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Abstract
Altered fire regimes are among the most destructive consequences of anthropogenic environmental 
change. Fires have increased in frequency in some regions, and invasion by fire-adapted non-native species 
has been identified as a major driver of this change, which results in a feedback cycle promoting further 
spread by the non-native species and diminishing occurrence of natives. We notice, however, that non-
native species are often invoked in passing as a primary cause of changing fire dynamics, but that data 
supporting this claim are rarely presented. We therefore performed a meta-analysis of published literature 
to determine whether a significant relationship exists between non-native species presence and increased 
fire effects and risk, examined via various fire metrics. Our analysis detected a strongly significant differ-
ence between fire metrics associated with non-native and native species, with non-native species linked to 
enhanced fire effects and risk. However, only 30 papers discussing this linkage provided data to support 
it, and those quantitative studies examined only eight regions, five biome types, and a total of 22 unique 
non-native taxa. It is clear that we are only beginning to understand the relationship between non-native 
species and fire and that results drawn from an extremely limited set of contexts have been broadly applied 
in the literature. It is important for ecologists to continue to investigate drivers of changing fire regimes as 
factors such as climate change and land use change alter native and non-native fuels alike.
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Introduction

Anthropogenic global change has far-reaching consequences. Biodiversity is direct-
ly threatened by extinctions (Purvis et al. 2000; Barnosky et al. 2011). At the same 
time and perhaps more subtly, ecological processes are being altered as a result of 
both biotic and abiotic ecosystem transformation (Pausas 1999; Cramer et al. 2001; 
Grimm et al. 2013; Kraaij et al. 2018). These changes affect an increasing number of 
species and ecological communities – boosting some populations and reducing others 
(Clavel et al. 2010). Changing fire regimes exemplify such changes in process: fires 
are becoming more frequent in some contexts, more intense in others, and larger in 
extent in still others (Brooks et al. 2004; Rogers et al. 2011; Pausas and Fernández-
Muñoz 2012; Balch et al. 2017; Schoennagel et al. 2017; Kelley et al. 2019). Each of 
these changes comes with significant potential to alter ecological systems and biodiver-
sity as vulnerable species decline and other species replace them.

In places where fire has become more frequent in recent decades, fire regime 
changes are often the result of non-native species invasions increasing the local density 
of fine fuels, or of climate change bringing warmer temperatures and increasing the 
flammability of existing fuels (Wilson et al. 2010; Pyšek et al. 2012; Balch et al. 2013; 
Chambers et al. 2019). These drivers can also act synergistically (Bradley 2010). It can 
be difficult for native species in systems of low historical fire occurrence to recover after 
fire events, and decreases in native densities pave the way for increases in populations 
of non-native species that are adapted to frequent fires and capable of growing quickly 
following a burn event. This has occurred in, for example, the Sonoran Desert and the 
Great Basin of the western US, both of which have experienced invasion by Old World 
annual grasses bringing continuous fuels that recover readily after burning, replacing 
discontinuous and non-fire-adapted vegetation (Bradley and Mustard 2005; Balch et 
al. 2013; McDonald and McPherson 2013).

Such changes have been shown by multiple metrics to affect fire regimes (Brooks et 
al. 2004; Gill et al. 2013). Invasions have reduced the fire return interval at individual 
locations, impacting non-fire-adapted native plants and promoting still more invasion 
by non-natives (Van Wilgen and Richardson 1985; D’Antonio and Vitousek 1992; 
Le Maitre et al. 2014). Some non-native species also grow more quickly than natives be-
cause they lack the herbivores, competitors, and pathogens that would limit their growth 
in their regions of origin (Chun et al. 2010). Via these mechanisms, fires fueled by non-
natives have been shown to hinder native species’ regeneration, damage native soils, and 
otherwise result in ecosystem transformation and the replacement of native species with 
non-natives (Brooks et al. 2004). Where fires have become more intense (i.e., there has 
been an increase in heat at the fireline), this may be the result of fuels buildup following 
extended fire suppression or exclusion (Fulé et al. 1997) or of increased flammability of 
fuels as a result of climate change, or a combination of these factors. Additionally, intro-
duced species may provide fuels that burn with higher intensity than native fuels, impact-
ing seeds and soils and impeding recolonization by native plant species (Lippincott 2000; 
Brooks 2002; Esler et al. 2008; Le Maitre et al. 2014). Increases in fire extent caused 
by widespread invasions can also fundamentally alter vegetation communities. Recovery 
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after more extensive fire events can be delayed because seed or plant sources for such 
recovery are located a greater distance away (Cansler and McKenzie 2014). After severe 
fires, bare ground can persist for a longer period because of this distance, again promot-
ing colonization by non-native weedy species that demonstrate disturbance-adapted traits 
enabling them to colonize sites with poor or eroded soils (Moles et al. 2008).

These changes in fire patterns can impact native biodiversity, ecological functions, 
and ecosystem resilience following disturbances (Johnstone et al. 2016). For example, 
non-native species that supply large quantities of flammable fine fuels may be promoted 
both by climate change and the fire cycle they perpetuate, generating feedback loops that 
can transform desert ecosystems into invasive grasslands (Abatzoglou and Kolden 2011). 
Heavily altered fire patterns can lead to degraded landscapes with reduced potential to 
support management objectives such as livestock grazing, conservation, recreation, and 
watershed maintenance (Allen et al. 2002). As a result, it is imperative for decision-mak-
ers and land managers to understand the key drivers of current changes in fire patterns 
so such changes can be better anticipated and prevented. This has led to increased focus 
on non-native species as sources of novel fuels and drivers of increased fire frequency and 
fire intensity (D’Antonio and Vitousek 1992; Brooks et al. 2004).

Although the link between non-native invasion and problematic shifts in fire is oft-
cited in global change literature as an important invasion-fire cycle (e.g., D’Antonio 
and Vitousek 1992; Rossiter et al. 2003; Balch et al. 2013), that linkage depends on 
conditions that are not present in all systems at all times. Specifically, to alter fire 
regimes, invasion must alter fuels and/or flammability, thus altering fire frequency, 
intensity, or extent (Brooks et al. 2004; Bowman et al. 2011; Underwood et al. 2019; 
Bishop et al. 2020). Not all invasions result in such changes, which rely on charac-
teristics of both the non-native species and the native communities. For any specific 
fire, for example, unusual precipitation and drought patterns associated with climate 
change may be as likely to result in increased biomass production and subsequent dry-
ing for native plant species as for non-native plant species (Liu and Wimberly 2016).

To understand how consistently non-natives have been quantitatively associated 
with increased fire effects and risk, we performed a meta-analysis of published quantita-
tive studies examining the effect of non-native vs native plants on fire characteristics. Our 
goals were: (a) to determine whether non-native species, relative to functionally similar 
native species, quantitatively and consistently increase metrics of fire effects and risk in 
ecosystems, and (b) to gauge the range of contexts over which this has been quantita-
tively analyzed, in order to consider how broadly assumptions regarding these patterns 
can justifiably be applied. For this study, we define “fire metrics” as those quantifiable 
descriptors of fire patterns that can be compared across studies (i.e., fire frequency, fire 
intensity, flammability, fuels quantity, and fire spatial extent). Note that there have been 
previous meta-analyses that have examined related but different questions, contributing 
to our understanding of the link between fire and non-native species. Jauni et al. (2015) 
performed a meta-analysis examining the effect of disturbance on non-native species and 
found that fire events resulted in increased diversity of non-natives. Alba et al. (2015) 
found through meta-analysis that exotic species composition and performance were 
both enhanced following wildfires but not following prescribed burns.
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Methods

To perform our meta-analysis, we began by searching ISI Web of Science (with cover-
age of years 1900–present) to find records of studies that have quantitatively compared 
non-native and native species’ effects on fire metrics. We used the search terms fire + 
each of the following: plant + (native* OR exotic* OR non-native* OR alien* OR 
invasive*); plant + “functional group”; native + (tree* OR shrub* OR perennial grass* 
OR annual grass*); (severity OR frequency OR intensity OR extent) + (cause* OR 
attribute*), and applied them to all years inclusive. Additionally, we examined the 
Literature Cited sections of relevant papers to find additional studies – including from 
sources not referenced in Web of Science – that might contain relevant quantitative 
information. Searches were performed in summer 2020.

Although our search terms netted hundreds of references, only papers meeting the 
following criteria were useful in our meta-analysis: (1) they compared fire metrics stem-
ming from native species (as a control group) with fire metrics stemming from non-na-
tive species; (2) they presented comparisons between the metrics of fire associated with 
native and non-native species from the same plant functional groups; (3) they included 
quantitative and original fire metrics. Many papers referenced fire effects in discussions 
of non-native species but did not include original quantitative information. Many oth-
er papers examined the effects of fire on non-native species (e.g., reporting experiments 
examining control measures for non-natives), but we sought the opposite metric: the 
effect of non-native species on fire. For each of the studies that suited our criteria, we 
derived from the reports treatment (effect of non-natives) and control (effect of natives) 
fire metrics as well as sample sizes and measures of variance for treatments and controls.

Across all of the studies we included in our analysis, fire metrics were the response 
variables of interest. However, there are many ways to measure the effect of a given factor 
(e.g., non-native fuels) on fire. We were able to include all of these in one common meta-
analysis framework by using the ratio of means (ROM) to compare the treatment and 
control effects of all studies (Hedges et al. 1999; Schwartz et al. 2012). The ratio of means 
is calculated as the natural log of the quotient of the mean outcome from the experimen-
tal group divided by the mean outcome from the control group (Hedges et al. 1999). To 
parameterize the response ratio, we derived from each paper the average native vs. non-
native plant effects on fire metrics; in the set of relevant studies we found, these metrics 
included fire frequency, fire intensity (i.e., heat at the fireline), fuels quantity (including 
biomass production, relative growth rate, and litter production), spatial extent, and flam-
mability (including fuels moisture, heat of combustion, and volatility). We then calcu-
lated the natural log of the ratio of the experimental mean to the control mean fire metric 
within each study. The resulting set of ROMs, including ratios from all studies meeting 
our meta-analysis criteria, formed the set of values included in our analyses.

Categorical analysis can be used to further explore the population of studies includ-
ed in the overall meta-analysis in order to ascertain whether significant treatment effects 
persist within certain limited contexts. As long as a given category is represented by at 
least two studies, it is possible to examine it separately from the other categories to meas-
ure the strength of the treatment effect within that categorical context. The categories 
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we examined as such included: biome type, geographic region, plant functional group, 
and fire effect metric. Because the total number of studies within each category was not 
always greater than 1, the total number of studies included in categorical analyses did 
not always equal the total number of studies included in the overall meta-analysis.

In meta-analyses, studies included in the calculation of effect sizes are weighted more 
heavily if they used a larger sample size in the original research. We included the vari-
ances and sample sizes of all studies in our response ratio meta-analysis by calculating 
fixed and random effects estimates and applying inverse variance weighting, thus allow-
ing studies with larger sample sizes to carry greater influence on the effect estimates. We 
calculated heterogeneity Q statistics to evaluate whether effect sizes are homogeneous or, 
conversely, are suggestive of underlying unexplained structure in the data (Rosenberg et 
al. 2000). Using these models, we estimated effect size means and confidence intervals 
for the full meta-analysis as well as for categorical analyses of subgroups. As long as ROM 
means and confidence intervals exclude the value of 1, they can be considered significant 
effect sizes. We performed all calculations using the meta package in R version 3.6.3 
(R Core Team 2020). For the overall model, significance was accepted at alpha = 0.05.

An important consideration in meta-analysis is that researchers and journals may be 
less inclined to publish studies that fail to show the expected effect, either because the re-
sults were non-significant (in our case, finding no difference between native and non-native 
species and their effects on fire metrics) or because they were significant in the opposite di-
rection from predicted (in our case, finding that native species enhanced fire metrics more 
than non-native species). To estimate the potential quantitative effect of this phenomenon, 
we calculated a fail-safe analysis, which we performed using the trimfill function in the meta 
R package. Results indicated whether the outcome of our overall meta-analysis was likely 
affected by a lack of publication or “file drawer” problem and also estimated the likely over-
all effect size after producing a correction for such a publication bias. Note that sample sizes 
were not sufficient to conduct a similar fail-safe analysis for subgroup categories.

Results

Our search terms yielded 612 unique sources. We examined each of these for methodol-
ogy and found only 30 papers, reporting results of 41 distinct studies, that included a 
usable quantitative comparison of the effects of native vs non-native species on fire met-
rics. This final sample of relevant papers displayed the following breakdown by subgroup 
categories: by region, nine studies took place in the Southwestern US, three in mediter-
ranean California, five in the Western US more broadly, eight in Australia, six in the 
Eastern US, one in Europe, three in South Africa, and six in South America. By biome, 
six studies were performed in deciduous forest, 10 in desert, 16 in mediterranean systems, 
eight in savanna, and one in mixed shrubland/woodland. Functional groups included an-
nual grasses (9 studies), forbs (1 study), perennial grasses (20 studies), shrubs (3 studies), 
and trees (6 studies). A total of five usable studies combined data from multiple species 
to report fire metrics of non-native vs native species, making it impossible to extract the 
contributions of individual species but allowing comparison between those two groups.
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Overall, our meta-analysis detected a strong, statistically significant link between 
non-native species and increased fire effect (random-effects model ROM = 2.21; 95% 
bias-corrected CI 1.52 to 3.20; n = 41; p < 0.0001). Heterogeneity was also significant 
(QT = 5.68 × 105, df = 40, p < 0.0001), which highlights the large amount of unex-
plained data structure in the dataset. The many different approaches to comparing fire 
stemming from natives and non-natives that were employed by the various studies 
we examined likely contributed to this heterogeneity, emphasizing the importance of 
subgroup comparisons. The relevant studies found for this analysis contained clear 
evidence of a link between non-native species and enhanced fire metrics. However, the 
total number of species and the total number of contexts covered is extremely limited. 
The 41 studies reported species-level fire metrics reported for only 16 taxa (Table 1). 
Usable studies took place in only eight regions and four biome types (Table 2).

The significant response ratio of non-natives to natives held across almost all ex-
amined subgroups, as well. Among metrics of fire effects and risk, non-natives gener-
ated significantly higher fire metrics of flammability (random-effects model ROM = 
1.50; 95% bias-corrected CI 1.39 to 1.62; n = 15; QB = 1923.69), fuels (ROM = 2.27; 
CI 1.30 to 3.97; n = 18; QB = 6.48 × 104), and spatial extent (ROM = 10.02; CI 3.19 to 

Table 1. The 16 species examined at the species level in quantitative comparisons of fire metrics stem-
ming from native vs. non-native fuels, and key traits related to effects. Five analyzed studies compared 
groups of native vs non-native species and thus effects could not be ascribed to individual species, and 
these studies are excluded from this table.

Species Traits related to fire effects in meta-analysis Citation
Ampelodesmos 
mauritanica

Resprouts quickly after fire; produces flammable biomass 
more rapidly than native species

Grigulis et al. 2005

Andropogon gayanus High growth potential relative to native species Bilbao and Medina 1990
Bromus hordeaceus Low quality litter decomposed less than native litter, 

contributing to regional fuels for a longer period of time; 
compared with native species, sustains dry biomass for a 

larger portion of the year

Hernández et al. 2019

Bromus rubens Winter annuals that escape extreme summer heat, generating 
high fuel load production relative to native species

Brown and Minnich 1986

Bromus tectorum Exploits soil water following fire, outcompeting natives in 
regeneration

Melgoza et al. 1990

Cenchrus ciliaris Increases fuel loads relative to native species Miller et al. 2010
Cytisus scoparius Higher relative growth rate than native species Fogarty and Facelli 1999
Eragrostis lehmanniana Much faster biomass production than native species Anable et al. 1992
Hakea sericea Increased fuel loads relative to native species Van Wilgen and 

Richardson 1985
Hyparrhenia rufa Higher growth rates in fertile sites, relative to native species Baruch et al. 1985
Imperata cylindrica Increased fuel loads and fuel continuity relative to native 

species
Lippincott 2000

Melinus minutiflora Higher growth rates in fertile sites, relative to native species Baruch et al. 1985
Pennisetum setaceum Increased fuel loads relative to native species Rahlao et al. 2009
Pinus contorta Increased vertical fire continuity and increased flammability 

of fuels relative to comparison native species
Cóbar-Carranza et al. 2014

Schinus terebinthifolius Reduces fire frequency ecosystem-wide Stevens and Beckage 2009
Tamarix sp. Rapid biomass accumulation and rapid regrowth after fire Ellis et al. 1998
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31.48; n = 2; QB = 30.30) (Fig. 1). Fire frequency did not differ significantly between 
native and non-native species (ROM = 2.22; CI 0.30 to 16.43; n = 5; QB = 1544.80) 
(Fig. 1). Among biomes, non-natives generated significantly higher fire metrics for de-
serts (ROM = 3.02; CI 2.17 to 4.20; n = 10; QB = 1532.06) and mediterranean biome 
(ROM = 2.82; CI 2.54 to 3.14; n = 16; QB = 2376.90), but not for savannas (ROM = 
1.60; CI 0.48 to 5.28; n = 8; QB = 2.26 × 105), or deciduous forests (ROM = 1.04; 
CI 0.90 to 1.19; n = 6; QB = 26.76) (Fig. 2).

Among functional groups, non-natives generated significantly higher fire metrics for 
perennial grasses (ROM = 2.53; CI 1.55 to 4.10; n = 20; QB = 4.66 × 104), shrubs (ROM = 
1.41; CI 1.34 to 1.49; n = 3; QB = 0.27), trees (ROM = 1.73; CI 1.51 to 1.99; n = 6; QB = 
1695.02), and annual grasses (ROM = 2.39; CI 1.24 to 4.60; n = 9; QB = 1. × 104) (Fig. 
3). Finally, among regions, non-natives generated significantly higher fire metrics for 
the Southwestern US (ROM = 3.85; CI 1.80 to 8.21; n = 9; QB = 2.10 × 104), Australia 
(ROM = 3.65; CI 2.77 to 4.81; n = 8; QB = 132.71), South Africa (ROM = 1.78; CI 1.14 
to 2.78; n = 3; QB = 29.49), and South America (ROM = 1.59; CI 1.38 to 1.83; n = 6; 
QB = 2515.47), but not for the Eastern US (ROM = 1.04; CI 0.90 to 1.19; n = 6; QB = 
26.76), California (ROM = 3.25; CI 0.66 to 15.94; n = 3; QB = 460.80), or Western US 
(ROM = 1.06; CI 0.40 to 2.80; n = 5; QB = 1.01 × 104) (Fig. 4).

Table 2. Usable studies took place in eight regions and four biome types.

Region Biome type Study
Southwestern US Savanna Anable et al. 1992

Desert Brooks 1999
Brown and Minnich 1986

Busch 1995
Eilts and Huxman 2013

Ellis et al. 1998
Stevens and Fehmi 2009

Western US Savanna Balch et al. 2013
James and Drenovsky 2007

Wilsey and Polley 2006
Desert Melgoza et al. 1989

Whisenant 1990
Australia Mediterranean Fisher et al. 2009

Fogarty and Facelli 1999
Miller et al. 2010

Rossiter et al. 2003
Setterfield et al. 2010

Eastern US Deciduous forest Dibble et al. 2007
Lippincott 2000

Stevens and Beckage 2009
Europe Mediterranean Grigulis et al. 2005
California Mediterranean Keeley 2001

Keeley and Brennan 2012
South Africa Mediterranean Rahlao et al. 2009

Van Wilgen and Richardson 1985
South America Savanna Baruch et al. 1985

Bilbao and Medina 1990
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The fail-safe analysis detected a significant file drawer problem (t = −2.49; df = 39; 
p = 0.017). Upon correcting for this problem via an estimate of the effect size in the 
absence of a file-drawer problem, the trimfill recommended analysis assumed an ad-
dition of 19 non-significant studies but predicted that with such studies included the 
overall effect would remain significant (ROM = 5.46; CI 3.83 to 7.77; p < 0.0001) and 
that the link between non-native species and increased fire metrics would persist.

Discussion

Our meta-analysis found a significant link between non-native plant species and fire 
metrics broadly, and specifically found that non-natives are associated with increased 
fuels, fire intensity, flammability, and fire extent, compared with native plant spe-
cies, where the two have been contrasted. That is, quantitative research finds evidence 
that non-natives alter fire regimes by shifting the characteristics, quantity, and/or 
flammability of fuels. At the same time, our search terms netted a very small number 

Figure 1. Ratios of means (dark circles) and 95% confidence intervals (denoted by lines) for fire metric 
subgroups analyzed using Hedges’ d response ratios. Positive means and confidence intervals excluding 1 
(indicated by a dashed, horizontal line) can be considered to indicate significantly higher fire metrics for 
native than non-native species. Sample sizes of each subgroup are denoted with numerals above each line.
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of quantitative studies examining an even smaller number of species. Approximately a 
twentieth of the studies that met our search criteria compared native and non-native 
plant species quantitatively; most of the others simply referenced the relationship be-
tween non-natives and fire.

Together, these results suggest that we are only beginning to understand the role of 
non-native species in fire regimes under environmental change, globally. Effects are quite 
strong where they have been quantitatively analyzed, but analyses have been limited to a 
few contexts. By one estimate, there are almost 17,000 species that have been established 
outside their native range (Seebens et al. 2017). As of 2016, just under 5,000 plant 
species were classified as “invasive,” suggesting that they exert a negative impact in the 
systems where they are introduced (Kew 2016). It is clear that the 16 taxa included in 
these studies are merely a fraction of all invasive species, and the effects of the remainder 
of those species on fire have not been examined with reference to native species. In most 
cases, the difference in fire conditions between sites before and after invasion is unknown. 
Since fire interacts with other environmental change drivers, in addition to biological 
invasion, the future consequences of many invasions remain uncertain or unpredictable.

Figure 2. Ratios of means (dark circles) and 95% confidence intervals (denoted by lines) for biome 
subgroups analyzed using Hedges’ d response ratios. Positive means and confidence intervals excluding 1 
(indicated by a dashed, horizontal line) can be considered to indicate significantly higher fire metrics for 
native than non-native species. Sample sizes of each subgroup are denoted with numerals above each line.
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The 16 taxa that were examined at a species level in these studies included an-
nual and perennial grasses, trees, shrubs, and a forb. Nearly all of them contribut-
ed to increases in fire metrics; the sole exception was Schinus terebinthifolius, which 
is associated with decreased fire frequency that promotes further invasion by this 
non-native tree (Stevens and Beckage 2009). In the quantitative research reviewed 
here, higher biomass production relative to native species were associated with the 
grasses Ampelodesmos mauritanica, Andropogon gayanus, Bromus rubens, B. tectorum, 
Cenchrus ciliaris, Eragrostis lehmanniana, Hyparrhenia rufa, Imperata cylindrica, Me-
linus minutiflora, and Pennisetum setaceum (Table 1). Similarly, the shrubs Cytisus 
scoparius and Hakea sericea and trees in the genus Tamarix were associated with in-
creased fuels production relative to native species (Table 1). Other important factors 
included continuity and flammability of fuels (for example, Pinus contorta exhibited 
greater vertical continuity and volatility of biomass than did comparison native spe-
cies; Cóbar-Carranza et al. 2014), as well as phenological drivers; B. rubens, for ex-
ample, accumulated biomass during the winter months and thereby escaped damage 
from extreme summer heat and produced higher total fuels than comparison natives 
(Brown and Minnich 1986) (Table 1). In each case where fire frequency was increased 

Figure 3. Ratios of means (dark circles) and 95% confidence intervals (denoted by lines) for functional 
group subgroups analyzed using Hedges’ d response ratios. Positive means and confidence intervals exclud-
ing 1 (indicated by a dashed, horizontal line) can be considered to indicate significantly higher fire metrics 
for native than non-native species. Sample sizes of each subgroup are denoted with numerals above each line.
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by the presence of non-native species, the critical factor distinguishing invaded sites 
from non-invaded sites was the exceptional continuity (in space or over time) of fuels 
produced by the non-natives, increasing fire frequency and risk.

Non-native plants have led to novel fire disturbances in the studied systems. Our 
results demonstrated that fires in invaded sites recur with greater frequency, burn with 
higher fireline intensity, or burn over greater extent than in native-dominated sites. 
Such systems are subject to significant ecological transformation: when native species 
are non-fire-adapted or unable to recover from severe fires, a positive invasive species-
fire feedback cycle emerges (D’Antonio and Vitousek 1992; Rossiter et al. 2003). This 
cycle can threaten native communities over very large areas, fundamentally reshap-
ing ecosystems and ushering in alternative, non-native-dominated stable states (e.g., 
Brooks et al. 2003; Godfree et al. 2017).

Altered fire regimes are evidently a strong component of global change. Further-
more, they interact with other drivers of environmental change. Climate change alone 
can boost the growth rate (i.e., production and thus total quantity of fuels) and flam-
mability of biomass both native and non-native (Myneni et al. 1997; Westerling et al. 
2006; McGranahan et al. 2018). Unusual fire patterns stemming from climate change 

Figure 4. Ratios of means (dark circles) and 95% confidence intervals (denoted by lines) for region 
subgroups analyzed using Hedges’ d response ratios. Positive means and confidence intervals excluding 1 
(indicated by a dashed, horizontal line) can be considered to indicate significantly higher fire metrics for 
native than non-native species. Sample sizes of each subgroup are denoted with numerals above each line.
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may or may not depend on non-native species invasion, although system-specific char-
acteristics (such as historical fire frequency, timing of precipitation, and fire adapta-
tions among native species) may elevate the likelihood that non-native fuels carry par-
ticular significance during any given fire year. Land use changes and resulting increases 
in human footprints in natural areas can also transform fire regimes, increasing the rate 
of intentional and accidental ignitions (e.g., 95% of all annual ignitions in California 
are caused by humans; Syphard et al. 2008).

Disentangling the effects of climate change, land use, and non-native fuels will be 
important for spatially-explicit fire risk assessment and management and restoration 
decision-making (Gray et al. 2014; Westerling 2016; Balch et al. 2017; Syphard et 
al. 2017). Improved forecasting to guide such assessments will require continued and 
extended research of the quantitative fire metrics associated with non-native species 
across functional groups, regions, and biome types, as well as the response of those 
fire metrics to climate change and land use change. As conditions change in any given 
system, the relative fire risk driven by each of these factors is also likely to change 
(McWethy et al. 2013). Classic adaptive management requires sequential use of man-
agement activities to meet certain objectives, and also requires careful study of the effec-
tiveness of each activity (Holling 1978; Gunderson 1999; Williams and Brown 2012), 
highlighting the importance of continued research in complex systems. Study of the 
relative roles of native vs non-native plants in fire regimes within any particular loca-
tion will be necessary to facilitate effective management decisions over time.

Conclusions

Global change today consists of multiple drivers operating both individually and 
in synergy. The combined influence of biological invasions, land use change, and 
climate change can result in dramatic changes in fire dynamics within particular 
systems, yet understanding how each driver contributes to fire regime change is es-
sential for effective management decision-making in response. Our study identified 
a clear role of non-native species in increased fire metrics, but also highlighted the 
limited scope of our understanding – only a small number of species and systems 
have been quantitatively examined to this point. Both native and non-native fuels 
must be considered in light of changing climatic patterns and land uses, and in-
creased empirical assessment of the respective roles of climate, land use, and invasion 
are necessary for appropriate responses.
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