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Abstract
Identifying emerging invasive species is a priority to implement early preventive and control actions. In 
terms of the number of invasive tree species, forestry represents the second largest pathway of introduc-
tion, with an invasive debt likely existing for alien conifers in Europe. In the early 1900s, a network of 
arboreta was established in southern Belgium to assess the wood production potential of prospective co-
nifer and broadleaved species. Here, we use eight arboreta as natural experiments to identify alien conifers 
presenting invasive behavior. Through systematic sampling, we quantified the natural regeneration of alien 
conifers and recorded local environmental variables. For each species, regeneration density, dispersal dis-
tances, and age structure were analyzed. Generalized mixed effects models were fitted to test the effect of 
planted area and tree-stand type on regeneration. The environmental space occupied by regenerating alien 
conifers was evaluated using principal component analysis. Out of 31 planted alien species, 15 (48%) 
were identified in natural regeneration, of which eight (26%) exhibited important regeneration density 
and dispersal distances. The most invasive species were Tsuga heterophylla and Abies grandis, confirming 
earlier field observations. Both large planted areas and areas planted with alien conifer species increased 
the density of regeneration. Species that had the highest regeneration density tolerated a wide range of 
environmental conditions, including shaded understory, which could lead to the invasion of mature, un-
disturbed forests. This study showed that 17% of the studied alien conifers are potentially invasive because 
they show important regeneration, long-distance dispersal, and, of importance, have already produced off-
spring that have matured and are capable of creating new satellite populations. In conclusion, our results 
provide a guideline for future planting operations, recommending extreme caution when planting these 
species in the temperate forests of Western Europe.
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Introduction

Early identification of emerging invasive species remains one of the most challenging 
issues in invasion science. Following numerous introductions worldwide for ornamen-
tal or production purposes, many tree species have since been recognized as invasive 
(Dodet and Collet 2012; Richardson et al. 2014). Rejmánek (2014) identified 76 tree 
species exhibiting invasive behavior in Europe. Alien woody species have the capac-
ity to modify the structure of invaded ecosystems substantially and cause extensive 
ecological and economical damage (Lamarque et al. 2011; Pyšek 2016). In addition, 
management actions are often taken too late, when the species are already widespread 
and when the management costs of mitigation are prohibitive (Rejmánek and Pitcairn 
2002; van Wilgen and Richardson 2014).

Most problematic tree species in Europe were introduced decades or centuries ago 
(Nyssen et al. 2016) and actively spread by human. In parallel, some dispersed outside 
their cultivation areas and spread via small satellite populations over kilometers (Mack 
2005; Pyšek and Richardson 2012). Delays between the installation of these satellite 
populations and their capacity to reproduce create an important lag phase between the 
introduction of a species in a new area and its invasion of natural habitats (Wangen 
and Webster 2006). In Germany, this lag phase has been estimated to last 170 years 
on average for trees (Kowarik 1995). Future invasive species might, therefore, already 
have been introduced but might not have completed the naturalization–invasion con-
tinuum, yet. This time-delayed invasion is referred to as the invasion debt (Rouget et 
al. 2016). Because introduction events increased during the second half of the 20th 
century, an invasion debt, without doubt, exists in Europe for trees (Essl et al. 2011) 
and must be evaluated to anticipate new invasions (Richardson and Rejmánek 2011).

When the number of introduction events increases, so does the probability of 
naturalization (Heger 2016). Along with the propagule pressure, several functional 
traits can help predict the invasiveness of plant species such as an important SLA, 
growth rate, height, germination rate and fitness (van Kleunen et al. 2010; Lamarque 
et al. 2011; Kutlvašr et al. 2019). For conifers specifically, Richardson and Rejmánek 
(2004) identified a small seed mass, short juvenile period and short intervals between 
large crops as traits associated with invasiveness.

The forestry sector has been introducing alien tree species for centuries in Eu-
rope for timber production, including many conifers from Asia and north America 
(Krumm and Vítková 2016; Gil-Moreno 2018). Species selected for forest plantations 
often originate from regions with a similar climate and present high growth rates, 
two factors contributing to enhanced invasiveness (Richardson and Rejmánek 2004). 
Introduced species are also grown in large-scale plantations using cultivation tech-
niques that enhance survival rates, which lowers the probability of local extinctions 
and creates a massive propagule pressure, increasing the probability of them escaping 
from cultivation (Mack 2005; Křivánek et al. 2006; Pyšek et al. 2014). For example, 
in the Czech Republic, 25% of tree species introduced for forestry have become inva-
sive (Pyšek 2016). Most invasive trees in Europe are light-demanding and have better 
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invasion success in disturbed habitats (Richardson and Rejmánek 2004; Meloni et al. 
2016). However, shade-tolerant species also exhibit invasive behavior once introduced 
to mature forests with low disturbance. For instance, Prunus serotina invaded the un-
dergrowth of forests in western Europe (Hernandez et al. 2016).

Conifers in particular have been introduced to many areas and were widely plant-
ed for timber production, providing substantial opportunity for invasion (Richardson 
and Rejmánek 2004; Broncano et al. 2005). Globally, 36 species of conifers are already 
considered invasive (Richardson and Rejmánek 2004) with alien conifers used in com-
mercial forestry having a significantly higher probability of escaping cultivation com-
pared to species not used for timber production (Essl et al. 2010). Conifers are still not 
often perceived as problematic in Europe because their invasions have been primarily 
documented in the southern hemisphere so far. Yet, studies indicate that alien conifers 
are showing invasive behaviors in Europe, too (Carrillo-Gavilán and Vilà 2010; Essl et 
al. 2010). If the planting of alien species in European forests continues, which is likely 
to happen with the dieback of several native species, it is necessary to distinguish high 
risk species from those that are unlikely to become invasive (Dodet and Collet 2012; 
Heger 2016).

Forest trials and arboreta offer the opportunity to monitor the regeneration dy-
namic of exotic species, acting as sentinel sites of which careful observations could 
facilitate the detection of new invasions (Carrillo-Gavilán and Vilà 2010). These areas 
are also likely to act as sources of propagules and sites of entry for new invasions (Rich-
ardson and Rejmánek 2004; Brundu and Richardson 2016). During the 19th century, 
the Belgian Forest Department started to diversify forests plantations with exotic spe-
cies. A network of 23 forest arboreta was set up between 1890 and 1914 throughout 
the country to monitor the growth and wood production potential of both native and 
alien species, especially ones from Japan and the west coast of North America (Nys-
sen et al. 2016). The arboreta were implemented in various ecological regions to cover 
the diversity of climates and soil types of the country. Every arboretum differed in its 
setup and list of species. Unfortunately, the geographical origin of the seeds remains 
unknown. Recently, a new interest in these arboreta emerged and new inventories were 
performed in 2016 to study the production potential of exotic species in the light of 
climate change (Lhoir and Scholzen 2017). In several of these arboreta, no manage-
ment actions of the understory were implemented over the last 15 years except for 
clearing the pathways. The natural regeneration is therefore mostly untouched.

In this study, we aimed to identify alien conifer species presenting invasive po-
tential. To do so, we systematically quantified the natural regeneration of alien spe-
cies in and around eight selected arboreta. Richardson et al. (2000) defined invasive 
plant species as species producing reproductive offspring in very large numbers and at 
considerable distances from parent plants. By combining information on tree density, 
realized dispersal, and the size structure of the natural regeneration of alien conifers, 
we assessed their invasive potential. Specifically, we evaluated i) the density of natural 
regeneration and the realized dispersal distances from nearest parent trees; ii) whether 
a diverse size structure exists in the natural regeneration of species that regenerated; 
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and iii) the influence of tree-stand type and environmental conditions on the regenera-
tion density of species of highest concern. The correlation between the regeneration 
density and traits linked to invasiveness in previous studies was also assessed.

Material and methods

Study area

The study area covered the Walloon Region in Southern Belgium (49.5966°N to 
50.5705°N latitude, 4.5469°E to 5.8852°E longitude). Eight arboreta, further referred 
to as “sites”, were selected (Fig. 1) based on three criteria: i) at least 15 planted alien co-
nifer species, ii) no management actions in the understory that would have influenced 
the natural regeneration for the last 15 years, and iii) information being available on 
plantation dates.

In this study species were considered alien when they did not naturally occur in 
continental Europe. Sixty-nine percent of the total planted area within the arboreta 
was occupied by alien conifers. Only 8% percent was planted with European conifers 
(mainly Picea abies and Abies alba). The remaining area was planted with native and 
alien broadleaves. All the arboreta consist of forest ecosystems, even though a few small 
clearings with solitary individuals could be found. Thus, the planted area varied greatly 
across species, from 6 m² to 9.1 ha.

Sampling procedures

Field sampling was conducted from April to July 2018. Sampling was systematic and 
covered the entire arboreta and a 100-m buffer, representing a total of 129.5 ha. For 
each arboretum, a 30×30 m grid was applied and a plot was installed at each intersec-
tion, generating 1565 plots. Sampling plots consisted of circles of 2-m radius. Plots 
situated on roads, ponds, private land, and recent forest plantings were excluded along 
with sites with insecure access, such as rocky scree. In total, 1109 plots were sampled in 
forested areas (from 71 to 244 plots per arboretum). In each plot, all individuals of al-
ien conifer species (from young seedlings to adult trees) were recorded and their height 
measured from the ground to the tip of the main stem. They were then assigned to the 
following size classes: class 0 for seedlings between 0 and 0.3 m high, class 1 for sap-
lings between 0.3 m and 1.3 m high (height of measurable diameter at breast height, 
DBH), class 3 for trees higher than 1.3 m but with DBH smaller than 5 cm, class 4 for 
trees with DBH between 5 and 9.9 cm, and so on for every 5 cm increment in DBH.

Identifying seedlings was sometimes challenging and 1878 fir seedlings (including 
850 in only one plot) were excluded from further analyses, as it was not possible to 
determine species with certainty due to their stage of development (probably A. grandis 
or A. alba). The regeneration data for Abies species was therefore underestimated.
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Figure 1. Location and description of the arboreta used in this study (triangle symbols) on a background 
map of tree cover in 2000 (Hansen et al. 2013). For each arboretum, the following characteristics were 
obtained: Year = year of first plantings, Nsp = number of alien conifer species planted in the arboretum, 
MAR = Mean Annual Rainfall between 1981 and 2010 obtained from the Royal Meteorological Institute of 
Belgium (RMI, n.d.), and Alt. = Altitude (m).

We measured environmental variables that influence the settlement of species 
(Dyderski and Jagodziński 2018). The thickness of litter (mm) was measured with 
a ruler at four different places in the plot and the mean was calculated (ranging 
from 0 to 100 mm, median = 20 mm, mean = 24.14 mm). The pH was measured 
with a pH-kit on the field in the center of the plot with a precision of 0.5 units 
(range: 4 to 6.5, median = 4.0, mean = 4.3). Canopy openness was assessed with a 
spherical convex densiometer in four cardinal directions (Forestry Supplier spherical 
crown densiometer, Convex – Model A), and ranged from 0.2 to 90.2 % (median 
= 7.2 %, mean = 11.1 %). Soil drainage was attributed from the plot geographical 
coordinates based on the Digital Soil Map of Wallonia (Bah et al. 2007; Service 
Public de Wallonie 2019). Soils ranged from being excessively well-drained (1) to 
poorly drained (5). Soil drainage classes are defined according to soil morphological 
attributes, more precisely the depth of appearance of gleyic color pattern reflecting 
the presence of stagnant water (Bah et al. 2007). Most soils were excessively well-
drained (median = 1, mean = 1.89). Out of the 1109 prospected plots, the tree-stand 
type was defined: 545 plots were under coniferous stands, 557 plots were under 
broadleaved species (mainly Fagus sylvatica in the buffer zones), and seven plots were 
in open areas (clear-cuts).
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Statistical procedures

A generalized linear mixed effect model (GLMM) with Poisson family was used to 
determine whether there was a significant influence of several variables on the regen-
eration ability of alien species regenerating in at least two sites. The lme4 package was 
used (Bates et al. 2015). The fixed variables were the species, the area of plantation, the 
time since plantation, the distance to the nearest parent trees, and the tree-stand type 
(broadleaves, open areas, European conifers or exotic conifers). The exact number of 
planted trees per species was unknown. We therefore used the area of plantation as a 
proxy for the propagule pressure, as the density of plantation was similar for the co-
niferous species. The site and the plot nested within the site were included as random 
effects. Zero-inflation was tested and not detected. A significant p value threshold was 
set at 0.05. An ANOVA with the “car” package was performed on the regression result 
(Fox and Weisberg 2019).

The two first key determinants of invasiveness that we analyzed were the density of 
regeneration and dispersal distances from the closest parent trees. Regeneration Density 
(RD) was calculated for every species as the mean number of individuals per ha. For 
the capacity of regeneration of different species to be comparable, we calculated the 
Weighted Regeneration Density (WRD) which represented the density of regenerating 
individuals per ha for 1 ha planted of the same species. The WRD was calculated by 
dividing the regeneration density (RD) in each plot by the planted area of species in 
the corresponding arboretum. Because WRD is the density of individuals (indiv.ha-1) 
divided by an area (ha), the unit is indiv.ha-1.haplanted

-1. For each species in each plot, the 
realized dispersal distance (DD) was measured as the distance to the nearest planted 
parent trees with ArcMap v. 10.5.1 (ESRI 2019). For species with at least 10 individu-
als found in the regeneration, boxplots and density plots of the distribution of dispersal 
distances were constructed. As long-distance dispersal events are of major importance 
in the invasion process, the 95th percentile of distribution of distances was represented 
to characterize the tail (Higgins and Richardson 1999; Monty et al. 2013). A “summary 
plot” (Fig. 2B) combining the WRD and 95th percentile of dispersal distances was built 
to characterize the behaviors of species visually regarding these two aspects of invasive-
ness. The plots and analyses were performed using R software (R Core Team 2020).

Richardson et al. (2000) delineated a threshold of 100 m in 50 years as a rule of 
thumb for the dispersal of an alien plant defined as invasive (Richardson and Rejmánek 
2004; Nygaard and Øyen 2017). To compare dispersal observed in the arboreta with 
the threshold provided in this definition, dispersal distances over 50 years (DD50) 
were also calculated. Dispersal distances (DD) for every individual were divided by the 
time since planting minus the age of maturity of the species, and were then multiplied 
by 50 (Eq. 1). Data on the age of maturity were compiled from Kattge et al. (2011), 
Petit et al. (2017), and Forestry Commission Scotland (2015).

DD DD
time since planting ageof maturity

50 50
  	 (Eq. 1)
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Figure 2. Regeneration density and dispersal of alien conifers A boxplots and density plots of dispersal 
distances for species of which at least 10 individuals were recorded. Species are ordered in descending 
order using WRD. The total number of individuals per species (n) is indicated on the right. The mean 
(point) and median (vertical bar) are indicated. The 95th percentile was also represented with a green 
triangle B comparison of species based on mean WRD ± standard error (indiv.ha-1.haplanted

-1) and 95th 
percentile of dispersal distances (m).
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Because an invasive species must be capable of producing mature offspring, the 
size structure of natural regeneration was also observed. A table on size structure was 
constructed for the 10 species with at least 10 measured individuals to examine the 
viability of the natural regeneration.

We investigated whether the most invasive species occupy a wide range of en-
vironmental conditions. We selected species presenting a combination of important 
regeneration density (WRD > 100 indiv.ha-1.haplanted

-1), high dispersal distance (Perc. 
95 > 50 m), and a developed size structure with older individuals (DBH > 10 cm). To 
detect environmental gradients through the measured plots, we performed a principal 
component analysis (PCA) on the environmental matrix containing all plots and the 
four quantitative environmental variables using the ade4 package (Dray and Dufour 
2007). The plots in which the selected species were regenerating were projected in 
the environmental space made by the first two Principal Components. Density lines 
for each species on the two axes of the PCA were drawn, allowing us to delineate the 
environmental space occupied by each species. This method is widely used to estimate 
niche overlap of species (Broennimann et al. 2012).

Finally, data was gathered for two traits associated with invasiveness, namely 
the seed mass and the maximal height of the species, both linked to the capacity to 
disperse at long distances (Richardson and Rejmánek 2004; Kutlvašr et al. 2019). 
Data was compiled from Greene and Johnson (1993), Kattge et al. (2011) and 
Johnson and More (2014). As a Shapiro-Wilk test rejected the normality of our 
variables, we performed a non-parametric Kendall correlation test on these two 
variables related to the Weighted Regeneration Density of all species planted in at 
least half of the arboreta.

Results

In total, 1109 plots were surveyed and 4148 individuals recorded, from small seed-
lings to mature trees over 60 cm of DBH. Due to the size of the sampling plots, we 
never found more than one non-planted tree with a DBH > 20 cm in one plot. These 
individuals belonged to 31 alien conifer species planted between 1898 and 1916 in 
eight arboreta across the Walloon Region (Table 1). For 15 of the planted species, 
no regeneration was detected, while six species had less than 10 individuals recorded 
across all sites. In contrast, some species presented abundant regeneration. The most 
frequent seedlings encountered were Tsuga heterophylla and Abies grandis. The planted 
area, time since planting and distance to the nearest parent trees significantly affected 
the density of regeneration (Table 2). We further used the Weighted Regeneration 
Density (WRD) for between-species comparison.

Tsuga heterophylla was the most represented alien conifer in natural regeneration 
with a WRD of 2794.0 indiv.ha-1.haplanted

-1. This species was followed by Abies grandis 
(WRD = 1493.8 indiv.ha-1.haplanted

-1), Abies nordmanniana (688.3 indiv.ha-1.haplanted
-1) 

and Thuja plicata (637.8 indiv.ha-1.haplanted
-1).
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Table 3. Size class distribution of percentages for species with more than 10 recorded individuals. The 
two first classes are composed of individuals smaller than 1.3 m, for which DBH could not be calculated. 
The other classes were based on DBH intervals (cm). Classes were aggregated to improve readability.

Height (m) DBH (cm) | H > 1.3 m
Species N 0–0.3 0–1.3 < 5 5–10 10–20 20–30 30–50 > 60 
A. grandis 939 53.2 34.6 11.4 0.5 0.2 0 0 0
A. nordmanniana 145 98.6 1.4 0 0 0 0 0 0
A. veitchii 10 30 40 30 0 0 0 0 0
C. lawsoniana 163 39.3 30.7 20.2 8.0 1.2 0 0 0.6
L. kaempferi 227 52.4 31.7 14.5 0 0.4 0.9 0 0
P. menziesii 623 64.5 23.6 7.7 1.9 1.3 0.6 0 0.3
P. sitchensis 15 100 0 0 0 0 0 0 0
P. strobus 9 100 0 0 0 0 0 0 0
T. heterophylla 1732 80.1 9.2 9.5 0.8 0.2 0.1 0.1 0
T. plicata 287 49.1 38.3 10.8 0.7 0.3 0 0.7 0

Table 2. Results of the generalized linear mixed effect model on the count of regeneration. Estimates, 
standard errors, Z values and p values are given for fixed effects.

Variable Estimate Std. Error Z value p value
Species Abies grandis (base)

Abies homolepis -3.17E+00 4.63E-01 -6.85 < 0.001
Abies nordmanniana -5.55E-01 1.17E-01 -4.744 < 0.001

Abies veitchii -2.28E+00 3.20E-01 -7.121 < 0.001
Chamaecyparis lawsoniana -9.86E-01 1.09E-01 -9.078 < 0.001

Larix kaempferi -6.29E-01 1.12E-01 -5.61 < 0.001
Picea sitchensis -9.07E-01 1.85E-01 -4.9 < 0.001
Pinus strobus -2.79E+00 2.82E-01 -9.902 < 0.001

Pseudotsuga menziesii -2.40E+00 1.10E-01 -21.872 < 0.001
Thuja plicata -2.74E-01 9.48E-02 -2.894 0.00381

Tsuga heterophylla 1.84E+00 8.61E-02 21.336 < 0.001
Canopy type Broadleaves (base)

European conifers 1.28E+00 8.64E-02 14.862 < 0.001
Exotic conifers 1.46E+00 7.58E-02 19.259 < 0.001

Open areas 3.61E+00 1.73E-01 20.869 < 0.001
Time since plantation 5.24E-02 3.15E-03 16.638 < 0.001
Surface planted 5.56E-05 3.24E-06 17.179 < 0.001
Distance from plantation -2.16E-02 5.69E-04 -37.956 < 0.001

Ten species had at least 10 seedlings recorded in the natural regeneration. They tended 
to be found close to parent trees (Fig. 2A). However, the seedlings of nine species were 
sometimes detected at >100 m distance from possible parent trees. Four species had a 95th 
percentile for dispersal distance distribution exceeding 100 m. Only Abies nordmanniana 
displayed very low dispersal distances, with all recorded individuals occurring within 6 
m of planted parent trees. The maximal DD exceeded 200 m for the seedlings of Tsuga 
heterophylla, Pseudotsuga menziesii, and Thuja plicata, and even 300 m for Abies grandis.

For the same 10 species with 10 recorded individuals, size structure was used to 
investigate the survival of the regeneration. Ninety-three percent of recorded trees in 
natural regeneration were <1.3 m high. All individuals of P. sitchensis and P. strobus 
were seedlings <0.3 m high (Table 3). However, older trees with a DBH >20 cm were 
detected for C. lawsoniana, P. menziesii, T. plicata, L. kaempferi, and T. heterophylla.
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Though conifers and broadleaved stands were almost equally represented in the 
plot data, alien conifers mainly regenerated under coniferous stands. Specifically, 69% 
of individuals were found under exotic conifers, 18 % under European conifers, 7% in 
clear-cut areas, and only 6% under broadleaved species. Open areas and exotic conifer-
ous stands significantly increased the regeneration count of alien conifers (Table 2).

From the principal component analysis (Fig. 3), two environmental gradients were 
identified and were regulated by soil pH (first Principal Component, PC1) and canopy 
openness (PC2). Wet soil tended to be more acidic. Litter was thicker on acidic plots 
with low light availability. Along these gradients, we projected the presence of six spe-
cies showing a combination of important WRD (>100 indiv.ha-1.haplanted

-1), high dis-
persal distance (perc. 95 > 50 m), and developed size structure (individuals >10 cm 
DBH): Tsuga heterophylla, Abies grandis, Thuja plicata, Chamaecyparis lawsoniana, Lar-
ix kaempferi, and Pseudotsuga menziesii. We found that these species occupied a wide 
range of environmental conditions of the arboreta, including areas with low canopy 
openness. Ecological niches and optimums of presence were rather similar for the six 
species. Abies grandis also occurred on dry and basic soils.

Figure 3. Distribution of alien conifers in the environmental space. Regeneration of six conifers in the 
environmental space made by the two first axes of the PCA. The circle of correlation of four environmental 
variables was projected on the graph: pH, litter thickness, canopy openness (referred to as “Light”), and soil 
drainage class (referred to as “Humidity”). The percentage of explained variance for each Principal Com-
ponent is indicated. Dots represent all plots of the eight arboreta. Black dots are those in which at least one 
of the six species is regenerating. Density lines are drawn for each species along the two axes of the PCA.
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Kendall’s correlation highlighted a significant positive relationship between the 
height of species and their WRD (tau=0.459, z=3.096, p value = 0.002). On the other 
hand, the correlation was not significant for the seed mass (tau = -0.064, z=-0.411, 
p value = 0.681).

Discussion

This study demonstrated that alien conifers naturally regenerated in each arboretum 
that was visited, sometimes in dense patches of seedlings. Of the 31 alien species con-
sidered, 16 were detected regenerating. Eleven species (35%) had a Weighted Regen-
eration Density of more than 100 indiv.ha-1.haplanted

-1. The planted area and the time 
since plantation both had a positive significant effect on the count of regeneration, 
confirming the important influence of the propagule pressure on the regeneration of 
alien species (Lockwood et al. 2009; Pyšek et al. 2009).

Most species primarily regenerated close to parent trees. Long dispersal events of 
over 100 m were detected for nine species. For the prolific species Tsuga heterophylla, 
five percent of regeneration occurred past 124 m, and some even reached 300 m one 
century after planting. Thus, long-distance dispersal events are frequent for this spe-
cies. The 95th percentile of dispersal distance also exceeded 100 m for P. strobus, C. 
lawsoniana, and Abies veitchii. However, the prospected area was limited, with even 
longer distances from the closest parent trees being possible. Our estimates of long-
dispersal distances can therefore be considered conservative. Given the importance of 
long-distance dispersal events in the invasion process, more exhaustive inventories of 
the dispersal potential of these species along transects are required until no individual 
is found for a given distance lapse (Higgins and Richardson 1999).

The weighted regeneration density and the dispersal distance are useful tools for 
monitoring the invasive behavior of alien conifers. However, as invasive species must 
maintain viable populations, the age structure of natural regeneration must be incor-
porated (Wilson et al. 2014). For A. nordmanniana, the high number of individuals 
was attributed to a single large germination event resulting in hundreds of seedlings 
of less than one-year-old being detected in one plot; 142 out of the 145 individuals 
recorded were young seedlings beneath a parent tree, indicating that most regeneration 
is not viable. Pinus strobus and P. sitchensis seedlings were recorded at further distances, 
but only seedlings smaller than 0.3 m were found. In comparison, T. heterophylla, 
P. menziesii, A. grandis, C. lawsoniana, L. kaempferi, and T. plicata also tended to ex-
hibit large germination events beneath parent trees but older trees were also recorded 
(see Table 3), including mature ones. Thus, these species likely have the capacity to 
create new satellite populations.

The question of whether some species cross the benchmark of 100 m dispersal dis-
tance over 50 years was evaluated in this study. Richardson et al.(2000) stated that, for 
a species to be invasive, there must be “clear evidence that it regenerated naturally and 
recruited seedlings more than 100 m from parent plants”. This distance is associated 
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with a time-lapse of 50 years since introduction, and reproductive offspring must be 
found beyond 100 m. These events involve the tail of the dispersal curve, as only a small 
number of long-distance dispersal events producing reproductive offspring is necessary 
to create a new population at a far distance. Individuals of A. grandis, T. heterophylla, 
T. plicata, C. lawsoniana, P. sitchensis, and A. veitchii occurred over a DD50 of 100 m. 
If no mature individuals were measured, individuals taller than 1.3 m were recorded 
for A. grandis and T. heterophylla over the specified distance. It means they survived the 
most vulnerable seedling stage, and could potentially grow to sexual maturity.

Six species exhibited high invasive potential based on the three studied factors: 
T.  heterophylla, A. grandis, T. plicata, C. lawsoniana, L. kaempferi, and P. menziesii. 
They were selected for the environmental analysis. Once projected on the PCA, these 
six species occupied a large proportion of the environmental space encountered at the 
surveyed sites, and displayed generalist behavior across common environmental con-
ditions. Of note, T. heterophylla preferentially regenerated on acidic soils, supporting 
existing knowledge on the ecological preferences of this species (Rooney et al. 2000). 
In comparison, A. grandis tolerated drier soils, which might be beneficial under climate 
change as water stress is likely to become more frequent in the near future (Campioli et 
al. 2009). An important regeneration was recorded in open areas resulting from clear 
cuts. Interestingly, these six species also exhibited shade tolerance during regeneration 
with many individuals occurring in plots with low canopy openness, allowing them to 
spread in closed forest ecosystems. Martin and Marks (2006) demonstrated that inva-
sions of undisturbed forests by shade-tolerant alien species frequently occur but require 
a longer time span than invasions in disturbed habitats, resulting in their invasiveness 
often being underestimated. The combination of a generalist behavior across soil types 
and shade-tolerance could allow these alien conifers to invade mature, undisturbed 
forests. This phenomenon is likely to be facilitated by areas planted with conifers. Con-
sequently, because of the capacity of conifers to transform habitat, increasing the pro-
portion of coniferous stands in wood production forests might accelerate the invasion 
rate of alien conifers (Jagodziński et al. 2015). In 2011, 48 % of the southern Belgium 
forest was planted with conifers (Lecomte 2017). Pseudotsuga menziesii represented 
6 % of the surface inventoried by the Belgian permanent forest inventory in 2011, 
far more than the other species highlighted in our study, and its proportion has in-
creased by 52% since 2001. Larix sp., A. grandis, T. plicata, T. heterophylla and C. law-
soniana together represent a marginal section inventoried surface in 2011, and it is 
difficult to know the real extent of these species in public and private forests (Bauwens 
2020). However, trials with alien species are becoming more frequent (Richardson et 
al. 2014), and exotic conifers are more and more considered as replacement species to 
compensate for the die-back of native productive species. For example, C. lawsoniana 
and T. plicata are selected for the REINFFORCE arboreta network, aiming to collect 
data on the growth of alien species in view of the diversification of European Atlantic 
temperate forests in light of climate change (Orazio et al. 2013).

Our sampling covered a large diversity of environmental conditions met in south-
ern Belgium forests, from calcareous to acidic soils, from forests dominated by native 
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broadleaves to spruce plantations. These species can potentially invade a large propor-
tion of forest lands, especially productive lands planted with conifers and managed 
with clear-cut regimes. However, this study did not cover the full diversity of temperate 
forests in Western Europe, with wider gradients potentially generating greater differ-
ences in the environmental space occupied by each species.

These six highlighted species also exhibit invasive behavior in other European coun-
tries (Rejmánek and Richardson 2003; Richardson and Rejmánek 2004; Broncano et 
al. 2005; Orellana and Raffaele 2010; Forestry Commission Scotland 2015). In western 
Norway, T. heterophylla is considered to be a very invasive conifer due to its high poten-
tial for spreading into neighboring stands and clear cuts (Oyen 2001). Plantations of 
T. heterophylla generate intense shade with few plants being able to live beneath them 
(Harmer et al. 2011). Galoux (1951) demonstrated the high regeneration capacity of 
T. heterophylla in Belgian arboreta, mentioning dense regeneration patches that occur be-
neath seed-bearers and in the neighboring plantations. The same author also stressed the 
abundant seed production and regeneration potential of C. lawsoniana, P. menziesii, and 
A. grandis. As the report was written in the middle of the 20th century, we know that the 
natural regeneration of these species has been ongoing for at least 70 years in the arboreta.

A small seed mass and an important maximal height have been linked to a better 
invasion success of plants in previous studies (Richardson and Rejmánek 2004, van 
Kleunen et al. 2010; Kutlvašr et al. 2019). Both traits are linked with the capacity 
of species to spread at long distances. We did find a positive correlation between the 
maximal height and the Weighted Regeneration Density, but not with the seed mass. 
Dawson et al. (2011) surveyed exotic plants escaping from a tropical botanical garden. 
They concluded that propagule pressure was of greater significance than the functional 
traits in the establishment of alien plants in natural habitats. In a study conducted in 
North America, Pyšek et al. (2015) concluded that the importance of biological traits 
is highly dependent on the invasion stage, and often over-estimated. Further investi-
gation on the role of functional traits on the invasiveness should be led in the local 
conditions of the Belgian arboreta, including the relative growth rate and specific leaf 
area, to test whether similar conclusions can be drawn.

The species exhibiting an important invasive potential in our study could be part 
of the invasion debt sensu Rouget et al. (2016) in Belgian forests. The important lag 
phase might be misleading concerning the potential impact of alien conifers, especially 
T. heterophylla. Twenty percent of the studied species exhibited invasive tendencies 
and they will certainly continue to expand in the future, especially if planting effort 
increases. In comparison, we did not detect any regeneration for half of the studied 
species. If foresters want to diversify forest plantations, they should avoid introduc-
ing species with high invasiveness and prefer native species or low-risk alien species 
(Brundu et al. 2020).

We identified species that were likely to become invasive based on small forest 
trials. The effect of mass plantings was not addressed. However, we demonstrated 
that the size of planted areas positively impacts regeneration density. Previous studies 
showed that propagule pressure has the potential to overwhelm ecological resistance 
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of ecosystems to invasions (Von Holle and Simberloff 2005). Even species considered 
to be dispersal-limited but with strong potential for wood production might cross a 
propagule pressure threshold and become invasive in the future due to high planting 
intensity (Richardson et al. 2004; Jagodziński et al. 2018).

Ennos et al. (2018) demonstrated that using non-native species for wood produc-
tion and the diversification of forests presents great ecological and economic risks, 
potentially to the detriment of native tree species and associated biodiversity. Based 
on experience in countries with longer histories of using alien conifers, along with 
objectives to prevent further ecological damage, risk analyses of introduced alien coni-
fers must be performed by monitoring old forest trials and arboreta (Richardson and 
Rejmánek 2004).

Conclusion

Given the observed natural regeneration and dispersal of alien conifers in the old forest 
arboreta of southern Belgium, we recommend exercising caution when planting them 
in western temperate Europe. Half of the studied species regenerated, with almost 20% 
of these exhibiting an invasive behavior. Species showing the highest risk of being inva-
sive were T. heterophylla and A. grandis, and to a lesser extent C. lawsoniana, T. plicata, 
L. kaempferi, and P. menziesii. Species with more limited dispersal capacities or a lesser 
proportion of mature trees, such as A. nordmanniana, P. strobus, P. sitchensis, and A. 
veitchii, could become of concern if planted at large scales. The results show that forest 
arboreta act as entry points for invasive species, especially now that more forestry trials 
are being set up to compensate for the die-off of native productive species. Thorough 
monitoring of alien conifers introduced for wood production is therefore needed to 
take early action for control and avoidance of larger introductions.
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