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Abstract
Climate is frequently used to predict the outcome of species introductions based on the results from spe-
cies distribution models (SDMs). However, despite the widespread use of SDMs for pre- and post-border 
risk assessments, data that can be used to validate predictions is often not available until after an invasion 
has occurred. Here we explore the potential for using historical forestry trials to assess the performance of 
climate-based SDMs. SDMs were parameterized based on the native range distribution of 36 Australian 
acacias, and predictions were compared against both the results of 150 years of government forestry trials, 
and current invasive distribution in southern Africa using true skill statistic, sensitivity and specificity. 
Classification tree analysis was used to evaluate why some Australian acacias failed in trials while others 
were successful. Predicted suitability was significantly related to the invaded range (sensitivity = 0.87) and 
success in forestry trials (sensitivity = 0.80), but forestry trial failures were under-predicted (specificity = 
0.35). Notably, for forestry trials, the success in trials was greater for species invasive somewhere in the 
world. SDM predictions also indicate a considerable invasion potential of eight species that are currently 
naturalized but not yet widespread. Forestry trial data clearly provides a useful additional source of data 
to validate and refine SDMs in the context of risk assessment. Our study identified the climatic factors 
required for successful invasion of acacias, and accentuates the importance of integration of status else-
where for risk assessment.
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Introduction

Predicting which species will escape from forestry plantations and become invasive 
remains a challenge in invasion biology (Daehler et al. 2004). Such prediction is an 
essential requirement for proactive management (Ficetola et al. 2007). Propagule pres-
sure, residence time, species traits, environmental factors, interactions of introduced 
species with the native species, and historical factors have all been indicated as drivers 
of invasion success (Castro-Díez et al. 2011; Křivánek et al. 2006; Lockwood et al. 
2009; Pyšek et al. 2009; Thuiller et al. 2006; Wilson et al. 2007), with invasions from 
silviculture as no exception (Castro-Díez et al. 2011; Gallagher et al. 2011). However, 
climate plays a fundamental role in determining species distributions (Gaston 2003), 
and the predictive success of invasive risk assessments is still largely a function of inva-
siveness elsewhere and climate suitability (Hulme 2012).

Species distribution models (SDMs) have been widely used to predict invasions (Elith 
and Leathwick 2009; Pauchard et al. 2004; Peterson 2003; Zhu et al. 2007). An SDM is 
a mathematical description of the species distribution in environmental space that can be 
used to predict the distribution of species in geographic space (Peterson et al. 1999). The 
models combine species occurrence records and environmental variables (Peterson and 
Holt 2003) to create a climatic envelope model. The resulting model can be projected to 
any geographic space to identify regions that are suitable for species. The models can be 
based on native distribution records, introduced distribution records, or both (Steiner et 
al. 2008). SDMs can therefore be used to identify areas that are suitable for species even 
before introduction to predict which areas are likely to be invaded (Guisan and Zimmer-
mann 2000). SDMs have considerable potential in risk assessment but they are seldom 
tested in predicting successful tree establishments but see Nuñez and Medley (2011).

The use of SDMs in management of invasive species can be considerably improved 
by independent datasets to validate SDM predictions (Allouche et al. 2006; Fielding 
and Bell 1997). Appropriate datasets should contain information on species that were 
repeatedly introduced in different localities with a clear indication of introduction out-
come (i.e. success or failure). It is important that the records on introduction outcome 
explicitly indicate which factors influenced the outcome (e.g. climate or biotic). How-
ever, these ideal datasets are rarely available. Therefore, invaded range data have been 
used to evaluate SDM predictions (McGregor et al. 2012b; Nuñez and Medley 2011; 
Nel et al. 2004; Rouget et al. 2004; Wilson et al. 2007). However, such analyses are 
limited to established widespread invasive species, ignoring any failed introductions.

While alien trees and shrubs have been introduced in different parts of the world 
to fulfil a wide range of human needs (Richardson and Rejmánek 2011), historically 
forestry has been one of the most important pathways (Pyšek et al. 2009; 2011). In-
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troduced forestry species contribute to the economies of many countries, but can also 
cause major problems as invaders of natural and semi-natural ecosystems (Essl et al. 
2010, 2011; Richardson and Rejmánek 2011). Such introductions have often been 
well documented, for example government forestry trials throughout southern Africa 
were reviewed by (Poynton 1979a, b; 2009). The data from these trials provide histori-
cal information on intentional introductions and on their outcome, making it possible 
to explore factors influencing the success of introductions across different areas.

The aims of this study are to evaluate species distribution models using both for-
estry trial data and invaded range data, and to investigate why some trials succeeded 
while others failed. To do this, we narrowed the taxonomic range to a well studied 
group, Australian acacias. Australian acacias are a good model group to understand 
plant invasions because Acacia is a speciose genus that contains many introduced and 
invasive species (Richardson et al. 2011). They are also a good group for exploring 
SDMs because native ranges in Australia and introduced ranges in southern Africa are 
well known and documented (Van Wilgen et al. 2011). Around 80 Australian acacias 
have been introduced in southern Africa, 36 of which were included in forestry trials 
(Richardson et al. 2011; Poynton 2009, Table 1). Currently, sixteen Acacia species are 
confirmed as invasive and three species are reported to be naturalized, but it is not clear 
whether other species are also likely to invade or not (Richardson et al. 2010, 2011; 
Van Wilgen et al. 2011; Wilson et al. 2011).

First we used data on the outcome of forestry trials and data on invasive plant distribu-
tions to evaluate SDMs. We then assessed why some forestry trials succeeded but others 
failed. Lastly, we determine which introduced species have a large potentially suitable but 
not currently occupied range, i.e. which species have a high invasion debt (Essl et al. 2011).

Methods

Study species and datasets

Species distribution models for Australian acacias were calibrated using occurrence 
records from their native range (Australia) and then projected to southern Africa based 
on Richardson et al. (2011) approach. The models were evaluated using presence re-
cords from the invaded range in the Southern African Plant Invaders Atlas (SAPIA: 
Henderson 2007) and records of success and failure obtained from government for-
estry trials (Poynton 2009).

Species distribution modelling

Model calibration

Numerous approaches have been developed to model the potential distribution of 
invasive species with various degrees of success (Gallien et al. 2012; Peterson 2003).  
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Here we chose a simple SDM approach that was quick to implement. The models were 
originally developed for 838 Australian Acacia species (Richardson et al. 2011). The 
approach was slightly modified as our pilot study indicated that some of the species 
ranges were under-predicted when using the exact approach. Minimum and maximum 
values for each variable over the range of species occurrence were used to define the 
range of each species. We also decided to use four predictor variables instead of six as 
this gave more sensible predictions. The model that we produced is equivalent to the 
marginal range of BIOCLIM but uses only four predictor variables (Nix 1986).

We obtained a dataset of occurrence records for the selected species (Table 1) from 
the Australian Virtual Herbarium (accessed 29th June 2010) with only one occurrence 
record retained per 10 minute grid cell for each species to reduce spatial sampling bias. 
Richardson et al. (2011) reported that to clean data all names were checked against the 
native species list while hybrid, varieties, subspecific information and authorities were 
generally removed for simplicity and to make the list comparable. The four bioclimatic 
variables used to build the SDMs were annual mean temperature (Bio_1), maximum 
temperature of the warmest month (Bio_5), minimum temperature of coldest month 
(Bio_6), and annual precipitation (Bio_12) all obtained at a 10 minute spatial resolu-
tion from Worldclim [www.worldclim.com (Hijmans et al. 2005)].

For each species we calculated the minimum and maximum values extracted from 
occurrence records for each predictor variable. These values were used to identify the 
range of values that each species could tolerate. For each species, we reclassified each 
of the four predictor variable maps into a map consisting of presence (value = 1) or ab-
sence (value = 0), using the minimum and maximum values calculated for that species. 
We then multiplied these presence/absence maps to generate a final map indicating the 
potential distribution of that species. The analysis was conducted using the R statistical 
software (v. 2.11, R Development Core Team 2010). The models were projected to 
southern Africa to identify climatically suitable regions for each species.

Model evaluation

We evaluated the relationship between predicted distributions and actual distributions 
(forestry trials and SAPIA data) using several measures. Sensitivity is the proportion 
of observed presences predicted present and quantifies the omission error; specificity 
is the proportion of observed absences predicted absent and quantifies commission 
error (Fielding and Bell 1997). These measures range from 0 to 1 with 0 indicating 
no agreement between predicted and actual data and 1 indicating a perfect agreement. 
True skill statistic (TSS) includes omission and commission errors (Allouche et al. 
2006; Fielding and Bell 1997), and ranges from -1 to +1, where +1 indicates perfect 
agreement and values of zero or less indicates a performance no better than random. 
We used TSS to evaluate SDMs because TSS has been shown to be insensitive to 
prevalence (Allouche et al. 2006).

www.worldclim.com
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Table 1. The number of government forestry trials, the number of successful trials; the number of re-
cords in SAPIA, the number of  QDGCs occupied in South Africa, Lesotho and Swaziland; and status in 
southern Africa for the species explored in the study.

Species Total number 
of trials Success Number of records 

in SAPIA 
QDGCs occupied 

in SA
Status in southern 

Africa

A. acuminata 13 3 0 0 Introduced
A. adunca 1 0 2 2 Naturalized
A. adsurgens 2 2 0 0 Introduced
A. aneura 4 3 0 0 Introduced
A. aulacorpa 4 2 0 0 Introduced
A. auriculiformis 3 2 0 0 Introduced
A. baileyana 5 4 184 101 Invasive
A. binervata 1 1 0 0 Introduced
A. cowleana 2 1 0 0 Introduced
A. crassicarpa 2 1 0 0 Introduced
A. cultriformis 7 3 1 1 Naturalized
A. cyclops 2 2 1282 172 Invasive
A. dealbata 13 12 1667 299 Invasive
A. decurrens 5 2 341 124 Invasive
A. elata 9 3 99 48 Invasive
A. falciformis 4 2 0 0 Introduced
A. fimbriata 1 1 1 1 Naturalized
A. holosericea 4 1 1 0 Introduced
A. implexa 0 0 3 3 Invasive
A. leptocarpa 2 2 0 0 Introduced
A. ligulata 1 1 0 0 Introduced
A. longifolia 5 4 446 97 Invasive
A. mangium 3 1 0 0 Introduced
A. mearnsii 13 10 4313 462 Invasive
A. melanoxylon 28 20 678 167 Invasive
A. paradoxa 1 1 4 2 Invasive
A. pendula 6 3 0 0 Introduced
A. podalyriifolia 3 2 159 78 Invasive
A. prominens 2 2 0 0 Introduced
A. pycnantha 9 8 182 38 Invasive
A. retinodes 2 2 0 0 Introduced
A. rubida 1 1 0 0 Introduced
A. saligna 8 5 1302 164 Invasive
A. schinoides 1 1 0 0 Introduced
A. stricta 0 0 6 6 Invasive
A. viscidula 1 1 1 1 Naturalized
Total 168 109 10672 1766  
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The role of forestry trials and invaded range data for SDMs evaluation

Government forestry trials

In southern Africa, forestry trials for Australian acacias were conducted at 67 stations 
from the 1820s to the 1960s for 36 species (Poynton 2009). Trial data include records 
on introduction date (that can be used to quantify the importance of residence time 
in explaining invasions), and the number of stations and the number of times that a 
species was trialled (that can be used to quantify the effect of propagule pressure). The 
forestry trials dataset covers ten countries (namely, Angola, Botswana, Lesotho, Ma-
lawi, Mozambique, Namibia, South Africa, Swaziland, Zambia, and Zimbabwe), i.e. 
most of southern Africa.

Of the 168 forestry trial records obtained from this dataset, 129 records had pre-
cise geographic location and trial outcome and could be used to evaluate the SDMs 
(see Table 1). While subspecific taxa can occupy different climatic niches (Thompson 
et al. 2011), for simplicity and as naming was not consistent or verifiable, all species 
that had varieties or subspecies were grouped together (e.g. plantings of Acacia longifo-
lia subsp. longifolia and Acacia longifolia ssp. sophorae were considered jointly as Acacia 
longifolia). We also only analysed species with four or more trials. This gave 14 Austral-
ian acacias with which to evaluate SDMs and the relative importance of variables in 
explaining the outcome of the forestry trials. We quantified the accuracy of predictive 
power of SDMs for each species (n=14) found in forestry trials by calculating true skill 
statistic, sensitivity and specificity.

Southern African Plant Invaders Atlas (SAPIA)

This dataset contains records for over 700 naturalized and invasive species, with in-
formation on abundance, habitat preferences, time of introduction and distribution 
(Henderson 1998). Here we restricted our analyses to Lesotho, South Africa and Swa-
ziland as the other regions are relatively poorly sampled and use the SAPIA version ac-
cessed April 2012. The accuracy of SDMs for each species (n=11) found in SAPIA was 
quantified by calculating sensitivity only as SAPIA is a presence only dataset.

Why did some forestry trials succeed while others failed?

A classification tree approach (Breiman et al. 1984) was used to identify which of 
several potential predictor variables could predict the outcome of forestry trials (Table 
2). We considered the following variables: 1) indication of herbivory or other biotic 
factors (birds or hares eating seedlings as noted on the original trial record); 2) climatic 
suitability; 3) South African Biome; and 4) the invasive status of the species globally. 
The current invasive status in South Africa and global invasive status of each species 
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were obtained from Richardson et al. (2011). Climatic suitability was coded as either 
suitable or unsuitable as predicted by SDMs and biotic factors [e.g. whether seeds or 
seedlings were eaten by hares or birds as recorded in Poynton (2009)] were coded as 
either yes or no depending on trial outcome.

The classification tree was constructed by repeatedly splitting data, defined by a 
simple rule based on a single explanatory variable at each split. At each split, the data 
were partitioned into two exclusive groups, each of which was as homogeneous as 
possible (Breiman et al. 1984). An optimal tree was then determined by testing for 
misclassification error rates for the largest tree as well as for every smaller tree by ten-
fold cross-validation constructed in CART Pro Ex v. 6.0. The program builds a nested 
sequence of branches by recursively snipping off the less important splits in terms of 
explained deviance. The length of the tree was controlled by choosing the one-SE rule, 
which minimizes cross-validated error within one standard error of the minimum cost 
tree rule (Pyšek et al. 2009).

Which species that are not yet widespread have a large potential suitable range?

Occupancy of each species was calculated at the quarter degree grid cell (QDGC, 15 
min. × 15 min.) level. The current distribution of  Australian acacias in Lesotho, South 

Table 2. Variables used to quantify why some forestry trials of Acacia species in southern Africa suc-
ceeded while others failed.

Variable Coded Criteria Justification Data sources
Trial 
outcome 0/1 0- failure (absence)

1-success (presence) Poynton (2009)

Biotic Y/N
Did species fail because 

seeds were eaten by animals 
and birds?

Biotic factors have been 
indicated to influence survival 
that can lead to naturalization 

(Nuñez and Medley 2011)

Poynton (2009)

Climatic 
suitability 0/1 0-Climate not suitable

1-Climate suitable

Climatic suitability is 
widely used to predict 

outcome of introductions 
McGregor et al. (2012). 

Species 
distribution 

models

Climatic 
variables

Bio_1,bio_5, 
bio_6, bio_12

Annual Mean temperature, 
Maximum Temperature 
of the Warmest Month, 
Minimum Temperature 
of the Coldest Month & 

Annual precipitation

Did trials succeed because 
of precipitation and 
temperature ranges?

Castro-Díez et al. (2011)

Hijmans et al. 
(2006)

Biome Names South African biomes

Were trials successful 
because of the biomes they 

were introduced to?
Rouget et al. (2004) 

Mucina and 
Rutherford 

(2006)

Status

Introduced, Natura
lized or invasive 

(sensu Richardson et 
al. 2000)

Invasiveness elsewhere 
according to Richardson et 

al. (2011)

Invasiveness elsewhere is 
one of the best predictors 
of the outcome of species 

introductions Hulme (2012)

Richardson et al. 
(2011)
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Africa, and Swaziland was based on the number of QDGCs occupied as recorded in 
both the SAPIA and the forestry trial databases. Species potential distribution was esti-
mated based on climatic suitability and range size as the percentage of southern Africa 
(South Africa, Lesotho and Swaziland) predicted suitable by SDMs.

Results

Evaluation of SDMs using forestry trials and invaded range data

The SDMs successfully predicted the outcome (success or failure) for 81 of the 129 for-
estry trials (63%) (overall TSS = 0.15, Table 3), with a high percentage of true presenc-
es predicted as present (sensitivity = 0.80) but a rather low percentage of true absences 
predicted as absent (specificity = 0.35). However, there was a higher proportion of false 
absences than false presences (Table 3). SDM evaluation varied between species, with 
five species having low sensitivity values and ten with low specificity values (Table 3).

Observed invasive ranges of Australian acacias in southern Africa are generally 
correctly predicted as suitable based on the SDMs (sensitivity = 0.87). However, the 
predictions mismatched 461 (13%) invasive range records (i.e. 13% of the records in-
dicate that species invaded areas that are climatically unsuitable; Table 4). Most of the 
invasive species have the potential to substantially increase their ranges because more 
than half of southern Africa is predicted to be suitable.

Acacia dealbata and A. mearnsii are provided as visual examples (Fig. 1).

Explaining success or failure of forestry trials

Using climatic suitability alone, 81 trials out of 129 (model accuracy = 0.63) were 
correctly predicted (Table 3), while 87 (model accuracy = 0.67) records were cor-
rectly predicted by the criterion “invasive elsewhere” (Fig. 2: Node 2 and 3). Based 
on the classification tree (Fig. 2), three variables (invasive elsewhere, annual mean 
temperature, and mean temperature of the coldest month) together accurately pre-
dicted 72% of the forestry trial records (i.e. 93 trials). The classification tree analysis 
correctly predicted forestry trial outcome significantly (sensitivity = 086, specificity 
= 0.36 and TSS = 0.22).

Determining species that have a high risk of becoming widespread invaders

The wetter parts of the region were identified as most suitable for the analysed suite of 
Australian acacias. SDMs predicted that thirteen species can be widespread with 20 % 
of southern Africa predicted to be suitable [Acacia acuminata, A. adunca, A. aneura, 
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Table 4. Measures used to evaluate models using Southern African Plant Invaders Atlas; a-number of 
cells for which presence was correctly predicted by the model; c-number of cells for which the species was 
found but the model predicted absence.

Species Number of records a c Sensitivity

A. baileyana 86 82 4 0.95
A. cyclops 141 137 4 0.97
A. dealbata 717 707 10 0.99
A. decurrens 157 155 2 0.99
A. elata 20 17 3 0.85
A. longifolia 79 79 0 1.00
A. mearnsii 1916 1485 431 0.78
A. melanoxylon 163 163 0 1.00
A. podalyriifolia 56 51 5 0.91
A. pycnantha 83 82 1 0.99
A. saligna 53 52 1 0.98
Overall 3471 3010 461 0.87

Table 3. Measures used to evaluate models using government forestry trials dataset in southern Africa; 
a-number of cells for which presence was correctly predicted by the model; b- number of cells for which 
the species was not found but the model predicted presence; c, number of cells for which the species was 
found and the model predicted absence; d, number of cells for which absence was correctly predicted by 
the model. Sensitivity (proportion of actual presences predicted as such); specificity (proportion of actual 
absences predicted as such); TSS [true skill statistic (sensitivity + specificity-1].

Species Number of trials a b c d Sensitivity Specificity TSS

A. acuminata 13 1 5 1 6 0.50 0.54 0.04
A. aneura 4 1 1 2 0 0.33 0.00 -0.67
A. baileyana 5 4 1 0 0 1.00 0.00 0.00
A. cultriformis 5 0 2 1 2 0.00 0.50 -0.50
A. dealbata 13 11 0 1 1 0.91 1.00 0.91
A. decurrens 7 2 4 0 1 1.00 0.20 0.20
A. elata 9 2 4 2 1 0.50 0.20 -0.30
A. falciformis 4 2 2 0 0 1.00 0.00 0.00
A. longifolia 5 4 1 0 0 1.00 0.00 0.00
A. mearnsii 13 7 2 3 1 0.70 0.33 0.03
A. melanoxylon 28 20 8 0 0 1.00 0.00 0.00
A. pendula 6 1 1 2 2 0.33 0.67 0.00
A. pycnantha 9 7 1 1 0 0.88 0.00 -0.20
A. saligna 8 2 0 3 3 0.40 1.00 0.40
Overall 129 64 32 16 17 0.80 0.35 0.15



Rethabile F. Motloung et al.  /  NeoBiota 20: 31–48 (2014)40

Figure 1. Current distribution [from both forestry trials (noted as trial failure or success) and SAPIA] and 
potential distribution for: a Acacia dealbata and b A. mearnsii in Lesotho, South Africa, and Swaziland.
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Figure 2. Classification tree analysis of the probability that a species will succeed (blue part of the bar) or 
fail (red) in southern African forestry trials based on various variables (see Table 2: trial data and variables 
used). Each node shows the number of successes and failures in each class, the total number of cases (N) 
and a graphical presentation of the percentage of success and failure cases (horizontal bar). For each node 
the splitting criterion is written in caps on top of the nodes. Status is similar to invasiveness elsewhere and 
the two environmental variables: Bio_1 is annual mean temperature and Bio_6 is minimum temperature 
of the coldest month.

A. cultriformis, A. falciformis, A. fimbriata, A. implexa, A. paradoxa, A. pendula, A. 
retinodes, A. rubida, A. stricta, and A. viscidula (Fig. 3)]. The remaining four species 
(A. mangium, A. prominens, A. schinoides and A. binervata), appear to have a potential 
of localized extensive spread (Fig. 3). All of these species have not yet reached the full 
extent of climatically suitable ranges (see Appendix – Fig. S1).
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Discussion

In this study, we found that forestry trial data provided useful data for SDM evalua-
tion as it contains information on species that were repeatedly introduced in different 
localities within southern Africa with a clear indication of trial outcome. Trials were 
successful in areas that are predicted as climatically suitable by SDMs (sensitivity = 
0.80; Table 3). McGregor et al. (2012b) found that successful naturalization of pine 
species in plantations was linked to a good climate match between their native range 
and introduced ranges. The results emphasize the value of incorporating forestry data 
in to SDMs when predicting species distributions.

SDMs could not accurately predict the failures of species in trials (specificity = 
0.35; Table 3) and this suggests that climatic suitability only provides a broad picture 
of where an introduced species might survive, but there are other factors that deter-
mine whether an introduced species will be successful like biotic interactions and evo-
lutionary capacity to adapt (Blackburn et al. 2011; Nuñez and Medley 2011; Soberón 
and Peterson 2005). Factors such as seed predation, competition with local plants and 
herbivory can have strong effects on Acacia success in trials.

SDMs correctly identified invaded ranges of Australian acacias in southern Africa. 
SDMs correctly predict regions of introduction but not the total invaded ranges (e.g. 
A. mearnsii, Fig. 1). Similarly, previous studies indicated that SDMs calibrated on na-
tive range records were able to predict region of introduction, but not the total invaded 
range, indicating a possible niche shift (Beaumont et al. 2009; Broennimann et al. 

Figure 3. The relationship between potential and current distributions in Lesotho, South Africa, and 
Swaziland expressed as total number of QDGCs currently occupied from SAPIA and forestry trial suc-
cesses (with a cut off of 20% of southern Africa QDGCs climatically suitable) for 17 species that are not 
yet widespread in southern Africa.
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2007). This suggests that species may alter climatic niches during the invasion process. 
However, there is an on-going debate in literature about the prevalence of niche shift 
(Peterson 2011). According to the SDMs predictions, even widespread species (e.g. A. 
dealbata) have not yet fully occupied all climatically suitable areas in southern Africa. 
So management actions should be focused on containment, with resources dedicated 
to detecting and removing outlying populations of such species.

In line with other studies, we found that the success of species after introduction in 
the new ranges was greater for species recorded as invasive elsewhere (McGregor et al. 
2012a; Reichard and Hamilton 1997; Scott and Panetta 1993; Williamson and Fitter 
1996). As such Australian acacias that succeeded in trials appear to be a non-random sub-
set in the global pool: they tended to be species that are invasive elsewhere and are within 
climatic areas similar to their native ranges hence they are likely to invade large areas. Since 
Australian acacias that are known to be invasive elsewhere are already planted in southern 
Africa for forestry purposes (Richardson et al. 2011), their spread should be controlled.

Australian Acacia species that are not yet widespread are likely to spread to currently 
unoccupied climatically suitable ranges as SDMs predictions indicate that a large portion 
of Lesotho, South Africa and Swaziland is suitable for invasion by 13 of the 17 currently 
introduced or naturalized (Fig. 3). We believe this is a major invasion debt and not sim-
ply an over-prediction in the SDMs, because there is a strong correlation between extent 
of usage and invasive distributions for Australian acacias in South Africa (Wilson et al. 
2011). The widespread invaders are those species that have been planted for forestry, 
dune stabilization or ornamental purposes. However, many other introduced species 
were only ever planted in forestry trials or arboreta. As such their currently restricted 
distribution is the result of low propagule pressure, but given opportunities and time, 
these species can and do spread (Kaplan et al. 2012; Zenni et al. 2009; Kaplan et al. in 
press). Species that have a large potential range and are invasive elsewhere (Fig. 3 and 
Supplementary material Fig. S1) should be prioritised for management, and where pos-
sible eradicated, e.g. Acacia implexa, A. paradoxa and A. stricta in South Africa (Kaplan 
et al. 2012; Zenni et al. 2009; Kaplan et al. in press). Commercial forestry is one of the 
major pathways to tree invasions and availability of introduction data can be useful for 
screening potential invaders when coupled to SDMs. SDMs provide useful information 
that can influence management decisions on early detection, prioritization, and more 
targeted research. SDMs also provide information for rapid assessment of potential dis-
tributions of alien species based on climate, even before introduction.
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Appendix

Figure S1. Current and potential distributions of sixteen species that are not widespread in southern 
Africa arranged on the basis of their suitable range size : a Acacia paradoxa b A. implexa c A. cultriformis  
d A. falciformis e A. pendula f A. rubida g A. stricta h A. retinodes i A. fimbriata j A. aneura  
k A. viscidula l A. acuminata m A. adunca n A. binervata o A. schinoides p A. prominens q A. mangium. 
The grey shading indicates areas that SDMs have identified as suitable by SDMs while the white shading 
indicates unsuitable areas.


