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Abstract
Here we compare the environmental niche of a highly polyphagous forest Lepidoptera species, the winter 
moth (Operophtera brumata), in its native and invaded range. During the last 90 years, this European tree fo-
livore has invaded North America in at least three regions and exhibited eruptive population behavior in both 
its native and invaded range. Despite its importance as both a forest and agricultural pest, neither the poten-
tial extent of this species’ invaded range nor the geographic source of invading populations from its native 
range are known. Here we fit a climatic niche model, based on the MaxEnt algorithm, to historical records 
of winter moth occurrence in its native range and compare predictions of suitable distributions to records 
from the invaded range. We modeled this distribution using three spatial bins to overcome sampling bias for 
data obtained from public databases and averaged the multi-continental suitable habitat prediction. Results 
indicate that this species is distributed across a wide range of climates in its native range but occupies a nar-
rower range in its invaded habitat. Furthermore, the lack of a close fit between climatic conditions in parts 
of its invaded range and its known native range suggests the possibility that this species has adapted to new 
climatic conditions during the invasion process. These models can be used to predict suitable habitats for 
winter moth invasions worldwide and to gain insight into possible origins of North American populations.
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Introduction

With heightened awareness of the damage caused by biological invasions, biosecurity 
programs take on increasing importance for preventing new invasions (Hulme 2009). 
Risk assessment plays a key role in biosecurity programs, providing information on like-
ly invasion success and impacts of species, and is used to prioritize preventative meas-
ures (Hayes 2003). A crucial component of the risk assessment process is mapping the 
potential range of a species should it become established (Venette et al. 2010). Knowl-
edge of the potential geographical distribution of a candidate invasive species can guide 
implementation of both pre- and post-border biosecurity activities such as surveillance.

Understanding and quantifying the ecological niche of a species in its native range 
can be used to predict its potential distribution in a novel environment. Ecological 
niche models use occurrence data and environmental variables to predict habitat suit-
ability (Guisan and Zimmermann 2000). These models typically use available species 
occurrence records to quantify the association of a species’ distribution with various 
components of its habitat such as climate. Ecological niche models assume that a spe-
cies is well adapted to present climatic conditions and this acclimation assumption is 
carried into future distribution forecasts. For practicality, these models typically ignore 
the effects of biotic interactions which may limit a species’ potential distribution, and 
thus are expressed as a realized niche. Application of ecological niche models to predict 
an invading species future range assumes that successful invasion of novel environ-
ments requires similarly matched climates between the native and novel regions (Pan-
etta and Mitchell 1991).

Unfortunately, systematic surveys for most species throughout their ranges are of-
ten impractical, though a wealth of distribution information resides in global databases 
and museum collections worldwide. These datasets, such as the Global Biodiversity 
Information Facility (GBIF, GBIF.org 2018), assemble occurrence records from many 
different sources; however, the intensity of sampling behind these records often con-
tains a sampling bias where more records exist in certain areas (such as near research 
facilities or locations with extensive sampling by hobbyists).

A number of methods can be applied to limit this spatial bias. One method of ac-
counting for sampling bias is to use frequencies of background occurrence records of 
a conspecific species or an entire genus, often referred to as target group background 
bias records, as proxies for sampling effort (Yates et al. 2010). Another method involves 
spatially filtering the occurrence records to remove records at distances greater than the 
resolution of cells in the environmental layers (Aiello‐Lammens et al. 2015; Boria et 
al. 2014; Hijmans 2012; Kramer‐Schadt et al. 2013; Pearson et al. 2007; Veloz 2009). 
Occurrence records can also be thinned based on their environmental/climatic values, 
discarding repetitive occurrences in similar climatic conditions (Varela et al. 2014), or 
records can be filtered geographically, splitting occurrence records into geographic bins 
(Jiménez-Valverde et al. 2011; Radosavljevic and Anderson 2014).

This study focuses the use of ecological niche models for predicting the potential 
distribution of the winter moth, Operophtera brumata. The native distribution of this 
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species ranges widely through most of Europe (Kozhanchikov 1950) (Fig. 1). Further-
more, larvae of this species are known to have an extremely broad host range, feeding 
on the foliage of a wide variety of broadleaf trees and occasionally on certain conifer 
species (Wint 1983). Recurrent outbreaks of this insect occur in several regions of its 
native range, especially in mountain birch (Betula pubescence) forests in Fennoscandia 
(Jepsen et al. 2008), but also on other hosts, such as Sitka spruce (Picea sitchensis) 
planted in the British Isles (Stoakley 1985; Watt and McFarlane 1991) and even on 
heather (Calluna vulgaris) in Scotland (Kerslake et al. 1996).

Non-native populations of the species exist in portions of North America with 
alien populations established in Nova Scotia, the Pacific Northwest, and New England 
(Fig. 1). Winter moth was first accidentally introduced to Nova Scotia in the 1930s 
(Hawboldt and Cuming 1950), Oregon in the 1950s (Kimberling and Miller 1988), 
near Vancouver, British Columbia around 1970 (Gillespie et al. 1978), and eastern 
Massachusetts in the 1990s (Elkinton et al. 2010). It is unknown whether these repre-
sent separate introductions from the native range or a single invasion that has spawned 
several secondary introductions. Following the initial establishment of each of these 
populations there was some initial range expansion, though in each case, spread may 

A B

Figure 1. A map showing the distribution of the native range for winter moth (Operophtera brumata), 
recreated from Kozhanchikov (1950), as well as native winter moth occurrence records used as training 
records – colored according to three geographic filters (British Isles in red, Fennoscandia in blue and 
Central/Southern Europe in green) and evaluation records shown in yellow B map of North American 
records reflecting the invaded range separated into three geographic regions (western Canada in brown, 
New England in orange and eastern Canada in violet).
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have been limited by climatic conditions, introduction of biological control agents, 
and/or by hybridization with the native congener, Bruce spanworm, O. bruceata (El-
kinton et al. 2010).

The objective of this study was to fit ecological niche models based on winter moth 
occurrence records from its native range in order to predict the potential invaded range 
of this species. Furthermore, as there is much uncertainty about where in Europe the 
non-native populations of winter moth originated from (Andersen et al. 2017; Elkin-
ton et al. 2010; Gwiazdowski et al. 2013), we use geographic filtering to compare the 
climatic suitability of different potential source populations to each of the invaded 
North American populations. We then comment on the utility of geographic filtering 
to reduce sample bias in datasets based on public records.

Methods

Modelling approach

The winter moth’s climatic niche was quantified using the machine learning algorithm, 
MaxEnt v. 3.4.1 (Phillips et al. 2006), using presence-only data for this species. MaxEnt 
uses both distribution information and environmental variables to predict potential are-
as of distribution for a species. It provides an estimated likelihood for a species range that 
is near uniform and still subject to environmental confines (Elith et al. 2011). MaxEnt, 
the most widely used species niche and distribution modelling algorithm (Fourcade et 
al. 2014), is efficient for complex interactions between response and predictor variables 
with little sensitivity to small sample sizes. However, difficulties in accuracy arise when 
modelling generalist or widespread species (Connor et al. 2018; Jiménez‐Valverde et al. 
2008; Luoto et al. 2005; Marmion et al. 2009; Segurado and Araujo 2004).

Occurrence records

Presence-only distribution data were assembled from various sources: GBIF (www.
GBIF.org, taxon key = 1972449), Barcode Of Life Database (BoldData, www.bar-
codinglife.org), Canadian Forest Invasive Alien Species (CanFIAS, www.exoticpests.
gc.ca) database, Elkinton et al. (2010), Andersen et al. (2017), and Tenow et al. 
(2013). These records were cleaned and separated into two subsets – all of the GBIF 
records were placed into a training dataset (n = 4151), while records from BoldData, 
CanFIAS, Elkinton, Andersen and Tenow were separated into a testing dataset (n = 
518). Records from the training dataset, consisting of occurrence records for win-
ter moth in the GBIF database, were downloaded on November 29, 2018 using the 
dismo package in R (Hijmans et al. 2017) and the gbif function. Both training and 
testing records were cleaned to remove any records where either the latitude or lon-
gitude coordinates were missing. Additionally, these records were filtered temporally, 
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keeping only those records between 1970 and 2010, to best align with the environ-
mental layers while maintaining a large sample size. Next, these records were visual-
ized in ArcMap (ESRI 2017) to group locations (Fig. 1) into three regions for native 
range records: the British Isles (n = 2846), Fennoscandia (n = 894), and Central/
Southern Europe (n = 398); and three regions for invaded range records (n = 103): 
Western Canada, Eastern Canada and New England. The three native range regions 
were arbitrarily selected as geographically isolated areas, each with unique densities of 
occurrence records. The three invaded range regions were selected because they repre-
sent isolated ranges, though there is a small coastal area where the Eastern Canada and 
New England regions are contiguous (Fig. 1). Finally, only unique records were kept 
– using the delete identical tool with the advanced license of ArcMap. These cleaned 
records were re-projected into the World Molliweide projection, to match that of the 
environmental layers, and the latitude and longitude were recalculated before creating 
a CSV file to be used in MaxEnt.

Sampling bias

Accurate application of MaxEnt necessitates accounting for the effects of geographi-
cal sampling bias in locations of occurrence data. Use of occurrence data sets that 
are spatially biased can result in over-representation of certain environmental features 
prevalent in more intensively surveyed areas (Phillips et al. 2009). If the sampling ef-
fort is known, it can be included in the model calibration to correct for sampling bias 
(Anderson 2012; Phillips et al. 2009). However, this is rarely the case especially when 
using museum records from databases, such as GBIF.

We focused our analysis on geographic filtering or splitting of the data into bins 
to overcome sampling bias. Due to the winter moth’s extensive geographical range and 
the comparatively high density of records in the United Kingdom compared to Cen-
tral/Southern Europe, we selected to split location records from the native range into 
three geographical bins: the British Isles, Fennoscandia, and Central/Southern Europe 
(Fig. 1) as the simplest method for handling sampling bias.

Environmental variables

Environmental variables included in the model were selected from WorldClim 10 
minute resolution variables (Fick and Hijmans 2017). WorldClim version 2 includes 
gridded values for 19 bioclimatic variables derived from temperature and precipitation 
measurements spanning 1970–2000 collected from a global network of meteorological 
stations. All environmental variables were resampled in R using the bilinear method 
to a 25 km cell size in the Mollweide projection, which maintains equal areas – an as-
sumption that is required for MaxEnt models (Elith et al. 2011). We chose to use the 
following temperature variables that are likely to be of biological importance, BIO1–4, 
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6–7, 10–11 and 14 (Table 1). Insects are ectotherms and therefore their development 
is sensitive to accumulated degree days as well as to extreme temperatures (Battisti and 
Larsson 2015). For this reason, we concluded that temperature would be more likely 
to influence the distribution of winter moth than precipitation, but also identified 
drought as possibly affecting the pupal stage which reside in the top layer of the soil 
throughout the summer and early autumn, hence the inclusion of BIO14. Given the 
polyphagous nature of winter moth larvae, we expected that suitable host plants are 
present in most locations of the native and invaded ranges and therefore we did not 
include any variable describing vegetation as predictive environmental variables.

Model parameters

We fit MaxEnt models using the following adjustments to default settings. We generat-
ed response curves and jackknife statistics to measure variable importance. Samples files 
consisted of training datasets for each spatial bin. Environmental layers were clipped 
to a 400 km buffer around each sample file. The projection layers directory consisted 
of environmental variables clipped to latitudes above 20°N. The algorithm created 100 
replicate models for cross validation. The test sample file was the corresponding testing 
dataset, the maximum iterations was changed to 5000 for reaching algorithm optimi-
zation. A statistical analysis was performed on data extrapolated from each model run, 
using the receiver operating characteristic (ROC) plot to evaluate model performance. 
The area under the curve (AUC) of an ROC curve ranges in values from 0 to 1 (Field-
ing and Bell 1997) with a value of 0.5 indicating that the model performed as good as 
random and a value of 1 indicates the model has perfect discrimination.

Selection of an appropriate background extent during ecological niche modeling 
is often overlooked. If the considered extent is too narrow to accurately represent the 
potential movement of a species over time, the importance of climatic variables in 
demarcating a species’ distribution may be underestimated (Barve et al. 2011). We 
chose a buffer distance of 400 km, roughly the distance between the Nova Scotia 
population and the Massachusetts population. However, this distance is much larger 
than the likely generational winter moth maximum dispersal distance; windborne first 

Table 1. WorldClim v.2 bioclimatic variables included in the model, and their descriptions.

Variable Description
BIO1 Annual Mean Temperature (°C)
BIO2 Mean Diurnal Range (Mean of monthly (max temp – min temp)) (°C)
BIO3 Isothermality ((BIO2/BIO7) * 100)
BIO4 Temperature Seasonality (standard deviation *100)
BIO6 Min Temperature of Coldest Month (°C)
BIO7 Temperature Annual Range (BIO5-BIO6) (°C)
BIO10 Mean Temperature of Warmest Quarter (°C)
BIO11 Mean Temperature of Coldest Quarter (°C)
BIO14 Precipitation of Driest Month (mm)
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instar larvae are known to balloon 50 m (Edland 1971; Huntley et al. 1995) and adult 
females are incapable of flight.

Model complexity can be varied by altering the regularization parameter; this pa-
rameter reduces omission rates. After running the models with regularization values of 
0.1, 1 and 3, we chose to use a regularization parameter of 3 to avoid over-fitting our 
distribution model.

Analyzing the climatic niche

Ridgeline plots of the distribution of environmental variables (BIO 1–4, 6–7, 10–11, 
14) among samples were created to further identify differences and similarities in the 
abiotic niche for each spatial bin from the native versus novel locales. Next, principal 
components analysis was applied to the nine environmental variables for the pooled oc-
currence records (both native and invaded ranges) and scores for the first two principal 
components were plotted separately for each spatial bin (British Isles, Fennoscandia, 
and Central/Southern Europe, Western Canada, Eastern Canada and New England) in 
order to discern climatic similarities and differences among regions. ArcMap was used 
to create a 15 km fishnet of points for the entire study area, which extends 400 km 
beyond sites of winter moth occurrences in both the native and novel ranges. Next, 
WorldClim layers were speared to assign their values to each point location. Addition-
ally, cells were coded based on their geographic location (spatial bin) and if within 
15 km of a winter moth occurrence. These occurrence data were then exported to R 
and principal components analyzed with the ‘prcomp’ function in the base R language.

Distribution modelling

Three different MaxEnt models, one fit to occurrence data from each of the three geo-
graphical bins of the native range, were used to predict probabilities of suitable habitat 
for winter moth in North America. These three model predictions were then averaged 
to create a combined model and these probabilities were classified into three levels of 
habitat suitability

MaxEnt output consist of continuous probability values ranging from 0 (unsuit-
able habitat) to 1 (suitable habitat). MaxEnt output provides the modeler with 11 
thresholds to choose from when converting the suitability map to a binary map, all 
of these thresholds provide a balance between commission and omission rates (Field-
ing and Bell 1997; Phillips et al. 2017). Model outputs were converted to classified 
suitability maps. To do this we employed MaxEnt’s ‘balance’ threshold which mini-
mizes 6.00 * training omission rate + 0.04 * cumulative threshold + 1.60 * fractional 
predicted area. Values below this threshold were dropped and a composite map was 
created, averaging across predicted probabilities from models derived from each of the 
three geographical bins in the native range.
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Results

Predictions based on native range occurrences

All three models fit to native range records from spatial bins (Fig. 2) performed better 
than random (Table 2; British Isles AUC = 0.795, Fennoscandia AUC = 0.75, Cen-
tral/Southern Europe AUC =  0.816). Predictions of suitable winter moth habitat in 
Europe and North America based on averaging probabilities from the three different 
models are shown in Fig. 3. The predicted distribution in Europe based on the average 
of the three models mostly corresponds well with the extent of the distribution map 
from Kozhanchikov (1950) (Fig. 1). However, the predicted area of suitable habi-
tat extends beyond the eastern boundary of occurrence records into the Carpathian 
and Caucasus Mountain ranges (Fig. 3). The predicted distribution in North America 
correctly predicts the winter moth distribution in western Canada, but also predicts 
extensive areas of suitable habitat north of the invaded range, along the coast of the 
Cordillera region in Canada and into the Pacific Mountain System of Alaska includ-
ing the Alaska Peninsula. The prediction for suitable habitat in eastern North America 
includes a small portion of Nova Scotia, but overall misses most of the Winter Moth’s 
current eastern North American range and instead predicts moderately suitable habi-
tat farther north in eastern Newfoundland. Areas of low habitat suitability in North 
America are also predicted in the Canadian Rockies, Northern Idaho, Western Mon-
tana and the Appalachian Mountains.

Comparison of predicted distributions based on regional bins

Predicted suitable habitat in North America varies among models fit to different geo-
graphic bins of native occurrence records (Fig. 2). Models fit to occurrences in the Brit-
ish Isles identified only a small region of suitable habitat in North America, in British 
Columbia along the North, South and West coasts of Vancouver Island, as well as in 
Naikoon Provincial Park on Graham Island and in Washington in the San Juan Islands, 
Fidalgo Island, Whidbey Island and along the northern coast of the Olympic Peninsula 
from Port Townsend to Neah Bay. Models fit to occurrences in Fennoscandia predicted 
the greatest amount of suitable habitat in North America, including the entire coast 
of British Columbia and the southern coast of Alaska from the Prince of Wales Island 
to the Alaska Peninsula in Western North America and in the East suitable habitat is 
found throughout Newfoundland and in spots along the southern and southwestern 
coast of Nova Scotia and on Cape Breton Island. The models fit to occurrences in 
Central/Southern Europe found moderate to low suitability along the western coast of 
British Columbia north to the Alaska Peninsula with a localized region of moderately 
high suitability in the vicinity of Vancouver in Western North America, low predicted 
suitability along the southeastern coast of Newfoundland, moderate to low suitability 
along the southern coast of Nova Scotia, as well as low suitability in the Appalachian 



Winter moth environmental niche 9

Mountains and along the New England coast with Cape Cod and Nantucket Island 
displaying moderately suitable habitat. Models based on the different geographic bins 
highlight varying degrees of suitable habitat in the vicinity of invaded regions of Van-
couver and Vancouver Island; however, the predictions of suitable habitat in Eastern 
North America were generally not as congruous with the invaded areas with very little 
overlap between models.

Figure 2. Model predictions for each spatial bin in the winter moth native range. The column on the 
left shows the winter moth training records (shown as black dots) used to make the predictions for suit-
able habitat in the native range and the column on the right shows the suitable habitat prediction for the 
invaded range. The prediction is shown from blue (being less suitable) to red (being most suitable).
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Analysis of environmental variables

Environmental variables contributed differently for each spatial bin (Table 2). Jack-
knife analyses indicated that the relative contribution of different environmental vari-
ables differed considerably among the three models. Temperature seasonality (BIO 4) 
is the environmental variable that contributed the most to the model fit from occur-
rences from the British Isles. In the model fit to Central/Southern Europe occurrences, 
precipitation during the driest month (BIO 14) contributed the most to this model. 
Mean temperature of the warmest quarter (BIO 10) contributed most to the model fit 
from Fennoscandia occurrences. When averaging model results for variable contribu-
tion across spatial bins, the environmental variables contributing the most influence in 
the native range are BIO 10, 14, 4, 7 and 6.

While there was considerable overlap in the distribution of climatic variables be-
tween the native and invaded ranges, ridgeline plots highlight the variation among 
populations (Fig. 4). These plots highlight the similarities between the New England 

Table 2. Model results for each spatial bin. Percent contribution of environmental variables are in bold 
for those variables that showed the highest model gain in isolation; values highlighted in gray represent the 
most information not present in other variables, and * denotes balance threshold used for classified maps 
which seeks to balance training omission, predicted area and threshold value cloglog threshold.

Winter Moth 
Region

sample 
size

threshold 
values*

AUC % Contribution of Environmental Variables
BIO1 BIO2 BIO3 BIO4 BIO6 BIO7 BIO10 BIO11 BIO14

British Isles 381 0.1432 0.795 1.1 0.6 9.3 42.8 14.5 0.1 29.5 0.4 1.7
Fennoscandia 379 0.1132 0.75 5.1 6 5.6 0.7 16.4 0.3 47.1 18.7 0.1
Interior Europe 224 0.0806 0.816 1.4 0.6 7 2.4 1.1 33.7 6.2 2.1 45.6
Model Averages 2.5 2.4 7.3 15.3 10.7 11.4 27.6 7.1 15.8

Figure 3. Predicted suitable habitat in native range (panel A) and invaded range (panel B) with occur-
rence records (shown as black dots), this reclassified map is based on the averaged prediction for three 
spatial bins in the native range. Probabilities falling below balance threshold values shown in Table 2 for 
each of the three models were classified as “not suitable”. Probabilities < 0.25 were classified as “low suit-
ability”, values > 0.25 but < 0.5 were classified as “medium suitability” and values > 0.5 were considered 
“high suitability”.
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Figure 4. Distribution of bioclimatic variables among occurences within various geographic bins. Gray 
shading represents winter moth records in the native range. Bioclimatic variables found to contribute the 
most for each model area shown here, panel A shows BIO4 (temperature seasonality, standard deviation 
*100), panel B shows BIO6 (minimum temperature of coldest month, °C), panel C shows BIO7 (tem-
perature annual range, °C), pancel D shows BIO10 (mean temperature of warmest quarter, °C), panel E 
shows BIO 11 (mean temperature of coldest quarter, °C) and panel F shows BIO 14 (precipitation of 
driest month, mm).

region and Eastern Canada, with New England showing more variability in BIO 6, 7, 
10 and 11. When comparing Eastern Canada to the native regions, more climatic val-
ues overlap with the Fennoscandia region (BIO 4, 6, 7 and 11) but values of only two 
variables (BIO 10 and 14) overlap with the Central/Southern Europe region. Values of 
climatic variables from the New England region overlap with the distribution of val-
ues in both Fennoscandia and Central/Southern Europe. The Western Canada region 
seems most similar to the British Isles across most climatic variables.

Finally, we used principal components analysis to compare the environmental niche 
at occurrence sites for winter moth in each geographic region (Fig. 5). We analyzed the 
same climatic variables used in the MaxEnt models (BIO 1–4, 6–7, 10–11 and 14). The 
first axis generally corresponded to values of BIO3, BIO4, BIO6, BIO7, BIO11 and 
BIO14 while the second axis was most strongly related to values of BIO10, but also cor-
responded to values of BIO1 and BIO2. The three native range regions and three invaded 
regions were generally segregated in the space defined by these two axes. However, there 
was considerable overlap in the distribution of Central/Southern Europe with western 
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Figure 5. Plot of occurrences in each geographic region based on their values for the first two principal com-
ponent axes derived from values of the nine environmental variables used in the MaxEnt models (Table 1).

North America. There was also some overlap in the distribution of Fennoscandia and 
Central/Southern Europe. Of all invaded regions, the climate in the New England occur-
rence locations were generally the most different from climates within the native range.

Discussion

As expected, each of the three models predicted suitable habitat in portions of Europe 
from which occurrence data were located (Fig. 2). Averaging predictions across all 
three models from the native range (Fig. 3A) produces a predicted European range very 
similar to the range described in Kozhanchikov (1950) (Fig. 1), though the model fails 
to predict suitable habitat in Ukraine and southeastern Russia. However, the lack of 
predicted presence in these areas could have arisen simply from inadequate sampling 
in that region. Winter moth was recently reported from Tunisia (Mannai et al. 2015), 
and genetic analyses suggest this population is native to the region (Andersen et al. 
2019b). Andersen et al. (2019b) also reported winter moth occurrence in southern 
Spain and Italy. Because dates of these observations fall outside of the range of dates 
that were used for the climate data (1970–2010), they were not used in our analysis, 
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though their inclusion could further change the predicted distribution of winter moth 
to include additional Mediterranean locations. The species is also reported as an estab-
lished non-native species in Iceland (Halldórsson et al. 2019).

The average of predictions from the models based on the three native range re-
gions predicts suitable habitat in northwestern Washington, along the coast of Western 
Canada and northward along the coast into Alaska (Fig. 3B). Though winter moth has 
been established in part of this region (i.e. coastal British Columbia) for over 50 years it 
has not spread into most of the predicted region. It is possible that populations in this 
region are constrained from expanding into a climatically suitable region by a biotic fac-
tor, such as the introduced parasitoid Cyzenis albicans (Elkinton et al. 2015; Roland and 
Embree 1995), other natural enemies (Broadley et al. 2019) though there are only a few 
examples where natural enemies are known to constrain the range of an insect species 
(e.g., Elkinton et al. 2006, Parry 2008). Another possibility is that hybridization with 
the native congener, Bruce spanworm (Andersen et al. 2019a) alters the fitness of invad-
ing populations, thereby constraining their range. Predictions of the model appear to 
align with invaded portions of Eastern North America more poorly. The model predicts 
most of the invaded portions of Nova Scotia and New England as low suitability but 
classifies all of Newfoundland and portions of Labrador, areas that have never been 
invaded, as either low or medium suitability. However, it is possible that winter moth 
has never had the opportunity to invade these regions since the Gulf of St. Lawrence 
separates them from the currently invaded area. As stated earlier, this lack of agreement 
in portions of the Eastern North America between the model and winter moth occur-
rence could also be due to hybridization with Bruce spanworm (Havill et al. 2017).

Predictions of suitable habitat based on climatic niche models fit to native occur-
rence records sometimes do not coincide well with actual invaded regions (Broen-
nimann et al. 2007; Jiménez-Valverde et al. 2011; Ørsted and Ørsted 2019; Roura-
Pascual et al. 2006; Steiner et al. 2008), and this may result from factors such as 
species not being in equilibrium with the local climate, release from competitors and 
predators, or sampling and dispersal limitations. Fitzpatrick et al. (2007) found similar 
results of under-predicting the invasive potential of fire ants using native range occur-
rence records and over-predicting the southern boundary of the native range using 
invaded range records, which they concluded was due to fire ants establishing in a 
novel environment similar to their native environment and then expanding into novel 
climatic environments not available in their native range.

It is not unusual for populations of various species to become locally adapted to 
their climate and such local adaptation can result in variation in the potential alien 
range of populations originating from different portions of the native range. In such 
cases, models built with spatially partitioned occurrence records from the native range 
may provide some indication of the geographic origins of invaded populations (Steiner 
et al. 2008). However, without prior knowledge of the extent of local adaptation, such 
reconstruction of the origins of invading populations may not be possible. In our 
analysis, models based on records from all three native regions predict suitability in 
the western Canada invaded range near Vancouver and Victoria (Fig. 2). Analysis of 
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climatic conditions (Fig. 5) indicates considerable overlap in climate between invaded 
areas of Western Canada and all three native regions. Thus, our analysis does not show 
any uniquely high similarity of the invaded portion of Western Canada with any sin-
gle region of Europe. Only two models fit to European regions (Fennoscandia and 
the Central/Southern Europe) show suitable habitat in Nova Scotia. In the ridgeline 
plots (Fig. 4) and the PCA plots (Fig. 5) the records from Eastern Canada fall closest 
to those of Fennoscandia, suggesting this region as a possible origin for the Eastern 
Canada population. The model fit to the Central/Southern Europe occurrence records 
is the only model that predicts suitable habitat in New England, specifically near Cape 
Cod. When plotting climatic conditions using PCA (Fig. 5), the New England records 
appear to occupy a different niche mainly outside of the distribution of records from 
all other regions, though perhaps most similar to the Central/Southern Europe native 
region, supporting the hypothesis of that region being the origin of the invasion. How-
ever, we have no evidence of local adaptation to climate in the winter moth’s native 
range, so such attribution is tentative.

Adaptation to local environments is often observed in species with large geo-
graphical ranges (Osborne and Suárez-Seoane 2002; Peterson and Vargas 1993). Dif-
ferences in predictions from models based on native range occurrence records are 
apparent in AUC scores (Table 2), the variables of greatest contribution (Table 2) 
and the averaged prediction (Fig. 3). Probabilities averaged across the three models 
based on native range regions accurately predicted suitable North American habitat 
in most of the invaded regions, but predicted particularly high habitat suitability in 
invaded portions of the south coast of British Columbia (Fig. 3). However, it also 
predicted large areas of medium to high habitat suitability in uninvaded regions 
north of both the western and eastern invaded regions. It is suggested that distribu-
tion models may be useful in predicting regions where species are likely to invade, 
but may be flawed in predicting subsequent spread in novel regions (Fitzpatrick et 
al. 2007; Loo et al. 2007). Given that many of the large areas of predicted suitable 
habitat are adjacent to currently invaded areas but remain uninvaded, we suspect 
that there may be unknown biotic or abiotic factors (other than the climatic variables 
considered here) that limit North American populations into these northern unin-
vaded areas. However, the identity of such biotic factors remains unknown and we 
encourage further research into the biotic variables that may be limiting the spread 
of winter moth in its invaded regions.

Conclusions

We focused our study on a generalist herbivore, the winter moth, to predict areas in 
North America where this species is likely to invade. We applied MaxEnt, the most 
widely used species distribution and niche modelling algorithm, to predict the poten-
tial range of suitable habitat for winter moth. Preliminary model runs fit to large re-
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gions of winter moth occurrence highlighted a high sampling bias in the United King-
dom. We implemented a simple method of applying spatial filters based on geography 
to reduce sampling bias. Environmental variables were selected based on expectations 
of climatic factors likely to be important to the biology of this species. We chose to use 
environmental variables at a coarse grain (25 km) due to the widespread nature of this 
species and multi-continental areas of interest.

Differentiating the geographic origins for each of the North American winter 
moth ranges based on predictions from the various native geographic bins is possible, 
assuming local adaptation to climate in native populations. Based upon climatic simi-
larity, central Europe appears to be the most likely origin of non-native populations in 
New England. Climatic similarity of the invaded range in Eastern Canada with Fen-
noscandia and Central Europe suggests those regions as likely origins. However, the 
Western Canada invaded range appeared equally similar to all native regions and thus 
there was no evidence regarding possible origins. All of these conclusions regarding 
origin remain speculative and would require confirmation based on genetic similari-
ties. Combining molecular marker studies in ecological niche modelling approaches 
can help advance this field (Scoble and Lowe 2010) and improve future predictions of 
species distribution trajectories. Furthermore, evidence of hybridization with the na-
tive Bruce spanworm has been shown in New England, Oregon, British Columbia and 
Nova Scotia (Andersen et al. 2019a; Elkinton et al. 2010; Havill et al. 2017). If alleles 
from Bruce spanworm can introgress into winter moth, then this hybridization may 
increase winter moth’s ability to adapt to a novel environment, leading to a shift in the 
species’ fundamental niche (Holt and Gaines 1992).

Predicting the potential North American distribution of this invasive species can 
aid managers in proactively selecting survey locations for this destructive moth. Areas 
outside the current species’ distribution, which are highly suitable for winter moth, 
may be prioritized for biosecurity measures to help prevent establishment of this spe-
cies. However, it remains to be confirmed whether winter moth could establish in the 
vast regions predicted to be suitable north of currently invaded areas. Given that winter 
moth is not currently expanding its range into these areas, many of which are adjacent 
to currently invaded regions, there may be unknown biotic factors that limit the range 
of this species in ways that are not currently understood.
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