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Abstract
This study introduces a simple generic model, the Generic Pest Forecast System (GPFS), for simulating 
the relative populations of non-indigenous arthropod pests in space and time. The model was designed 
to calculate the population index or relative population using hourly weather data as influenced by de-
velopmental rate, high and low temperature mortalities and wet soil moisture mortality. Each module 
contains biological parameters derived from controlled experiments. The hourly weather data used for 
the model inputs were obtained from the National Center of Environmental Prediction Climate Forecast 
System Reanalysis (NCEP-CFSR) at a 38 km spatial resolution. A combination of spatial and site-specific 
temporal data was used to validate the GPFS models. The oriental fruit fly, Bactrocera dorsalis (Hendel), 
was selected as a case study for this research because it is climatically driven and a major pest of fruit pro-
duction. Results from the GPFS model were compared with field B. dorsalis survey data in three locations: 
1) Bangalore, India; 2) Hawaii, USA; and 3) Wuhan, China. The GPFS captured the initial outbreaks 
and major population peaks of B. dorsalis reasonably well, although agreement varied between sites. An 
index of agreement test indicated that GPFS model simulations matched with field B. dorsalis observation 
data with a range between 0.50 and 0.94 (1.0 as a perfect match). Of the three locations, Wuhan showed 
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the highest match between the observed and simulated B. dorsalis populations, with indices of agreement 
of 0.85. The site-specific temporal comparisons implied that the GPFS model is informative for predic-
tion of relative abundance. Spatial results from the GPFS model were also compared with 161 published 
observations of B. dorsalis distribution, mostly from East Asia. Since parameters for pupal overwintering 
and survival were unknown from the literature, these were inferred from the distribution data. The study 
showed that GPFS has promise for estimating suitable areas for B. dorsalis establishment and potentially 
other non-indigenous pests. It is concluded that calibrating prediction models with both spatial and site-
specific temporal data may provide more robust and reliable results than validations with either data set 
alone.
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Introduction

The increase in international trade has exacerbated the problem of non-indigenous 
species moving between continents (Lenzen et al. 2012) and causing economic dam-
age. Phytosanitary regulatory agencies aim to prevent non-indigenous pest entry and 
establishment and attempt to mitigate their impact when they become established. 
Pest risk maps are used by phytosanitary agencies to support risk analysis, pest sur-
veillance, and emergency programs. One of the most important types of risk maps 
are those that estimate potential distribution based on climate suitability, which are 
usually created with bioclimatic models. Risk maps for non-indigenous species are 
generally created under two main constraints, limited time to produce the risk map 
product and sometimes gaps and uncertainties in the biological data needed to fit and 
validate the model. These constraints suggest that a suitable model for phytosanitary 
applications should be both generic and simple to use. One widely used approach is 
species distribution modeling, where a pest’s potential distribution is inferred from 
a mathematical relationship between climate variables and the known distribution. 
One popular example is MaxEnt, which uses distribution data in combination with 
derived background observations (Phillips et al. 2006). However, MaxEnt and other 
species distribution models may not extrapolate reliably especially into novel climates 
(Elith and Leathwick 2009; Elith et al. 2012; Kriticos et al. 2014). An alternative is 
CLIMEX-Compare Locations (Sutherst and Maywald 1985), which uses literature 
and distribution data to fit the model parameters. CLIMEX is a simple process-based 
model that unlike a spatial distribution model, contains functions that explicitly define 
biological processes. CLIMEX is very widely used, partly because if there is insufficient 
literature data to parametrize the model it can be inferred from the distribution data it-
self. One disadvantage of CLIMEX is that it has many parameters and can be relatively 
labor intensive and subjective to fit, although an improved algorithm for auto-fitting 
could relieve some of these issues.

In addition to the need for potential distribution maps, other phytosanitary ap-
plications of weather or climate-based models include predictions of: i) the frequency 
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of years favorable to crop losses or epidemics (Pinkard et al. 2010b); ii) the timing of 
life stages to deploy surveys or treatments; iii) the duration of mitigation treatments 
designed to achieve control or eradication based on historical or forecast weather; and 
iv) the extent of crop damage or injury to specific hosts (Magarey et al. 2014; Magarey 
et al. 2007; Pardey et al. 2013; Pinkard et al. 2010b). These kinds of applications are 
also relevant to the management of indigenous pests. Process-based models have an 
advantage over the species distribution modeling approach in that they can be used to 
make these kinds of predictions. Though this does push the modeling process towards 
greater complexity as additional host and management factors are included. As evi-
dence of this many process-based models developed for management of endemic pests, 
especially plant diseases can become quite complicated (Rossi et al. 2007). However, 
there is a trade-off. As models become more complex, they are increasingly difficult 
to adapt to a new species. As evidence of this there are hundreds of publications for 
CLIMEX a simple process model but for its sister product DYMEX a more complex 
generic model, there are far fewer published examples.

In order to address this problem, there is benefit in creating a simple generic model 
framework that is a compromise between ease of use and capabilities for additional 
phytosanitary and pest management applications. In this study, we introduce the Ge-
neric Pest Forecast System (GPFS), for simulating relative pest populations in space 
and time. The GPFS model presented in this study has the following components: i) 
Developmental rate estimated from cardinal temperatures (Sutherst et al. 1999); ii) 
Mortality from cold (Kaliyan et al. 2007), heat (Dentener et al. 1996), and soil mois-
ture; iii) Population index based on developmental rate and mortality. Although these 
are the basic model components, the GPFS model also includes components for: iv) 
Infection and sporulation modules for plant pathogens; v) Pest and host growth stages 
based on degree days; and vi) Potential damage based on predicted pest population and 
host and pest growth stages (Magarey unpublished data), however these last three com-
ponents will not be presented in this study. The GPFS model is designed to run within 
a pest information platform such as NAPPFAST (Magarey et al. 2014; Magarey et al. 
2007) which would supply the required hourly weather inputs. The NAPPFAST system 
(used by the U.S. Department of Agriculture’s Animal Plant Health Inspection Ser-
vice between 2002 and 2014) included an interactive template to allow users to create 
simple degree day, disease infection, and flexible models from U.S. and global weather 
databases for phytosanitary applications. The GPFS model is a process-based model 
of the pest-host interaction and is not designed to simulate factors that may limit host 
distribution such as aridity. As a consequence these kinds of factors must be considered 
separately using additional climate layers inside a geographic information system.

The oriental fruit fly (OFF) (Bactrocera dorsalis) was chosen as a study pest to test 
the GPFS model because there is an extensive amount of literature data available for 
model development and validation. B. dorsalis lays eggs below the skin of the host fruit 
and develops from egg to adult in as little as 17 days but development can be substan-
tially delayed under cooler conditions (Christenson and Foote 1960) The larvae feed 
on fruits and mature larvae drop to the ground and pupate in the soil. Adults typically 
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live for up to 3 months but may live longer in cooler conditions. Like other fruit flies, 
B. dorsalis requires favorable temperature and soil moisture conditions (Yang et al. 
1994) and is one of the key pest groups of southeast Asia and Hawaii, causing damage 
to fruits and vegetables by larval feeding (Clarke et al. 2005). B. dorsalis is considered 
to be a species complex and B. invadens have recently been determined to be the same 
species (Schutze et al. 2014). B. dorsalis can be a major threat to agricultural crops be-
cause of extreme polyphagous behavior and is known to be highly invasive (Clarke et 
al. 2005). We conducted two types of evaluations of the GPFS predictions against Bac-
trocera dorsalis observations. The first was what we termed site-specific temporal valida-
tion to refer to the comparison of model predictions with observations from specific 
locations where data are collected at regular intervals over multiple years. This kind of 
validation is recommended by the developers of CLIMEX (Sutherst et al. 1999) and 
has been conducted in several CLIMEX studies (de Villiers et al. 2013; Legaspi and 
Legaspi 2010; Pinkard et al. 2010a). The second type of validation was a comparison 
of predicted suitability based on 10-years of weather data against the known distribu-
tion of B. dorsalis.

In summary, the objective of this study is to introduce the GPFS model and vali-
date it for B. dorsalis using site-specific observations and distribution data. In addition, 
we wished to use the GPFS model to investigate the potential for establishment in the 
United States. No information collected on site was used to parameterize the model 
with the exception of food availability. In addition, no local weather data were used 
as input into the models to investigate the potential for gridded global hourly weather 
data to be used for historical pest predictions.

Materials and methods

Pest observations. Site-specific temporal pest observations were obtained from three 
studies in which adult oriental fruit fly were trapped (Han et al. 2011; Jayanthi and 
Verghese 2011; Vargas et al. 2010). The studies were selected because they contained 
multiple years of data and the observations could be obtained from the authors or 
read from the figures. No pesticides were believed to have been applied at these sites. 
The study sites include Hawaii in the United States, Wuhan in China, and Bangalore 
in India (Table 1). Hawaii has a subtropical climate with temperatures and humid-
ity moderated by trade winds blowing oceanic air over the islands. Monitoring was 
conducted on Hawaii Island, HI, from September 2007 to March 2008 once every 
two weeks using methyl eugenol traps (Vargas et al. 2010). Wuhan has a humid 
subtropical climate with abundant rainfall and four distinct seasons. Observations 
were collected at an experimental farm in which various fruits and vegetable crops 
were growing. Adult male flies were sampled with methyl eugenol-baited traps from 
January to December in 2008 and 2009 at 10-day interval with replacement of 
lures every 20 days. The oriental fruit fly population data in Figure 1 of Han et 
al. (2011) were used for site-specific validation in China. Bangalore has a tropical 
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savanna climate with distinct wet and dry seasons. Observations were collected in 
a guava orchard at the Indian Institute of Horticultural Research, Bangalore. The 
guava orchard was chosen to provide a food source for oriental fruit fly during the 
off-season for mango. Traps baited with methyl eugenol were used to monitor the 
insect population from June 2000 to June 2002. Population observation data from 
Figure 3 of Jayanthi and Verghese (2011) were used.

The Hawaii data were obtained from the authors whereas the observations for Ban-
galore and Wuhan were extracted directly from figures in the papers. Data extraction 
was conducted using a spreadsheet program (Excel 2010, Microsoft, Redmond, WA). 
The figure from the paper was scanned and copied into the spreadsheet and overlaid 
with a finer scale transparent grid-shaped graph with the same range of x- and y-axes 
to improve the ease of reading the data.

In addition to the site-specific observations, pest distribution data were also ob-
tained from the literature (Suppl. material 1). B. invadens has recently be shown to 
be the same species as B. dorsalis (Schutze et al. 2014) so these observations were also 
included.

GPFS model. The GPFS model is designed as a simple generic tool for pest predic-
tion for both arthropods and pathogens. The model is designed to run from hourly 
weather data inputs and to make predictions of the influence of weather on the rela-
tive pest population (population index) and phenological stages. For oriental fruit fly, 
GPFS only utilizes modules for development rate, high and cold temperature mortal-
ity, wet soil moisture mortality, and population index (Table 2). The first step in the 
GPFS model is to calculate the developmental rate in each hour. Next, the mortalities 
due to high temperature, cold temperature, and wet soil are calculated from hourly 
temperature and precipitation. The next step is to calculate the population index. The 
population index each hour is based on the sum of a development rate (scaled by the 
number of generations to reach maximum population) while removing the propor-
tions of the population killed by high and low temperatures and by wet soil moisture. 
The population index is not sub-divided into individual life stages. Finally, the popu-
lation index is adjusted by a simple function to account for lack of host availability.

Developmental rate. The hourly developmental rate (D) was estimated from four 
parameters: minimum temperature (Tmin), lower optimum temperature (Topt1), upper 
optimum temperature (Topt2), and maximum temperature (Tmax), describing the rate 

Table 1. Locations of case studies.

Reference Location Latitude Longitude Data period

Vargas et al. 2010 Hawaii Island, HI, USA 19.42942
(19°25'45.912")

-154.882
(-154°52'55.2") 2006–2008

Han et al. 2011 Wuhan, China 30.42915
(30°25'44.9394")

114.3639
(114°21'50.04") 2007–2009

Jayanthi and 
Verghese 2011 Bangalore, India 12.93686

(12°56'12.6954")
77.62111

(77°37'15.996") 1999–2002
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Figure 1. Comparison of observed (straight line with markers) and GPFS predicted (dashed line without 
markers) population of the adult oriental fruit fly, Bactrocera dorsalis, at three locations: A Bangalore, 
India B Hawaii, USA; and C Wuhan, China. Raw data of B. dorsalis field observations were converted to 
a population index (range: 0 to 1) to facilitate the comparisons
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of development or population growth (Sutherst et al. 2007; Sutherst et al. 1999). We 
assumed that oriental fruit fly followed linear or constant development rates between 
these temperature thresholds. Developmental rates at each range obtained from the 
following equations.

If T < Tmin; or T > Tmax then D = 0	 (1A)
If Tmin <T < Topt1 then D = (T - Tmin) /((Topt1 - Tmin)*24)	 (1B)
If Topt1 < T < Topt2 then D = (1/24) = 0.041677 	 (1C)
If T > Topt2 and < Tmax then D = (T- Topt2) /((Topt2 – Tmax)*24)	 (1D)

Figure 2. Cold and dry exclusions based on one or more occurrence of minimum temperatures of 
-10 °C (A) and annual precipitation less than 254 mm (B).
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where T is the hourly air temperature, °C. Threshold temperatures of four develop-
mental rate parameters were obtained from refereed papers: Tmin = 13.3 °C (Chris-
tenson and Foote 1960), Topt1 = 24 °C (Vargas et al. 2000), Topt2 = 34 °C (Vargas et 
al. 1996; Yang et al. 1994), and Tmax = 41 °C (Christenson and Foote 1960). When 
hourly temperature is between Topt1 and Topt2, the rate of development reaches the 
maximum value of 1.0 per day or 0.041677 per hour.

Low temperature mortality. The hourly low temperature mortality was estimated 
from an exponential equation (Kaliyan et al. 2007). Although this equation was de-
veloped for Indian meal moth (Plodia interpunctella) it is based on the influence of 
temperature on the rate of chemical reaction and as such is a generic equation that can 
be adapted to other species. For temperatures less than TMlt

Mlt = [1/(EXP(β1+ β2/(T + 273.2) + β3 *LN(T + 273.2)) ]	 (2)

where Mlt = the proportion of the population dying from low temperature mortali-
ty in an hour at temperature T in °C. To estimate parameters (β1, β2, and β3), published 
data for lethal time (LT100) of B. dorsalis were obtained (Burikam et al. 1992). Howev-
er, due to the lack of information, additional data was included from B. invadens (now 
considered to be the same species) (Grout et al. 2011) and another species B. tryoni 
(De Lima et al. 2007; Heather et al. 1996; Jessup 1992; Jessup et al. 1993; Jessup et 

Figure 3. GPFS model prediction of potential global population index of oriental fruit fly, Bactrocera 
dorsalis (including observations of B. invadens), based on most recent 10 years (2003–2012) weather data 
from National Centers for Environmental Prediction – Climate Forecast System Reanalysis (NCEP-
CFSR) at a 38 km resolution. The predictions are on a scale of 0-1 and do not account for the presence 
or absence of suitable hosts. The map is the highest population index of any month averaged over ten 
years with initial populations in each year being independent. The map also includes the cold and dry 
exclusions from Figure 2.
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al. 1998) were also used to estimate the parameters for low temperature mortality. The 
fit for low temperature mortality is shown in Suppl. material 2 and Suppl. material 5 
(using Celsius units for ease of interpretation).

Puparia of B. dorsalis can survive freezing conditions and overwinter at low levels 
in China (Han et al. 2011); however, there were no experimental data available for 
parameter estimation. Instead, the threshold temperature for overwintering survival 
for creation of a cold exclusion mask was derived from comparisons of oriental fruit 
fly distribution records with extreme annual minimum temperatures. This analysis was 

Table 2. Parameters and abbreviation used in the GPFS model for oriental fruit fly.

Symbol Parameter name Value Reference
D Development rate
T Ambient temperature, °C

Tmin Minimum temperature 13.3 Christenson and Foote (1960)
Topt1 Low optimum temperature 24 Vargas et al. (1996)
Topt2 High optimum temperature 34 Vargas et al. (1996)
Tmax Maximum temperature 41 Christenson and Foote (1960)
Mlt Low temperature mortality
TMlt Threshold 13.3 Burikam et al. (1992), Grout 

et al. (2011), De Lima et al. 
(2007), Heather et al. (1996), 

Jessup (1992), Jessup et al. 
(1993, 1998)

β1 Constant for Mlt 1101.7
β2 Coefficient for 1/(T+273.2) in Mlt -49892

β3 Coefficient for LN(T+273.2) in Mlt -162.9

Mht High temperature mortality
TMht Threshold 33

Armstrong et al. (2009), Jang et 
al. (1999), Xie et al. (2008)

β4 Constant for Mht 25.9595
β5 Coefficient of degree one for Mht -0.4959
β6 Coefficient of degree two for Mht 0

Mwsm Wet soil moisture mortality
Eskafi and Fernandez (1990), 

Hou et al. (2006), Xie and 
Zhang (2007)

β7 Constant for Mwsm 50.4 Eskafi and Fernandez (1990), 
Xie and Zhang (2007)

P Proportion of population in soil 
inhabiting life stages for Mwsm

0.36

P(n) Population index

β8

Reciprocal of number of hours 
required to reach maximum 

population for P(n)

0.008

β9

Generations to reach maximum 
population under optimum 

conditions for P(n)

4

β10

Hours to complete one generation 
under optimum conditions for P(n)

30.4 d

β11 Extinction threshold 0, 0.0001
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done outside of the GPFS model in a geographic information system and is described 
below. It also did not take into account the insulating influences of snow cover.

High temperature mortality. The hourly high temperature mortality is given by a 
polynomial equation with parameters β4, β5 and β6 fitted from observations of mortality 
under controlled conditions using an exponential function that has be shown to have 
utility for predicting heat mortality for light brown apple moth (Epiphyas postvittana) 
and Long tailed mealy bug (Pseudococcus longispinus) (Dentener et al. 1996). For tem-
peratures greater than TMht,

Mht = (60/[EXP(β4 + β5 *T + β6*T2)]) < 1	 (3)

where Mht = the proportion of the population dying from high temperature mor-
tality in an hour at temperature T. To estimate parameters (i.e., β4, β5, and β6) of high 
temperature mortalities, LT100 of oriental fruit fly in response to extreme high temper-
atures, ranging from 43 to 50 °C, were obtained from published data (Armstrong et al. 
2009; Jang et al. 1999; Xie et al. 2008). The studies were conducted in either a heating 
block system (HBS) or a forced-air chamber. LT100 data were fitted to the model of the 
denominator part in the equation (3). All parameters (β1-6) were fitted using PROC 
NLIN in SAS software 9.3 (SAS Institute, Cary NC). The fit for high temperature 
mortality is shown in Suppl. material 2 and Suppl. material 4.

Wet soil moisture mortality. Excessive soil moisture i.e. flooding can reduce the 
populations of some fruit flies including B. dorsalis (Xie and Zhang 2007). The hourly 
wet soil moisture mortality Mwsm is given by a simple empirical relationship. If soil is 
flooded then,

Mwsm = P*(1/β7); else Mwsm = 0	 (4)

where Mwsm = the proportion of the total population dying from soil moisture mor-
tality in an hour, and P = the proportion of the population in soil-inhabiting life stages. 
This was assumed to be a constant 0.36 based on the pupal proportion of total degree 
days. The parameter β7 is the number of hours that the life stage will survive in flooded 
soil. In the absence of soil moisture data, the soil was defined as flooded if more than 
10 mm of rain had fallen in the previous 24 hours. Parameter (β7) for soil moisture was 
also estimated by calculating LD100 in flooded soil from published data with B. dorsalis 
(Xie and Zhang 2007) and Ceratitis capitata (Wiedemann), Mediterranean fruit fly 
(Eskafi and Fernandez 1990). Mortality (LD90) was 2.49 d for third instar B. dorsalis 
larvae in flooded conditions at 25 °C (Xie and Zhang 2007); however, no information 
for the pupae was available, so it was assumed that pupae would respond similarly to 
flooding like larvae. Bactrocera dorsalis pupae did not survive at soil moisture greater 
than 80% (Hou et al. 2006), although the survival time in saturated soils is unknown. 
A study with Mediterranean fruit fly showed that survival under similar conditions 
were 4 and 3 days for larvae and pupae, respectively (Eskafi and Fernandez 1990). We 
used this data to estimate approximate LD100 of B. dorsalis pupae under saturated con-
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ditions and calculated LD100 as (2.49/0.9)*(3/4) = 2.1 day. Thus, (β7) = 50 hours. Wet 
soil moisture mortality does not account for increased pupal survival that occurred 
with increased soil humidity (Vargas et al. 1987), but only mortality was associated 
with flooding. Since this version of the GPFS model did not calculate the proportion 
of the population in each pest stage, we assumed a fixed proportion (0.36 based on 
stage duration) of the population was present in the pupal stage at any point in time.

Population index. The population index is a measure of relative population as influ-
enced by weather conditions and is a function of the developmental rate, the mortality 
rates and the population index in the current hour (n).

P(n) = [P(n-1) + (β8 * D)] * (1- Mlt) *(1-Mht) ) *(1-Mwsm) ≤ 1	 (5)

where P(n) = the population index (0-1) at hour n. The parameter β8 is the reciprocal 
of the number of hours required to reach the maximum value of the population index. 
It can be estimated from

β8 = 1/( β9 * β10)	 (6)

where β9 = generations to reach maximum population index under optimal condi-
tions and β10 = days to complete 1 generation under optimal temperature conditions. 
The variable β9 was arbitrarily chosen based on the assumption that a minimum of 
four generations would be required to reach the maximum value of the population 
index. The model also includes an extinction value, β11, which if the final population 
falls below due to mortality, the population would remain at 0 even when favorable 
conditions returned.

Host fruit availability. The period when host fruits are available is an important 
factor in determining B. dorsalis population increase (Chen and Ye 2007). Monthly 
status of fruit availability (1: food, 0: no food) was implemented into the GPFS model 
to adjust population size based on fruit tree phenology. If food was not available for a 
given month, then the population was allowed to decrease during unsuitable periods, 
but not increase. In Wuhan, China, we set food as available from July to December 
(Han et al. 2011). Peaches were the only fruit available during May and June, but no 
oriental fruit fly larvae were found in peaches, so these months were not included as 
having an available food source. No food limitation was applied to Bangalore, India 
where the combination of mango and guava likely provides a near year round source 
of food and Hawaii, USA, where there are primary hosts, such as strawberry guava and 
common guava, as well as other fruits and vegetables (Cornelius et al. 2000; Vargas et 
al. 1983; Vargas et al. 1990).

Pupal cold mortality. There is evidence to suggest that pupae survive lower cold 
temperatures than larvae. In Wuhan, pupae were shown to successfully overwinter 
although survival was dependent upon the time of year when pupae where placed in 
the soil (Han et al. 2011). In addition, the authors also found occasional pupae in the 
field. Although, the authors did not definitively demonstrate these occasional pupae 
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may give rise to overwintering populations, there is reason to err on the side of caution 
when constructing models of potential distribution, especially those for phytosanitary 
applications. Since there were insufficient data to parameterize the cold mortality of 
pupae, this was simulated outside of the GPFS model framework by comparing the 
extreme annual minimum temperature with the oriental fruit fly distribution maps, 
assuming this would represent the range of OFF cold survival or seasonal migration. 
A probability map showing the frequency of -10 °C or less each year was used as the 
exclusion layer and to mask out areas where oriental fruit fly would not overwinter. 
The Extract by Mask function in ArcGIS was used to create a global map showing 
likely maximum population and areas where oriental fruit fly would not survive. In 
NAPPFAST (Magarey et al. 2014), a probability map for one or more occurrences of 
minimum temperatures of -10 °C or less from the period January 1 to December 31 
was made using ten years of hourly CFSR weather data (2003-2012). A frequency of 
2 or more years in 10 was considered to be likely to eliminate oriental fruit fly popula-
tions (since populations might recover by re-introduction if killing periods occurred 
only once in every ten years). The grids were imported into ArcGIS and compared with 
oriental fruit fly distribution records. The grid included all the distribution records in 
the zone with values of 1 year or less. A mask of unsuitable area (2 years or more) was 
created and then multiplied by the maximum population grid to create the final global 
oriental fruit fly map. Large lakes including the Caspian Sea were excluded from the 
final product.

Dry exclusion. In addition to cold exclusion, a dry exclusion map was generated to 
mask dry/desert areas from the global distribution map using the ArcGIS. If annual 
precipitation was less than 254 mm, then the areas were defined as arid and unsuit-
able for oriental fruit fly habitats. This limit is commonly defined as limit for aridity 
(Maliva and Missimer 2012) and represents areas on the map that are likely not to have 
suitable habitat for OFF.

Model runs. The hourly weather data used for the model comparison and the crea-
tion of maps were produced by the National Center of Environmental Prediction Cli-
mate Forecast System Reanalysis (NCEP-CFSR) at a 38 km spatial resolution (Saha et 
al. 2010). A commercial weather data company (ZedX Inc., Bellefonte, PA) provided 
hourly weather data for specific years and locations from the gridded CFSR data sets 
created by NCEP. The input variables for the GPFS model were hourly air tempera-
ture, and precipitation. For the site-specific comparisons, the model was run in MS 
Excel. For spatial comparisons, a version of the model was coded into the GNU Com-
plier Collection (Free Software Foundation, Inc. http://gcc.gnu.org). Risk maps were 
created by running the GPFS model from January 1 to December 31 using ten years 
of CFSR weather data. To investigate the maximum climate suitability, the model was 
run using the same initial population index value in each year and populations did 
not carry over from one year to another, The model was run with the extinction value 
(β11), set at 0. A map of final population in the middle of each month for each year was 
created and the average was calculated for each month over the ten year period. Each 
of these monthly maps was imported into a Geographic Information System for fur-

http://gcc.gnu.org
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ther processes (ArcGIS, ESRI, Redlands, CA) including incorporation of cold and dry 
masks. Since populations may peak at different times of the year depending on climate, 
a summary grid reporting the maximum population was created. For a risk map specif-
ic to the conterminous United States, Real-Time Mesoscale Analysis (RTMA) hourly 
data at 5 km spatial resolution (Benjamin et al. 2007) were used instead of CFSR. The 
main component of RTMA is the Gridpoint Statistical Interpolation (GSI) system 
derived from over 14,000 weather station observations, radar and satellite observations 
in NCEP (De Pondeca et al. 2011). Observations are ingested each hour and a 1-hour 
forecast is used as background layer to supplement observations for the next iteration. 
To look at the potential for pest establishment, the GPFS model was run from 2007 
to 2012 with an initial population index in January 2007. In each subsequent year, the 
initial population index was the final population index in the previous year. The final 
map represented the maximum population index of any month in the final year (2012) 
and included the cold mask.

Site-specific temporal comparisons. Several accuracy measurements were calculated 
to determine how well GPFS predictions fit the observed population changes at the 
study locations. To facilitate comparisons with the predicted populations, the trap 
catch data were scaled between 0 and 1. The scaled values were calculated by dividing 
each observation by the 99th percentile of data from all years at each location. The 
statistical tests included mean error (ME), mean absolute error (MAE), mean square 
error (MSE), square root of MSE (RMSE), and index of agreement (d). Definitions 
and interpretations of these indices are well described in Legates and McCabe (1999) 
and Moriasi et al. (2007) and the equations for computing these indices were adopted 
or modified from these literatures. ME, MAE, MSE, and RMSE are indices for error 
that describe the difference between model prediction and observations in the units (or 
squared units) of the variable. Equations for computing these indices are expressed as:

ME = 
∑

 (7) 

MAE = 
∑

 (8) 

MSE = 
∑

 (9) 

d = 1 - 
∑

∑
 (10) 

The index of agreement (d) measures the degree of how observed values are accu-
rately estimated by the simulation. The index of agreement is different from a measure 
of correlation or association in that it measures the degree of error-free of the model’s 
predictions (Legates and McCabe 1999; Willmott 1981). Like correlation coefficients, 
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it ranges between 0 and 1, where a value of one indicates a perfect match between ob-
served and simulated variables while zero value suggests a complete disagreement. The 
index of agreement (d) is expressed as:

ME = 
∑

 (7) 

MAE = 
∑

 (8) 

MSE = 
∑

 (9) 

d = 1 - 
∑

∑
 (10) 

Spatial distribution comparisons. Model accuracy measures, modeled prevalence 
and sensitivity, were estimated using the final GPFS risk map. Raster cell values were 
extracted using ArcGIS. No data values (i.e., -9999), mainly assigned to oceans, were 
excluded from the analysis. The modeled prevalence is the proportion of raster cells 
classified as suitable. To estimate prevalence, the least presence threshold was used 
to classify raster cells as suitable or unsuitable. In species distribution modeling, the 
lowest presence threshold (LPT) is commonly defined as the predicted value of lowest 
training observation (Webber et al. 2011). We used the predicted value of 1st percen-
tile in the training observations so the threshold is not influenced by an individual out-
lier. The modeled prevalence was estimated by dividing the number of cells with values 
greater and equal to LPT value by total number of raster cells. The model sensitivity is 
the proportion of test locations falling in suitable raster cells.

Results

Site-specific temporal validations. At the China and India sites, the GPFS model popu-
lations went extinct due to cold and/or heat mortality with the extinction threshold 
set at 0.0001. Since the parameters for pupal cold mortality were unknown, the cold 
mortality threshold was not able to be estimated. Instead the model was run with an 
extinction threshold set to 0. For high temperature mortality, a correction was made 
to the threshold, TMht to 39 °C from the literature value of 33 °C, which improved ac-
curacy and allowed populations to persist in Bangalore. This may indicate that OFF 
individuals can move to find more favorable microclimates and thus avoid the highest 
temperatures. All other parameters remained the same from their literature values. The 
highest index of agreement was 0.85 at Wuhan. Regardless of modeling systems, the 
mean errors between the scaled adult populations and the predictions were smallest at 
Wuhan, followed by Bangalore and Hawaii.

The GPFS population predictions at Bangalore, India matched relatively well 
with the observed population (Figure 1A). The GPFS model correctly simulated the 
major peak populations in 2001 (April 2) and 2002 (April 22). Although the first 
peak in 2000 (June 19) was not correctly simulated, it may be due to increased food 
availability associated with mango harvest. In 2000, the GPFS modelled a peak in 
April 21 (Data not shown in figure). The main drivers of population decline in the 
GPFS model run at Bangalore were cold mortality during the cooler months and 
soil moisture mortality during the wetter summer months (including the monsoonal 
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months, typically August to September). Heat stress mortality did not seem to be a 
population limiting factor.

For Hawaii, USA, the GPFS model simulated population dynamics relatively 
poorly compared to the other two locations (Figure 1B). There are several reasons for 
this. The first is that temperatures never reach extremes that cause steep population 
declines. Second, even by Hawaii standards this area has high populations due to the 
presence of many hosts throughout the trapping area. Methyl-eugenol traps, because 
they draw from a very broad area, can be difficult to interpret under these condi-
tions. Consequently, distinct peaks in trap captures did not occur like the other sites 
(Figure 1). The GPFS model predicted a population decline during the wettest part of 
the year but underestimated the magnitude of the decline. The reduced climate suit-
ability was driven mostly by excessive soil moisture. The model also had food as avail-
able all year round in Hawaii, although it is possible that there is less food available in 
the winter months. Another factor is that there are more uncertainties in weather data 
in Hawaii due to few stations and topographical influences.

The GPFS predictions matched the observed oriental fruit fly population com-
paratively well in Wuhan (Figure 1C) compared to the other two study locations (i.e., 
Bangalore and Hawaii). The GPFS model overestimated the mean population in 2008, 
but underestimated it in 2009. In 2008, the simulated population increased faster 
and had a higher peak compared to the observations. This may be due to the fact that 
surviving overwintering population levels are very low. The model concordance might 
be improved by a finer temporal representation of food availability. For example, the 
first host that supported oriental fruit fly oviposition, pears, did not ripen until mid-
July, while the model allowed food to be available throughout July. This consideration 
is balanced by the fact that some OFF oviposition may occur before this period on 
unripe fruit. OFF prefer ripening fruit and survival is lower on unripe fruits (Chiu 
and Chen 1987). Declines in the GPFS simulated population in Wuhan were driven 
entirely by cold temperatures since heat mortality was not a factor.

Spatial distribution validations. The cold and dry exclusions eliminated large por-
tions of Northern Europe, Asia and America and desert regions of Africa and Asia 
(Figure 2). The cold exclusion was based on the frequency of -10 °C or less each year 
and the dry exclusion was based on areas receiving less than 254 mm. The GPFS model 
was run globally at a 38 km grid resolution with extinction value β11 set at 0 (Figure 3) 
and 0.0001 and with January 1 in the Northern Hemisphere and July 1in the South-
ern Hemisphere (data not shown) start dates. For the locations where oriental fruit fly 
has been observed in Asia (Figure 4B), the mean and median of predicted maximum 
population were 0.404 and 0.338, respectively, with 25th and 75th percentiles of 0.197 
and 0.577. With the threshold set at 0, the model predicted low levels of oriental 
fruit fly population surviving in Northern China in the middle of December, well 
beyond the range of the observed oriental fruit fly distribution. With the threshold set 
at 0.0001 the model greatly under predicted the range of oriental fruit fly in China. 
However, as discussed earlier, pupal mortality from cold temperatures may be much 
lower than larval mortality based on observations of pupal survival (Han et al. 2011). 
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Figure 4. GPFS model prediction for potential population index of oriental fruit fly, Bactrocera dorsalis 
(including observations of Bactrocera invadens) in A) Africa and B) Asia based on most recent 10 years 
(2003-2012) weather data from National Centers for Environmental Prediction – Climate Forecast Sys-
tem Reanalysis (NCEP-CFSR) at a 38 km resolution. Locations where B. dorsalis or B. invadens has been 
observed in the literature are shown as black dots. The predictions are on a scale of 0–1 and do not account 
for the presence or absence of suitable hosts. The map is the highest population index of any month aver-
aged over ten years with initial populations in each year being independent. The maps also include the 
cold and dry exclusions from Figure 2.
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Since pupal survival parameters were not known the global suitability map included 
the cold and dry exclusions calculated independently and used to mask out unsuitable 
areas (Figure 2). Since most oriental fruit fly observations were in China, we show the 
map for this region (Figure 4B). The maps suggested that the Least presence threshold 
(LPT) based on the GPFS model output was 0.055, which was surprisingly low, al-
though species distribution records are often collected for rare species (Bradley 2013). 
The model sensitivity was 0.99, i.e., over 99 % of observations (159 out of 161) were 
found within areas modelled as being climatically suitable (Figures 3 & 4). In Asia, the 
GPFS model predicted most oriental fruit fly occurrences in suitable regions except 
one in the northeastern Pakistan (Figure 4B). In Africa, the fit of the model against 
B. invadens observations was good with the exception of a number in the Sahel of Af-
rica that were excluded from the suitable range because they were considered too dry. 
Globally, the modeled prevalence was 0.21, but without the cold and dry exclusion 
it was 0.95. The analysis assumed that host plants are available globally. The global 
climate suitability map indicates that oriental fruit fly may survive in most south parts 
of Africa and America, whereas only in limited areas of Europe, North America and 
North Africa are suitable due to cold or dry weather conditions (Figure 3). In parts 
of Europe, southern parts of South America and southern Australia, the climate for 
OFF is marginally favorable. Populations may not well survive in these areas during 
unfavorable years. Running the model in the establishment mode i.e. with population 
index change after five or more years may answer this question. However, it was not 
our objective to evaluate this question except for the United States where this was 
completed with RTMA data. The climate suitability map for the U.S. using 5 km 
resolution RTMA data suggests that potential fruit fly distribution may be limited to 
southern and western coastal areas in the United States (Figure 5).

Discussion

In this study, we introduced a new pest prediction model, the Generic Pest Forecast 
System (GPFS) and validated it against site-specific observations and spatial distribu-
tion. Importantly, no site-specific information was used to parameterize the model, 
with the exception of host fruit availability used in both models. In addition, no local 
weather data were used as inputs into the models to investigate the potential for a grid-
ded global weather database to be used for historical pest predictions.

The goal of the team developing the GPFS model was to create a simple weather-
based pest model that would have application for predicting potential distribution. In 
addition, the model was conceived also to have application to other risk based ques-
tions such as time of pest emergence and potential impacts in managed crop systems 
for both indigenous and non-indigenous pests. This additional information may en-
able decision makers to better understand the consequences of a newly established 
pest. One of the precedents for the GPFS model is weather-based pest forecast models 
which are routinely used in pest forecasting (Magarey et al. 2001). However, these 
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kinds of models do not typically include mortality factors since the pest is endemic and 
overwintering-survival is not usually in question. The GPFS also shares some similari-
ties with CLIMEX-CL (Compare Locations), a widely used pest modeling software. 
CLIMEX is a relatively easy way to create a climate suitability map for a species since 
the generic nature of the growth and stress parameters enable the model to simulate 
the growth and survival of a species irrespective of the exact biological processes. This is 
probably one of the key reasons for the widespread use and adoption of CLIMEX-CL. 
In the GPFS, Eq. 1 is used to calculate developmental rate and in CLIMEX-CL, the 
same equation is also used in combination with a degree day formulation to calculate 
the temperature growth index (Sutherst et al. 2007). CLIMEX and GPFS both use 
stresses or mortality due to cold and heat but with different equations. The GPFS 
is designed to run from hourly weather inputs whereas CLIMEX runs from weekly 
indices usually estimated monthly climate averages. In GPFS, the population index ac-
cumulates each hour and is reduced by mortality factors. In CLIMEX, the Ecoclimatic 
Index (EI) value is calculated each week as the product of stress and growth indexes 
and then the EI is accumulated over the year. CLIMEX also includes additional types 
of stresses, and indices such as diapause and irrigation not considered in the GPFS. 
To compensate, the GPFS model may need to be used in combination with other GIS 
data sets when comparing pest distributions, such as those defining aridity.

The GPFS model appears to have a number of useful features. It has a relatively sim-
ple formulation, few parameters and can be used to investigate population changes dur-

Figure 5. GPFS predictions of potential population index of oriental fruit fly, Bactrocera dorsalis, in the 
United States based on A. Real-Time Mesoscale Analysis weather data (2007–2012) with a 5 km resolu-
tion. The predictions are on a scale of 0-1 and do not account for the presence or absence of suitable hosts. 
The map is the final population index in December 2012 that resulted from the simulation of population 
change beginning with an initial population in January 2007. The map also includes the cold exclusion 
from Figure 2.
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ing the seasons as well as produce overall suitability maps. The simplicity of the model 
makes it easy to adapt to a new pest, assuming these parameters are available or can be 
determined from a closely related pest (the latter which would increase the uncertainties 
associated with the simulation). Adaptability of a model to a new species is important 
since phytosanitary agencies must often develop risk assessments at short notice.

Although GPFS is a generic model, it is still not as flexible as the generic pest simu-
lation model in the CLIMEX family, DYMEX (Maywald 2007), in building a model 
for a targeted species or adopting an already existing model to another new species. 
However, an experienced DYMEX user is required to use the model the development 
portions of DYMEX (DYMEX model builder), although the task may be simplified 
if a model exists for a related species. The GPFS represents a compromise in terms of 
model complexity. For example, to calculate the developmental rates, simple linear 
slopes at each temperature threshold range were used. Many other modeling tools use 
unique pest specific equations to represent developmental rates (Gutierrez et al. 2010; 
Maywald 2007). However, linear estimation of developmental rate seems appropriate 
when there is scarce information on pest development data, especially for exotic spe-
cies. The GPFS model presented in this study has the potential to be improved with 
additional modules for diapause and pesticide timing.

The ease of parameterization is another key consideration for the use of a pest 
model. One limitation for the modeling of exotic species is the lack of published ex-
perimental data to parameterize the model. A useful feature of CLIMEX-CL is that pa-
rameter values can be estimated from the experimental literature, from the distribution 
data or as recommended using both in combination. A disadvantage of CLIMEX-CL 
is the weekly model time step, which can make the parameterization process more dif-
ficult since some experimental data such as mortality may have observations made at 
an hourly time step. The GPFS requires biological parameters, including information 
on development rate and mortalities due to heat, cold, and wet soil moisture. Conse-
quently, it would not be possible to make a GPFS model for some pest species at pre-
sent. One option is to parameterize the model from a related species, which increases 
the level of uncertainty associated with the modeling process. One possible solution is 
to use the distribution data to fit the parameters using an automated process. Such a 
method has been employed to fit a mechanistic model to predict forest species distri-
butions (Higgins, Mullen et al. 2011).

Accuracy is another key consideration for evaluating models. The results from this 
study need to be kept in context with the limited amount of site-specific information 
(including weather data) that was used to inform the model. Information on other fac-
tors such as pest migration, food quantity, species competition and/or existing natural 
enemies, and management factors were not included. A more sophisticated simulation 
model may be able to have superior results using this kind of site-specific variables. 
When these kinds of site-specific parameters are included in a simulation model it is 
prudent to check the model is portable to other sites (Yonow et al. 2004).

The GPFS model might also be improved by adding modules to account for the 
population of individual pest stages. This would allow it to be used for other applica-
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tions for example predicting the timing of a particular phenological stage for schedul-
ing trapping or scouting applications. Another module that could be improved is the 
food supply model, which was highly simplistic and also relied on a monthly time-
step. In some cases the phenological susceptibility of a host may be more precisely esti-
mated from an observed biofix and a degree day model. In phytosanitary risk analysis, 
there is sometimes a need to simulate potential impacts and spread of pest in order to 
assess mitigation or response options (Waage et al. 2005). There is potential to im-
prove the GPFS model to account also for factors such as host development, pesticide 
treatments, host resistance and natural enemies; factors that have been included in 
other pest forecast, simulation models or expert systems (Fitt et al. 1995; Gutierrez et 
al. 2010; Travis et al. 1992). Estimates of spread and impacts based upon a simulation 
model might improve upon those inferred from a pest’s native range where climate, 
host and management conditions might be quite different. Examples of climate based 
simulation models being used in these kind of impacts assessments suggest there is 
benefit in adding this capability (Kriticos et al. 2003; Pinkard et al. 2010c).

One limitation with process models that require hourly weather inputs has been 
the lack of reliable, consistent, and dense global historical weather station data for use 
in validating models against published historical data of pest populations. This situation 
changed in 2010 when the National Center of Environmental Prediction (NCEP) in-
troduced the Climate Forecast System Reanalysis (CFSR) (Saha et al. 2010). The CFSR 
database superseded the NCEP R2, which had a crude spatial resolution of 200 km, and 
included a more simplified description of atmospheric processes. The CFSR database 
provides a relatively high resolution (38 km) source of high quality gridded data from 
1982 until the present at a 1-hourly time step. It is believed to be the most consistent 
and reliable source of global gridded historical data. The CFSR also has a much more 
detailed description of the atmosphere and atmospheric processes and improved accu-
racy, especially in the Southern Hemisphere. In a comparison with 28 weather stations 
in horticultural production areas, CFSR data had a mean relative and mean absolute 
errors of -0.3 °C/-4.3% and 2.4 °C/12.8% respectively for air temperature and relative 
humidity (Magarey, unpublished data). The reliability of CFSR data may also be de-
pendent on other factors such as topographical complexity and the density of weather 
stations used as inputs into the reanalysis. It would have been informative to have com-
pared CFSR weather data with those from local weather stations, but this was outside 
of the scope of the project. We did not do this in this study because of the complexity 
and some degree of spatial uncertainty around the exact locations of the field trials. 
CFSR data show promising performance for hydrological studies including stream flow 
and crop yield modeling (Dile and Srinivasan 2014; Fuka et al. 2013). The challenge 
for pest forecasting is potentially far greater due to the need for predictions data to be 
generated on finer spatial and temporal scales than those used for hydrology. To the best 
of our knowledge, this study is one of the first to use CFSR data for pest forecasting. 
The CFSR data set allows pest modelers not only to create high resolution global maps 
from hourly data but also to create historical predictions for which field observations at 
specific locations over multiple years have been published in the literature.
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Utility of site-specific temporal validation

Site-specific temporal observations can play a useful role for model validation by pro-
viding an additional level of confidence that the model is providing realistic results. 
These types of validations may not be possible or can be difficult for some species due 
to pest and host phenology. That is that the number of individuals caught in a trap is 
a function of pest or host phenology and not just pest abundance. In this version of 
the GPFS model, we ignored pest phenology although it is incorporated into a newer 
version (Magarey unpublished data). However, including pest stages into the model 
greatly adds to complexity including the required parameters. In addition, for a pest 
with many generations and overlapping stages such as OFF it may not contribute 
much additional information. For example, including a stage specific model into the 
GPFS did not improve prediction accuracy for light brown apple moth (Epiphyas post-
vittana) (Hong and Magarey, unpublished data). The prediction of pest population 
index at specific sites can be revealing. For example, it might help identify sites where 
a pest is not expected to overwinter even if the summer climate is suitable. This is im-
portant since some distribution (spatial) records may be unreliable or the record may 
have corresponded with a rare or ephemeral observation of the species (Macfadyen and 
Kriticos 2012).

One important factor for site-specific validation is choosing representative loca-
tions. For example, predicted population indexes of B. dorsalis oriental fruit fly popu-
lation in Wuhan, China were relatively superior compared to the two other locations 
(Figures 1C and Table 3). One likely cause of this is that cold winter conditions in 
Wuhan (absent at the other two sites) help synchronize population development. This 
also points out a limitation of site-specific validation in that it may not always be pos-
sible to obtain pest observations from locations that represent the potential range of 
suitable climates for an invasive pest. In addition, sites that have moderate climates 
such as Hawaii may not provide ideal validation sites for models to be deployed in 
continental climates because the populations are not primarily limited by climatic con-
ditions. Another limitation of the site-specific validation is that the contribution of 
migration or human-mediated transport is not always clear. For example in Wuhan, 
populations potentially could overwinter at low levels (Han et al. 2011); however the 
contribution of fruit transported by humans may be a more important factor in the 
population cycle. Another limitation of site-specific validations is that observations lag 
predictions based on weather data. It might be possible to calculate a lag factor based 
on developmental time, however this could be complex depending on the biology of 
the pest. Since the fit was relatively robust without such a correction, we did not at-
tempt to calculate a lag time. In addition, another limitation is population increases 
caused by abundance of food during periods such as harvest, Since the GPFS model is 
simple, it did not consider food quantity only the timing of food availability.

Utility of spatial distribution validation. Since site-specific temporal validation of-
ten includes relatively few locations, spatial validation is critical. Spatial validation of 
the GPFS showed the utility of the GPFS model but also the need for the cold exclu-
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sion layer to prevent over-prediction in higher latitudes due to the lack of experimental 
data to parameterize the low temperature mortality. This shows that the combination 
of both complex (i.e., GPFS) and simple (i.e., exclusion) modeling techniques may be 
useful for defining the non-suitable areas (Figures 2 & 3). A recent study has shown 
that B. dorsalis is genetically indistinguishable from B. invadens (Jose et al. 2013). B. 
invadens is distributed from Senegal through the southern Congo with most occur-
rences in Benin and Cameroon along the equator in West Africa (Goergen et al. 2011). 
The GPFS model based on B. dorsalis parameters predicted these areas as suitable. The 
GPFS model also predicted that Angola and Namibia would also be suitable, although 
these countries likely have lower host densities. One note of caution is that populations 
of B. dorsalis from different localities may differ in their temperature and moisture 
requirements, so any predictions for an invading population should be treated with 
caution. This is especially the case since B. dorsalis is a species complex.

The GPFS predicted population can also be compared to a description of B. dor-
salis populations found in an environmental chamber study in which temperature and 
humidity were maintained at levels representative of six U.S. cities (Flitters and Mes-
senger 1953). This comparison of both the environmental chamber and the GPFS 
simulation showed that Fort Pierce, Florida and Oceanside, California were the most 
suitable for the oriental fruit fly, followed by Riverside, California. The chamber rep-
resenting Fresno, CA, had low populations during the summer periods, while GPFS 
predictions were 0.13 and 0.17 in July 15 and Aug 15, respectively. In the chamber 
study and the GPFS model simulations using RTMA data (Figure 5), Vincennes (In-
diana) populations could multiply in the spring and summer, but died out in the win-
ter. In the Charleston (South Carolina) chamber, observed fly populations declined to 
zero during winter. The GPFS model suggests that oriental fruit fly could survive in 
Charleston, with the possible explanation that the model did not run through the end 
of winter, but stopped at December 31, prior to calculating averages for the ten year 
period. An alternative way to run the GPFS model is to begin with a founder popula-

Table 3. Model accuracy measures between observation and predictions of GPFS.

Bangalore, India Hawaii, USA Wuhan, China
Observation
N 50 24 73
Mean 0.32 0.44 0.12
Standard deviation 1.75 1.18 1.77
GPFS
Host/food availability Jan–Dec Jan–Dec Jul–Dec
Prediction mean 0.40 0.85 0.13
Mean absolute error (MAE) (>= 0) 0.23 0.41 0.08
Mean error (ME) (-Inf to +Inf ) -0.08 -0.41 -0.02
Mean square error (MSE) (>= 0) 0.08 0.20 0.02
Index of agreement (d) 0.58 0.50 0.85
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tion and then run the model for a ten year period. The disadvantage of this approach 
is that it may underestimate potential distribution as population extinctions might be 
caused by one or more extreme events. For a pest that may be frequently introduced, 
the average of a ten year prediction might be the most suitable. Alternatively, the ana-
lyst may choose to select individual years based on the occurrence of extreme weather 
conditions that might limit pest establishment.

Ideally, host abundance and phenology are also required for prediction of the 
population index (or relative abundance), but this information is very rarely available, 
especially on global scales. We investigated the use of global crop maps (http://capra.
eppo.org/maps.php) (Monfreda et al. 2008); however, we chose not to use them due 
to the poor reliability in certain areas and the large host range of oriental fruit fly, 
which added to the complexity and uncertainties of making the maps. As a conse-
quence of the lack of host availability data, the GPFS tends to over-predict fruit fly 
populations in some areas. Another cause of over prediction is the lack of host plants; 
for example, in much of semi-arid Australia host plants are likely to not be abundant. 
However, for a local scale map such as a pest detection map for California or Florida, 
it would be important to include maps of cropland or host distribution, rather than 
using the exclusion based on precipitation to define host areas.

Conclusions

The GPFS model was introduced as a simple weather-based model for predicting po-
tential distribution. The model was shown to be able to simulate relative pest popula-
tions in some locations, which could have potential to estimate potential impacts of 
a pest when combined with other biological and management variables. The model 
requires literature data to estimate model parameters and as such will not be usable 
for all species unless alternative methods of parameterization are added in improved 
versions of the GPFS model. This study also shows the potential for improving pest 
risk models by conducting spatial and site-specific temporal validations against pub-
lished observations. Although these kinds of temporal validations will not be possible 
for every species, they can provide insight into the spatial domain by suggesting why 
a species might not persist or provide an indication of the risk. It can also be helpful 
for calibrating model parameter values. Importantly, the arrival of high quality global 
gridded historical weather databases can make site-specific temporal validations from 
published observations easier for hourly weather-based models. The downloading and 
archival of gridded data sets are a large undertaking requiring considerable resources. 
However, smaller organizations have the opportunity to purchase hourly data sets from 
commercial weather providers for specific sites of interest. Ultimately as computer 
power improves these costs will decrease. Additionally, the model could be run in real 
time to support surveillance activities given the concern about low level or cryptic in-
vasions escaping pest detection programs (Papadopoulos et al. 2013). We suggest that 
models be validated both spatially and temporally, when possible, in order to increase 

http://capra.eppo.org/maps.php
http://capra.eppo.org/maps.php
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the confidence in their results. Caution is needed since in some locations a pest may 
not be coupled to climatic conditions and the population may be driven by other 
temporal factors, e.g., food availability. Spatial validation provides confidence that the 
model is working correctly in a range of climates, whereas site-specific temporal valida-
tion can offer insights to explain population increases or decreases. It could also pro-
vide evidence for including or discounting suspicious distribution records. We suggest 
that both of these types of validations should be included in inter-model comparisons. 
In conclusion, validating pest risk models with spatial and site-specific temporal data 
may provide more robust and reliable results than validations with spatial data alone.
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Table S1
Authors: Seung Cheon Hong, Roger D. Magarey, Daniel M. Borchert, Roger I. Var-
gas, Steven K. Souder
Data type: distribution data
Explanation note: List of references for oriental fruit fly (B. dorsalis) distribution.
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Supplementary material 2

Table S2
Authors: Seung Cheon Hong, Roger D. Magarey, Daniel M. Borchert, Roger I. Var-
gas, Steven K. Souder
Data type: distribution data
Explanation note: List of references for B. invadens distribution (Courtesy to Marc De 

Meyer, Royal Museum for Central Africa, Tervuren, Belgium).
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Supplementary material 3

Table S3
Authors: Seung Cheon Hong, Roger D. Magarey, Daniel M. Borchert, Roger I. Var-
gas, Steven K. Souder
Data type: specimens data
Explanation note: Summary statistics of low and high temperature mortality of Bac-

trocera dorsalis.
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

http://opendatacommons.org/licenses/odbl/1.0/
http://opendatacommons.org/licenses/odbl/1.0/
http://opendatacommons.org/licenses/odbl/1.0/
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Figure S1
Authors: Seung Cheon Hong, Roger D. Magarey, Daniel M. Borchert, Roger I. Var-
gas, Steven K. Souder
Data type: specimens data
Explanation note: Fit of low temperature mortality function (line) to observations 

(diamonds).
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.
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Figure S2
Authors: Seung Cheon Hong, Roger D. Magarey, Daniel M. Borchert, Roger I. Var-
gas, Steven K. Souder
Data type: specimens data
Explanation note: Fit of high temperature mortality function (line) to observations 

(diamonds).
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

http://opendatacommons.org/licenses/odbl/1.0/
http://opendatacommons.org/licenses/odbl/1.0/
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