the world. This information was ex-
tracted with permission from the CABI Crop Protection Compendium (2003, 2007) 

Figure 1. A representation of the application of a self organising feature map to the analysis of pest 
distribution data.
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and CABI’s Plantwise Knowledge Bank (http://www.plantwise.org/knowledgebank), 
which are interactive multimedia encyclopaedias edited by CABI, a not-for-profit sci-
ence-based development and information organization.

Data presented by country or geographical regions where pest presence or absence 
is represented by binary data, with 0 corresponding to absence and 1 corresponding to 
presence of species in a specific geographical area. Incomplete data from the database 
were discarded. Depending on the taxa of interest in the study, different numbers of 
pest species and regions comprised the actual database used for analysis.

The SOM Model

A detailed description of self-organising maps (SOM) can be found in Kohonen (1982) 
and Kohonen (2001), and examples of its application to pest risk data in Worner and 
Gevrey (2006) as well as Gevrey et al. (2006). The self-organising map is an unsupervised 
learning algorithm that is a type of neural network. A SOM consists of two layers of arti-
ficial neurons, 1) the input layer that represents the input data (pest profiles comprising, 
presence = 1 or absence = 0 for each species in each region) and the output layer or map, 
which is usually arranged in a two-dimensional structure (Fig.1). Every input neuron 
or vector (pest profile) is connected to every output neuron (map neuron or node), and 
each connection has a weight attached to it. The batch SOM algorithm can be summa-
rized as follows: (i) Initialize the values of the virtual (node) vectors (VVi, 1 ≤ i ≤c) using 
random values. (ii) Repeat steps (iii) to (vi) until convergence. (iii) Read all the sample 
vectors (SV or pest profiles) one at a time. (iv) Compute the Euclidean distance between 
SV and VV. (v) Assign each SV to the nearest VV according to the distance results. (vi) 
Modify each VV with the mean of the SV that were assigned to it (Worner and Gevrey 
2006). In other words, when the input vectors (pest profiles for global sites) are presented 
to the SOM algorithm, random weight values are assigned to each virtual (weight) vec-
tor associated with each neuron (node) of the map. For each input vector (pest profile) 
the Euclidean distance between the input vector (pest profile) and the incoming weight 
(node or virtual) vector of each map neuron, is calculated. Each input vector is then 
assigned to the closest virtual vector (the winner, also known as the best matching unit 
(BMU)) according to the Euclidean distance. Each virtual vector is then updated during 
an iterative learning process, where weights are modified according to equation (1.1).

wi,j(t+1)=wi,j(t)+h(t)(xi-wi,j(t))	 (1.1)

where wi,j(t) is the connection weight from input i to map neuron j at time t, xi is ele-
ment i of input vector x, and h is the neighbourhood function. In other words, the 
neighbourhood function determines how strongly the neurons or nodes are connected 
to each other, as defined in equation (2).

h(t)= α exp(-d2/(2σ2(t)))	 (1.2)

http://www.plantwise.org/knowledgebank
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where α is the learning rate, which decays towards zero as time progresses, d is the Eu-
clidean distance between the winning unit (BMU) and the current unit j, and σ is the 
neighbourhood width parameter, which also decays towards zero (Watts and Worner 
2009b).

Basically, the large number of data vectors, or pest profiles are sorted such that 
those pest profiles that are most similar are associated with a particular node, neuron 
or cell on the map. Additionally, pest profiles associated with cells that are close to each 
other are more similar than those cells that are further away. While the SOM algorithm 
is essentially a clustering algorithm, the detail within each cluster is very useful for 
questions concerning the invasive species of interest. The analysis shows similarities 
between pest profiles of countries and regions despite that intuitively many regions 
may not appear to have analogous climates and environmental conditions. Clearly, 
however, such similarity requires close study and indeed, if the percentage similarity 
between any two countries in a cluster is examined one usually finds a level of simi-
larity that is often unexpected. Clearly, the SOM analysis is only the start of a more 
detailed analysis into what the clusters mean. The most important result of the SOM 
analysis is that the SOM weights can be used to create a risk list where the weight as-
signed to each species (element in the vector of species) can be used as an index of the 
risk of those species of establishing in the target area Gevrey et al. (2006). In this way, 
a subset of the original 844 species can be targeted for more in-depth risk assessment.

Sensitivity analysis of SOMS

Databases often contain errors and the concern is that such error will significantly af-
fect the confidence in any analysis that is based on the database. Paini et al. (2010a) 
evaluated the sensitivity of the SOM method by altering the original presence/absence 
data by an increasing percentage and compared estimates of risk with those generated 
by a national coordinating body (Plant Health Australia) utilizing expert stakeholder 
opinion. The same species distribution data set as used by Worner and Gevrey (2006), 
described above, was used in this study. Additionally, Impact Risk Assessments (IRAs) 
generated by the Australian Government’s Department of Agriculture, Forestry, and 
Fisheries (http://www.daff.gov.au/ba/ira/final-plant) were analysed to estimate the er-
ror rate in a sample of the CABI data and to determine the range of data alteration re-
quired. To simulate database error, data from all regions in the original database (459) 
were altered by 5%, 10%, 20%, and 30%. To do that, a set percentage of species were 
randomly selected from each regional pest profile and their presence or absence records 
reversed. Each region was altered separately so that no two regions were altered in the 
same way. Paini et al. (2010a) found that evaluation of the risk posed by the species 
based on the SOM analysis remained unaffected by alterations of up to 20% of data 
over all regions (Fig. 2). Of interest was the comparison of species indicated as high risk 
by the SOM with expert stakeholder methodology. Unsurprisingly, the comparison 
revealed significant differences in the estimates of establishment risk.

http://www.daff.gov.au/ba/ira/final-plant
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Clearly, no data set is complete and the impact of potentially inaccurate or in-
complete data was tested in another study where species profiles were bootstrapped 
(resampling with replacement) 1000 times and the change in each species rank (high-
est weight to the lowest) was recorded (Watts and Worner 2009b). The New Zealand 
regional pest profile was used. For the top 50 most highly ranked species, that were 
not established in New Zealand, their ranks changed on average only 14 places out of 
a possible 800, indicating considerable confidence in the method.

SOM Validation: New Zealand data

Another question is whether a SOM analysis could have helped identify those pest 
species that actually established in a target region. As a means of validation Worner 
and Soquet (2010) carried out a new SOM analysis on an updated CABI data base 
(CABI 2007). New Zealand’s pest profile again was used where the status of each 
currently established pest species was changed one at a time. In other words, if a 
species is established/present (1) its status was changed to not established/absent 
(0). The objective was to determine whether changing a species status from present 
to absent changes its risk index significantly. After the status of a single species was 
changed from present to absent, a new self-organizing map was created using the 
modified data and the new risk index for the target species recorded. Following that, 
the species status was reinstated to its original before repeating the process with the 
next established/present species.

Figure 2. The proportion of species remaining in the top 100 list in response to an increasing level of data 
alteration. (Reprinted with permission from Paini et al. 2010a).
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By using the same initial parameters for a SOM (map size, initial weight values, 
number of epochs), the same clusters were formed and for each trial, the same regions 
were associated with the same neuron or node (cell on the map).

A rank was also associated with each species depending on its weight or risk value. 
Before validation the species were sorted in descending order from the species with the 
highest risk allocated the first rank and so on. Using ranks is a good way to measure 
the change in the risk by evaluating the change of rank before and after alteration. If 
a species rank hardly changes, in other words, if a previously present species that is 
changed to absent, maintains a high rank or risk index on re-analysis of the data then 
the self-organizing map has performed well.

The Spearman’s rank correlation between ranks obtained before and after data 
modification was r = 0.987, showing high correlation. Altering the data did not have a 
significant influence on risk assessment. A species that is highly ranked remains highly 
ranked even though its status is changed. Notably, the cluster to which New Zealand 
was assigned also never changed, nor were the adjacent neurons modified. Those re-
sults once again, illustrated the stability of the method.

The average change in risk values for the top 100 pests was 0.07 and the ranks 
changed on average, 14 places (Fig. 2) for the 120 established species when their status 
was changed to absent (Worner and Soquet 2010). Clearly, their initial high risk in-
dex barely changed after data transformation thus a SOM analysis would have identi-
fied these species as high risk before they established in New Zealand. Despite this, a 
change of status of 4 of the 120 species currently present in New Zealand resulted in a 

Figure 3. Average absolute change in risk index = 0.07.
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change of cluster. For these 4 species the risks values also changed considerably. Some 
species have low initial risk simply because of low prevalence. Any interpretation of 
risk for low prevalence species, in other words less than about 20 occurrences, requires 
much caution and should be based on additional information. It is clear however that 
this tool is robust enough to not be influenced by even quite large variations for a large 
number of known global crop pests.

SOM Validation: USA data

Suiter (2011) carried out a SOM analysis on USA data. The data bases used were 
the Global Pest and Disease Database (GPDD) which is an archive of information 
for pests of concern to the USA. The study also used data extracted from the CABI 
Crop Protection Compendium (CPC) as described above for comparative analysis. 
The GPDD comprised over 3000 species and is well used by many agencies such as the 
United States Department of Agriculture (USDA), Customs and Border Protection 
(CBP), Department of Homeland Security (DHS) and State Co-operators. In contrast 
to the study carried out by Worner and Gevrey (2006) and Gevrey et al. (2006), Suiter 
(2011) included all pest species recorded in the respective data bases, from bacteria 
to weeds, in the analysis. World pest distribution data extracted from both databases 
included only distributions marked as “Present”. “Unverified, Uncertain, Eradicated, 
Intercepted” and “Questionable” citations were discarded. The resulting analysis of 
the GPDD data comprised 45,051 unique distribution records and for the CABI da-
tabase, there were 47,411 unique distribution records. Interestingly, there was only 
9.8% overlap in the species recorded in each database (Fig. 4). Of particular interest 
with respect to validation of the SOM method was the number of high risk species, as 
determined by the SOM method, that were not established in 2007, that subsequently 
established by 2011. A 10 X 15 SOM map was used for the analysis and the databases 
were analysed separately.

The analysis of the GPDD database showed six species with high risk indices that 
had not established in 2007 had established by 2011 and also six species with high risk 
indices in the CABI database. These species were not the same, so 12 high risk species 
have subsequently established by 2011. It is not known whether any of these species 
were regulated at the time or whether they were on any agency risk list. It appears that 
the SOM analysis is a useful filter that may alert risk assessors to potential threats that 
require a closer analysis.

Suiter (2011) found that the SOM analysis was quite robust and provided a con-
sistent fit of the neural network to the pest distribution data. Suiter (2011) pointed 
out that the results of the analysis may be subject to data over- or under-sampling 
artefacts. For example, countries that have been heavily sampled for invasive pests (i.e., 
USA, China, Australia) consistently cluster together on the SOM neural net. Suiter 
(2011) concluded that this could be due to one or more of several factors, 1) a high 
probability of overlap in pest assemblages for countries with a large number of pests, 
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2) the countries are vast with a wide range of climates that may be very similar, 3) the 
countries with high pest numbers may be major trading partners and the similarities 
in current pest assemblages are most likely historical in nature due to trade and human 
movement, and 4) these countries have the resources and capacity to survey for inva-
sive pests, unlike poorer countries. However, comparing the results of Suiter (2011) 
with the findings of Worner and Gevrey (2006) it appears that oversampling does not 
completely explain why some clusters occur. For example, Worner and Gevrey (2006) 
found that some countries (e.g., Tasmania, 63 species) in the New Zealand cluster had 
only half the number of species as some other countries (Canary Islands, 125) in the 
same cluster. Also the fact that trading history is important has always been proposed 
as one of the reasons why some pest assemblages are similar (Worner and Gevrey 2006, 
Paini et al. 2010b).

The Suiter (2011) study found that of the 2600 GPDD pests and 2500 CABI 
pests, only 505 (9.8%) (Fig. 4) were shared by both datasets and despite that, the 
GPDD and CABI geopolitical SOM projections looked very similar. When risk rank-
ings were used to produce a prioritized pest list, the species compositions generated for 
the United States for both datasets were quite different. The study illustrates that the 
composition of the pest species complex present in a dataset and the distribution of 
species in the country of interest, are important. When there are many endemic pests 
in the data matrix for a large area like USA, the Euclidean distance values (risk rat-
ings) for pests tend to be significantly lower in general than if the majority of species 
in the pest profile are not present in the country. That result highlights the need to 
analyse and interpret the results of each database separately and be mindful of endemic 
species that may have very low global prevalence and therefore tend not to co-occur 
with many other species. The fact that each database was able to highlight the risk of 

Figure 4. The level of similarity between the GPDD and CABI databases.
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a number of species that had not established in 2007 but subsequently established by 
2011 (Suiter 2011), illustrates that the information in each database, despite being 
different, is valid.

SOM Validation: simulated data

Paini et al. (2011) tested the ability of the SOM to rank fungal species that could estab-
lish in a region above those species that couldn’t establish according to simulated data. 
The authors did this in a virtual world in which regions had particular characteristics 
and species had particular requirements. Surprisingly, there was little or no difference 
between species that had low prevalence and species that were widely distributed and 
the success rate was above 90% for all species.

K-means clustering

K-means is an unsupervised algorithm that performs clustering (Lloyd 1982). In other 
words, the algorithm finds the best way to partition data into groups or clusters. The 
name k-means comes from the fact that the user decides how many clusters (k clusters) 
are necessary to partition data. The k-means algorithm proceeds as follows:

Choose k initial centres. These centres (vectors) can be generated randomly or they can 
be vectors that are randomly selected from the data set.

For each data vector (eg. regional pest profile), calculate the distance to each of the k 
cluster centres.

Assign each data vector (pest profile) to its nearest cluster.
Calculate new cluster centres, corresponding to the mean of all vectors in each cluster.
Repeat steps 2-4 until a stopping condition is reached. This is usually when vectors no 

longer change the cluster they are assigned to, that is, the clusters are stable.

The approach of using k-means to analyse the regional pest profiles is the same 
as the self-organizing one where geographical regions are clustered together based on 
their pest species assemblage (pest profiles) to determine which species are more likely 
to establish in a new region. In k-means, the risk index of a species establishing in a 
specific region is assessed by its frequency of presence in the vectors/pest profiles in 
the cluster to which the target region has been assigned. Watts and Worner (2009a, 
2009b, 2011, 2012) have reported a number of analyses of the CABI data set (2003, 
2007) described above, using k-means clustering. In Watts and Worner (2009b) the 
results of clustering insect assemblages with SOM were compared with the results of 
the k-means algorithm. While that study found that in some ways k-means could be 
superior to SOM, several issues were left unaddressed such as the effect of noise or 
small random changes to the performance of each algorithm.
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Watts and Worner (2012) compared the performance of SOM maps with the per-
formance of equivalent k-means algorithms over assemblages of bacterial crop diseases 
and also investigated the effects of adding noise to the assemblages and measuring 
cluster quality. Cluster quality for each algorithm was measured using quantisation er-
ror (Hansen and Jaumard 1997), which is the mean distance between each vector and 
the centre of its cluster. In addition, the computational efficiency of each algorithm 
was also considered. While the Watts and Worner (2012) study found differences in 
the performance of the clustering algorithms in most instances the difference are not 
significant. More important, however, in this study as well as previous studies, the dif-
ferent algorithms give high to medium risk indices to basically the same species. For 
example, in the Watts and Worner (2012) study only 12 species out of the top 80 used 
for the comparisons, were not in both the SOM and k-means risk lists.

Hierarchical clustering

Borgatti (1994) and Hastie et al. (2009) give good explanations of hierarchical cluster-
ing as a means of classifying similar samples or objects. Given a set of N items to be 
clustered, the start of the hierarchical agglomerative clustering is to:

Assign each item to its own cluster. In each of the subsequent steps, two clusters 
are merged and a new cluster is formed until all clusters are merged into a single 
cluster. There are various methods to determine which clusters are merged, for ex-
ample using the most similar pair of observations in two clusters (single linkage), the 
most dissimilar pair of observations (complete linkage) or the dissimilarity between 
the average of the observations in each cluster (group average; Hastie et al. 2009). The 
method used to merge clusters determines the size of the clusters and the relationships 
between them. A dendrogram provides a graphical representation of the relationship 
between the clustered items by plotting each merge at the similarity (distance) between 
the merged groups. It is important to note that, like the other clustering techniques 
discussed in this paper the clustering result does not imply a causal relationship and 
should be interpreted with caution.

An example of a hierarchical cluster analysis of the CABI data is provided by Es-
chen and Kenis (2012) who investigated the trade in woody plants for planting in Eu-
rope, as a major pathway for the introduction of alien forest pests and diseases. While 
phytosanitary inspections at the import stage are essential to prevent such introduc-
tions, Eschen and Kenis (2012) suggest they are limited and tend to target recognised 
pests, particular hosts and shipments that are likely to contain them. Such phytosani-
tary inspections tend to be biased, moreover, the identification of risk depends to some 
extent on expert judgement. The aim of the Eschen and Kenis (2012) analysis was to 
provide an objective assessment of the risk posed by individual species and identifica-
tion or prediction of potential sources of invasive species based on the global distribu-
tion of known pests. Eschen and Kenis (2012) analysed distribution data (presence/
absence data) obtained from CABI’s Plantwise Knowledge Bank (http://www.plant-

http://www.plantwise.org/knowledgebank
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wise.org/knowledgebank) for 1009 invertebrate pests and pathogens of woody hosts 
in 351 global regions within 183 countries. Seven large countries were subdivided 
into regions. The 1009 taxa were divided into twelve groups (4 micro-organism and 8 
invertebrate taxa).

Countries and regions with similar pest species assemblages were identified for each 
organism group using hierarchical cluster analysis and the likelihood of establishment 
of those species was calculated as the proportion or frequency of countries within the 
cluster containing EU and European Free Trade Association countries (EFTA) where 
each species has been recorded as present. Taxa recorded in fewer than six regions were 
excluded from the analysis to reduce the influence of rare species and outliers. Eschen 
and Kenis (2012) used Ward minimum variance method (Ward 1963) to determine 
which clusters were merged, as it consistently produced interpretable clusters, while 
other methods did not. The optimal number of clusters was determined for each of the 
twelve groups of taxa using the Davies-Bouldin Index, a measure based on the ratio 
between the variation within and between clusters (Davies and Bouldin 1979).

Interpretable clusters were formed for all groups of taxa, except for the Oomy-
cetes, where the European countries were spread over all clusters. Clusters for micro-
organisms contained nearly twice as many regions as clusters for invertebrates (111 vs. 
61 regions per cluster). The non-EU regions with the most similar pest species assem-
blages to EU regions were North America, the Mediterranean region, the northern part 
of Eurasia and Australia/New Zealand (Fig. 5), which have a broadly similar climatic 
range as the EU and a long history of intensive trade. Most pest species in the database 

Figure 5. Geographical representation of the results of the hierarchical cluster analysis for species of 
micro-organisms and invertebrates. Countries on the map that are hatched have several regions that typi-
cally are in the European cluster. For each country and organism group, lists were produced that indicate 
those species that pose the greatest risk.

http://www.plantwise.org/knowledgebank


Susan P. Worner et al.  /  NeoBiota 18: 83–102 (2013)96

used for hierarchical analysis were already present in one or more EU countries at the 
time of the study, which indicated that the risk of these species primarily comes from 
within the EU and is similar to the result of Paini et al. (2010b), who used a SOM 
to identify potential new invasive agricultural invertebrate pests for the USA and also 
found that the majority of species in their dataset were already recorded in one or more 
states. Moreover, the high proportion of species already recorded in the target region 
lowered the risk values (Suiter 2011). Eschen and Kenis (2012) suggested that combin-
ing the results of this analysis with economic data could provide a clearer indication 
about the likely origin of unidentified, future alien species establishing in Europe, that 
should be considered when assessing the risks associated with the import of woody 
plants for planting.

SOMs and multi-criteria analysis

Plant-parasitic nematodes (PPN) cause estimated losses of $157 billion/year worldwide 
(Abad et al. 2008) and documented losses of $600 million/year in Australia (Hodda 
2009). Fortunately, Australia does not have many of the globally damaging and quar-
antinable PPN species and the current losses result from the activities of a relatively 
few damaging species, such as root-knot nematodes, root lesion nematodes, cereal cyst 
nematode, Heterodera avenae and potato cyst nematode, Globodera rostochiensis (in the 
state of Victoria only). Despite this, trade is increasing, as it is in many other countries, 
thus providing multiple pathways for introduction of more exotic nematode species. 
Based on the need for a system to prioritize risks from many PPN species and to 
predict their potential biosecurity threats, Singh et al. (2012) carried out a study that 
analysed the distribution data of 250 PPN species from 355 regions worldwide using 
a SOM. As in the previous studies, Singh et al. (2012) compared the presence and 
absence of pest species in Australia to other regions of the world by clustering regions 
with species assemblages similar to Australia and her component states. The SOM was 
also used to determine regions which could act as a donor for potential invasive species.

Singh et al. (2012) considered that in addition to distribution, there are other cri-
teria that contribute towards the risks and impact of a species. Additionally, there are 
often biases in the distribution data as thorough nematode surveys are lacking in coun-
tries where there is very limited nematological expertise available. In consideration of 
all these factors, Singh et al. (2012) devised an assessment including the following nine 
criteria. For example, 1) the existence of particular pathways, 2) survival adaptations, 
3) pathogenicity, 4) host range, 5) whether the species is an emerging pest, 6) its taxon-
omy, 7) the existence of particular pathotypes and, 8) association in disease complexes, 
and, 9) the level of knowledge that exists about the species. For each of the nine criteria, 
a probability scale was established indicating the level of risk. For example, for the pine 
wilt nematode, Bursaphelenchus xylophilus, and the criterion “Pathways”, they define 
the probability scale as, a) association with propagative material p ≥ 0.6, b) association 
as a contaminant, p < 0.6 > 0.3, c) not directly associated with trade p < 0.3. For each 
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criterion, probability values were estimated based on both literature search and expert 
judgment. Following that, weights were assigned based on the relative contribution of 
each criterion towards the biosecurity risk. The SOM index from the analysis of PPN 
distributions was combined with the values from the nine criteria and the sum of the 
weighted average values was calculated to determine the overall biosecurity risk.

Initial SOM clustering indicated that potential donor regions or regions from 
where species are most likely to pose the greatest threat were unsurprisingly, Australia’s 
major trading partners. Bursaphelenchus xylophilus is a well known quarantine nema-
tode species and based on the SOM analysis of the distribution data the resulting 
SOM index of 0.37 indicated the species to be of medium risk. Singh et al. (2012) 
used SOM index risk scale, > 0.7 = High, < 0.7 > 0.3 = Medium and < 0.3 = Low risk. 
When the criteria based assessment was included, the resulting risk value was much 
higher than that estimated by the SOM index alone (Table 1).

The higher risk is the result of considering the potential economic impacts of the 
species and additional information such as recent spread and availability of pathways as 
indicated by the number of interceptions in wood packaging materials and pine timber 
products. Another example is the carrot cyst nematode, Heterodera carotae, an economi-
cally important pest which currently has a restricted distribution. However, despite this 
restricted distribution, there is evidence of its spread and also its good survival adaptations 
by the formation of cysts. The SOM estimate ranked the species as low risk, but based 
on the multicriteria analysis, it becomes categorised as a medium risk species (Table 2).

The study by Singh et al. (2012) illustrates, as Worner and Gevrey (2006) sug-
gested, that relying only on SOM estimates alone may lead to under- or overestimation 
of risks depending on the species. SOM remains a useful method for initial prioritiza-
tion and can be incorporated with criteria based methods to better estimate a species 
biosecurity risks. A similar suggestion was made by Eschen and Kenis (2012), who 
found that their analysis did not identify Asia as a potentially important source or 
donor region for new invasive pests, despite a recent, strong increase in trade in plants 
for planting from that region.

Table 1. SOM analysis and criteria based assessment of the pine wilt nematode (B. xylophilus)

Criteria Probability Weight
Distribution (SOM index from 1) 0.37 0.2
Pathways 0.80 0.15
Survival adaptations 0.65 0.1
Pathogenicity 0.85 0.1
Host range 0.55 0.1
Emerging pest 0.80 0.1
Taxonomy 0.60 0.1
Pathotypes 0.50 0.05
Disease complex 0.60 0.05
Knowledge 0.45 0.05
Sum (probability by weight) 0.62
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Discussion

The studies described here suggest that SOMs can provide additional or preliminary 
information for evaluation and prioritisation of alien invasive species. It appears that 
no matter which clustering method or database is used, the analysis of similarities 
among pest species assemblages or regional profiles can be very useful. A criticism 
made by stakeholders has been that the databases used for such analyses contain a 
substantial number of errors. However, sensitivity analyses carried out by Paini et al. 
(2010a) and Watts and Worner (2009b) show that species weights and species ranks 
appear relatively robust to quite large errors in species distribution data. Given the 
many errors of omission and commission that are inevitable in such databases, these 
findings illustrate the practical utility of this approach and the utility of SOMs as a 
method, that can complement the current approaches used by biosecurity agencies. 
Additionally, the study by Suiter (2011) showed that quite different databases can still 
provide useful assessments of potential threats borne out by the number of species in 
each database given high risk weightings in 2007 that eventually established by 2011. 
In addition, the Suiter (2011) study seems to indicate that there may be some value 
in including other pest taxa in the analysis. The reason why the inclusion of more pest 
species might give better results is that more species may better characterise the pest 
complex by integrating more information about the abiotic and biotic influences of 
the region compared with fewer species. This hypothesis clearly requires more research.

With respect to the clustering methods that have been applied to the pest prioriti-
sation problem, they all have advantages and disadvantages. The SOM analysis is com-
putationally less efficient, but gives rich results. K-means is reputed to be susceptible to 
outliers and the results greatly depend on the initial partitions (the values of the cluster 
centres). However, an advantage of a SOM analysis is that it deals quite well with outli-
ers. Indeed we have observed it can confine outliers in a part of the SOM map without 
affecting the other parts. K-means just partitions the data, whereas a SOM analysis 
preserves the relationship between neighbouring clusters or nodes in the map. Nearby 
data vectors in the input space are mapped onto neighbouring locations on the output 
(map) thereby preserving the internal structure of that data. SOMs also provide good 
data visualization and provide users with results that can simplify further analysis

Despite the difference between SOMs and k-means, a further analysis of the results 
in Watts and Worner (2012) shows that the differences between a k-means analysis and 

Table 2. The results of a multi-criteria analysis for a range of exotic nematode species.

Species SOM Index Combined weighted average
B. xylophilus 0.37 0.62
H. carotae 0.10 0.47
H. glycines 0.40 0.63
H. oryzae 0.47 0.52
M. chitwoodi 0.20 0.62
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a SOM analysis can be minor if the same number of clusters as the SOM analysis are 
used. The advantage of k-means over SOM is that it is much more computationally 
efficient, however that does not seem so important when risk analyses, particularly 
when related to a new commodity or import risk assessment, may take a year or more 
to complete.

A striking feature when the clusters that result from the methods presented here 
are compared is the similarity of the results. The clusters in Worner and Gevrey (2006), 
Watts and Worner (2009b), Eschen and Kenis (2012) and another study by Vänninen 
et al. (2011) are very similar, although three techniques and two different datasets were 
used. The Eschen and Kenis (2012) study investigated twelve groups of invertebrates 
and micro-organisms with woody hosts, while the other studies investigated agricul-
tural insect pests, but the clusters produced were strikingly similar. Such similarity 
suggests that the results of all three techniques were robust. However, values for the 
risk factors varies and a formal comparison of the methods discussed here would be 
desirable

Like all data analyses, the methods described here involve error. A weakness of all 
the clustering methods is their inability to provide a realistic risk index for species that 
have a restricted distribution and low prevalence, or emerging pests that initially have 
low prevalence and therefore low co-occurrence with other species. Although Paini et 
al. (2011) showed the SOM was able to successfully identify even low prevalence spe-
cies as having a higher likelihood of establishing than other more widespread species 
that were not able to establish. The SOM method in particular identifies species that 
are strongly associated with a particular pest profile. For those species that are not yet 
established, there could be very good reasons why those species have not established 
but clearly they need closer study. Other information should be considered. In fact the 
multi-criteria analysis is a good example of first using the SOM analysis to target spe-
cies for in-depth risk assessment then quantifying additional relevant information to 
provide a more informed risk assessment.

Recommendations

Self-organising maps and other clustering methods have been used to filter the large 
amounts of information about the distribution of known global invasive arthropod 
pests and plant pathogens for risk assessment to help prioritise policy and resources. 
This novel approach continues to be researched and adopted by a scientists and agen-
cies internationally to provide decision support for risk assessors. With more people ap-
plying the concept of clustering invasive species assemblages, indicative protocols that 
allow for robust comparative studies need to be developed. Protocols for the detection 
and removal of possible outliers, guidance for the choice of the initial number of seed 
clusters (or cells for a SOM), acceptable methods for cluster validation and judging 
cluster quality across all methods as well as methods for reconciling the information 
coming from different clustering methods, are required. An additional requirement for 
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risk assessment is to determine the efficacy of using clustering methods to refine the 
projection of the potential for establishment of high risk species by combining regional 
assemblages with regional climate and habitat variables. Moreover, additional research 
is needed to investigate whether, in addition to pests and pathogens, the inclusion in 
the analysis of other associated organisms, such natural enemies, biological control 
agents, and fungal endophytes, can give stronger and more informative aggregations. 
Additionally, the analyses presented here are based on political regions where an alter-
native is to use eco-climatic regions that might provide closer links of the pest profiles 
with specific host and climate combinations.
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