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Abstract
The establishment of marine non-indigenous species (NIS) in new locations can degrade environmental, 
socio-cultural, and economic values. Vessels arriving from international waters are the main pathway for 
the entry of marine NIS, via exposure due to ballast water discharge (hereafter, ballast discharge) and 
biofouling. We developed a systematic statistical likelihood-based methodology to investigate port-level 
marine NIS propagule pressure from ballast discharge and biofouling exposure using a combination of 
techniques, namely k-Nearest-Neighbour and random forest algorithms. Vessel characteristics and travel 
patterns were assessed as candidate predictors. For the ballast discharge analysis, the predictors used for 
model building were vessel type, dead weight tonnage, and the port of first arrival; the predictors used 
for the biofouling analysis were days since last antifouling paint, mean vessel speed, dead weight tonnage, 
and hull niche area. Propagule pressure for both pathways was calculated at a voyage, port and annual 
level, which were used to establish the relative entry score for each port. The model was applied to a 
case study for New Zealand. Biosecurity New Zealand has commissioned targeted marine surveillance at 
selected ports since 2002 to enable early detection of newly arrived marine NIS (Marine High-Risk Site 
Surveillance, MHRSS). The reported methodology was used to compare contemporary entry likelihoods 
between New Zealand ports. The results suggested that Tauranga now receives the highest volume of 
discharged ballast water and has the second most biofouling exposure compared to all other New Zealand 
ports. Auckland was predicted to receive the highest biofouling mass and was ranked tenth for ballast 
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discharge exposure. Lyttelton, Napier, and New Plymouth also had a high relative ranking for these two 
pathways. The outputs from this study will inform the refinement of the MHRSS programme, facilitating 
continued early detection and cost-effective management to support New Zealand’s wider marine bios-
ecurity system. More generally, this paper develops an approach for using statistical models to estimate 
relative likelihoods of entry of marine NIS.
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Introduction

Marine ecosystems are vulnerable to the introduction of non-indigenous species (NIS) 
through human activities such as international trade and transportation, which have 
increased greatly in the last fifty years (Hulme 2009). International marine shipping, 
which contributes to 90% of world trade, is a leading source of introduction of many 
marine NIS (Hewitt et al. 2009; Hulme 2009; International Maritime Organization 
[IMO] 2017). Marine NIS have the potential to impact upon environmental, socio-
cultural, and economic values. For example, in 1991, the outbreak of a virulent strain 
of cholera infected one million people and claimed thousands of lives and was linked 
to the discharge of ballast water in Peru (McCarthy and Khambaty 1994; Tauxe et al. 
1995; Kolar and Lodge 2001). Therefore, it is essential to describe existing patterns of 
invasion and forecast future invasions for improving management of marine ecosys-
tems (Drake and Lodge 2004).

The two main pathways associated with the spread of marine NIS via shipping are 
ballast water discharge (hereafter, ballast discharge) and biofouling exposure (Hewitt 
and Campbell 2010). Until recently, ballast water was thought to be the major con-
tributor to marine NIS spread; however, the biofouling pathway has been assessed to 
be as great, if not a higher threat (Cordell et al. 2009; Hewitt and Campbell 2010; 
Bell et al. 2011). In New Zealand, it has been estimated that between 69–90% of 
established marine NIS are likely to have been introduced via biofouling, with ballast 
discharge being the second most important pathway (Cranfield et al. 1998; Kospartov 
et al. 2008). International and national policies have been implemented to minimise 
the spread of marine NIS through ballast water and biofouling, and New Zealand is 
currently the only country to have enacted mandatory biofouling regulations (Geor-
giades et al. 2020).

The use of predictive models can be a powerful tool for helping to understand the 
dynamics of invasion pathways through the exploration of factors that influence prop-
agule pressure (Verling et al. 2005). Variables that influence propagule pressure can be 
classified as voyage properties (e.g., duration, source region, visited locations, arrival 
date or season), vessel characteristics (e.g., size, ballast water capacity, niche area type 
and extent) and behaviours (e.g., compliance with regulations), all of which influence 
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the likelihood of entry for both pathways (McGee et al. 2006; Lacoursière-Roussel et 
al. 2012; Minton et al. 2015).

Many studies have identified high-risk invasion pathways (Cope et al. 2015), glob-
al hotspots of invasions (Drake and Lodge 2004), possible source ports of invasion 
(Paini and Yemshanov 2012), and high-risk vessels arriving from international ports 
(Clarke et al. 2017). However, few studies have established how information about ves-
sel traffic patterns and vessel characteristics for ballast water and biofouling pathways 
can be integrated to identify ports most likely to receive marine NIS. We demonstrate 
the use of an integrative modelling approach using the data available from New Zea-
land, to investigate propagule pressure differences among ports.

The Marine High-Risk Site Surveillance (MHRSS) Programme was established in 
2002 to facilitate the early detection of selected marine NIS that were considered likely 
to impact on New Zealand’s marine values. Currently, 11 ports and marinas are con-
sidered ‘high-risk’ for marine NIS entry and establishment (Seaward et al. 2015). The 
original site selection was based on proxy indicators using data from 1999, e.g., vessel 
visits and port habitat types (see Inglis 2001a, b, Inglis et al. 2006). Since the inception 
of this programme, changes in vessel movement patterns and behaviours are likely, and 
re-evaluation is appropriate. At the time of the study, the allocation of surveillance ef-
fort was identical to all ports except at Auckland, at which it was doubled.

The aim of this research is to develop a systematic statistical likelihood-based ap-
proach for predicting marine invasions. We investigate whether the ports and marinas 
currently surveyed as part of the MHRSS programme are most likely the locations 
where marine NIS will enter New Zealand with internationally arriving vessels via the 
ballast and biofouling pathways. We then assess whether the allocation of survey effort 
at each location should be modified based on these findings.

Methods

Datasets were provided by Biosecurity New Zealand (BNZ), the government agency 
responsible for New Zealand’s biosecurity system. The main challenge in predicting the 
hazard presented by ballast discharge for the current case study is that contemporary 
ballast discharge records were not available. BNZ collected ballast discharge intention 
declaration data up until 2008, but risk analysts were concerned that the pattern and 
volume of transits may have changed substantially, hence the need to connect the his-
torical and contemporary data described below.

The challenge in predicting the hazard due to biofouling exposure is to construct 
a model that permits prediction of the biofouling level based on easily captured vessel 
statistics. As described below, we used data from a historical biofouling study to con-
struct this model.

For vessel ballast water and biofouling pathways we used two sets of historical and 
contemporary data as described below.
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Historical data

Ballast discharge

A historical dataset of biofouling and ballast water declarations was compiled for 
vessels that visited New Zealand during 1998 to 2008, which contained records for 
15,745 voyages by 2,607 vessels. This dataset contained information on the vessel’s 
physical and voyage characteristics, and ballast discharge volumes detailed for each 
ballast tank. This dataset was examined to determine: (i) unique voyage and port 
visits by vessels and volumes of ballast discharged per vessel at each port, and (ii) 
management of the ballast and intention to discharge in New Zealand. The response 
variables used for ballast water modelling were the port of discharge and discharge 
volume per port. Vessel type, ballast capacity or Deadweight Tonnage (DWT), arrival 
port, and the intention of discharge were candidate predictor variables for estimat-
ing how much ballast water was discharged at each port. Arrival port is the first 
New Zealand port a vessel encounters in a voyage. Many voyages declared more 
than one port of ballast discharge, i.e., each journey has a first arrival port, but the 
vessel might visit other ports as part of the same voyage and discharge ballast. For 
example, a vessel’s voyage to New Zealand may include visits to Whangarei, Tauranga 
and Auckland, with intended ballast discharge at Whangarei and Tauranga but not 
Auckland; here the recorded intended ballast discharge volumes for the first two 
ports (i.e., those at which ballast was discharged) were tallied. The historical data 
contained 15,628 unique voyages out of which 1,196 journeys had more than one 
port of ballast discharge. Out of 17,703 stops at ports of arrival, there were 6,287 
incidents of reported ballast discharge. Note that the discharge may have presented 
an acceptable biosecurity risk, if the discharge were carried out in a regulated way, for 
example after open-ocean exchange. ‘Intent to discharge’ was not used as a predictor 
because there was poor agreement between the declared intention to discharge and 
the reported discharge volume. More information about this agreement can be found 
in the Suppl. material 1: Table S1 in the SM summarises the description of the vari-
ables used in the historical dataset for the ballast water analysis.

Biofouling

Biofouling on the submerged surfaces of 322 international merchant vessels was sam-
pled by Inglis et al. (2010) upon arrival to New Zealand. This included 166 container 
and general cargo vessels, 49 passenger vessels, 37 roll-on roll-off (RoRo) / car carriers, 
31 bulk carriers, 21refrigerated cargo ships, 12 tankers and 6 vessels of other miscel-
laneous class types. A standardised sampling design was used to collect samples of 
biofouling from the hull and external niche area surfaces of the vessels. A questionnaire 
administered to the vessel’s master provided information on the design features of the 
vessel, hull maintenance record (e.g., age and type of antifouling coatings), and recent 
voyage history.
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Data on the presence and mass of biofouling from 314 of the merchant vessels and 
associated data from the questionnaire were used to build the biofouling model. As the 
contemporary arrival data to which the model would predict contained only limited 
information on the recent voyage history of the vessels, the models were fitted using 
variables from the historic study that could be easily matched to contemporary infor-
mation collected by BNZ. They included design specifications of the vessel (e.g., class 
type, design speed), vessel age, niche area, the age of antifouling coatings on arrival, 
and the maximum periods of inactivity (lay-up) in any location. For biofouling data, 
the main two response variables were biomass of biofouling per square metre and pres-
ence/absence of any biofouling. The latter had a value of 1 whenever biofouling was 
present, and zero if there were no biofouling. This binary variable was used to correct 
mass; that is, whenever mass had a zero value, but biofouling was present, a correction 
value of 0.001 g was added to the mass. Predictor variables in the historical biofouling 
data were the age of antifouling coating, vessel type, vessel age, vessel speed, season, 
niche, and maximum duration of lay-up. The description of the variables and their 
ranges are given in the Suppl. material 1: Table S2.

Data on contemporary shipping

Contemporary data sourced from BNZ on international vessel arrivals into New Zea-
land were a combination of two data sets. The first included data on vessel arrivals be-
tween January 2015 to December 2017, and was derived from mandatory pre-arrival 
documentation provided by the vessel master to BNZ (Ministry for Primary Industries 
2019). These data were originally collected to aid in the tactical evaluation of bios-
ecurity risks. The second data set included port-by-port arrivals by merchant vessels, 
including the ports of first arrival to New Zealand and coastwise voyages for the year 
2016. These data were purchased from the Lloyd’s Maritime Intelligence Unit, and 
used to verify the completeness of the BNZ data. Details of all data preparation for the 
analysis are provided in the Suppl. material 1 – part 1. The same contemporary data 
were used for both ballast water and biofouling analysis, but a different set of predic-
tors were selected for each.

Model construction

The ballast discharge model was used to predict the total annual volume of ballast 
water discharged at each New Zealand port. The contemporary data lacked ballast 
discharge information, so we had to predict it from historical data. The models were 
built to predict ballast discharge at each port as a function of arrival port and ship 
characteristics.

The historical biofouling data from Inglis et al. (2010) were used to fit a model that 
predicted the presence and biomass of biofouling on vessels that arrived in New Zealand 
between 2015 and 2017. The total mass of biofouling on a vessel was estimated as the 
product of its estimated mass per unit niche area (i.e., density) and the total niche area 
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for the vessel. A model was constructed from historical data to predict the presence and 
per unit area of biofouling in niche areas of the vessels as a function of vessel characteris-
tics such as the age of antifouling coatings on the vessel, and the frequency and duration 
of lay-up periods. As most biofouling occurs in niche areas (Inglis et al. 2010; Davidson 
et al. 2016), the total mass of biofouling on a vessel was estimated by calculating the to-
tal area of niches on each vessel using relationships developed by Moser et al. (2016) and 
scaling the predicted density for the entire vessel hull area. This model was then applied 
to the contemporary vessel data to predict port-level exposure to biofouling. Additional 
details about the modelling approach can be found in the Suppl. material 1 – part 3.

Ballast water

This section reports construction of an algorithm to predict the volume (and at which 
ports) a vessel will discharge their ballast water, given their vessel-level characteristics 
(e.g., type, DWT, Ballast capacity) and journey-level information. The complex aspect 
of this endeavour is that after entering New Zealand’s waters, each vessel may visit 
more than one port, with the possibility of discharging ballast water at one or more of 
the ports visited. As a result of discharging at one or more ports, the variable of interest 
is structured as a vector for each vessel, so any algorithms investigated are required to 
take this vector-based outcome into account.

k-Nearest-Neighbours

An algorithm based on k-Nearest Neighbours (KNN, Fix and Hodges 1951) was de-
veloped to simultaneously predict which ports a vessel may visit and the subsequent 
discharge amount. For each journey in the contemporary data, this algorithm finds the 
k most similar journeys in the historical data based on some measure of similarity and 
uses the average ballast discharge from those journeys as a prediction of the discharge 
for the contemporary journey.

Denoted by X the n × p matrix of data used for model training (the training data 
is the historical data as described in the Suppl. material 1 – part 1), where n is the 
number of voyages (observations) and p is the number of fields (predictors) in the data; 
let Y be the corresponding n × v matrix of discharge volumes, where v is the number 
of ports. Let zj be a vector of length p, containing the predictors for the jth voyage in 
the contemporary data, for which we wish to predict ballast discharge,ŷj, at each of the 
ports. KNN algorithm as applied to ballast discharge data can be explained as below:

1.	 Repeat for j = 1,…,m, where m is the number of voyages in the contemporary 
data for which we wish to predict:

a)	 Calculate D(zj, X), the distance from zj to each of the rows xi, i = 1, …, n 
in the training matrix X.

b)	 Find S, the set of the kth smallest distance in D (if there are ties, keep these 
in the set).
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c)	 Calculate
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i.e., the predicted discharge values are the average of the kth nearest neighbours discharges.
2.	 For each year t in the contemporary data:

a)	 Find St[v], the set of all voyages arriving at port v during year t.
b)	 Calculate
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i.e., B̂t[v] is the total predicted ballast discharge in port v during year t.
The KNN algorithm does not work for categorical predictors, as there is no defined 

distance metric for mixtures of categorical and numerical predictors. To allow for categor-
ical predictors (such as vessel type), the KNN algorithm was implemented on numerical 
predictor matrices created within each level of a category. For example, to use vessel type 
and dead weight tonnage as predictors, the algorithm was run on the matrix X formed 
from the subset of voyages from each level of vessel type until all predictions were made.

The historical data were structured such that each row of the dataset represented a 
single event in a vessel’s voyage. For example, one row may consist of the arrival event, 
with no discharge, and the next row a discharge event for the same vessel at a different 
port. It was important that if a vessel did not discharge in a port, then this non-event was 
not recorded. In order to have a complete vector response for each voyage, it was reasona-
bly assumed that non-events resulted in a 0 discharge being recorded. An example of this 
transformation is provided in Suppl. material 1: Fig. S2 in the Suppl. material 1 – part 4.

Choice of predictors and number of nearest neighbours, k

The choice of which predictors to include, and how many nearest neighbours to use 
in the prediction was made using cross-validation. Given our prediction target of total 
ballast water volume at a port within a year, our cross-validation strategy was to leave 
out a single year at a time to form the testing set, with the remaining year’s data form-
ing the training set. A schematic of cross-validation used for KNN analysis is given in 
Suppl. material 1: Fig. S3 in the Suppl. material 1 – part 4.

Model validation

In order to provide an unbiased validation of the chosen model and help understand its 
operational characteristics, the data were split into two: model-fitting data comprising 
all voyages within the years 1999 to 2005 (inclusive) and validation data comprising 
all voyages within the years 2006 and 2007.
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Prediction errors

To estimate the prediction error from the KNN algorithm, a bootstrap procedure was 
used. Voyages were randomly sampled with replacement from the training data, and 
the KNN algorithm fit on each bootstrap sample. The standard deviation (and mean/
median) of total discharge within a port was calculated from 100 bootstrap resampled 
values of total discharge.

Biofouling

Model selection

Several different modeling approaches were applied to the historical data in the pro-
cess of model selection to estimate biofouling biomass for the contemporary dataset 
(Suppl. material 1 – part 6). Random forests provided the best model to obtain the pre-
diction (Breiman 2001; Liaw and Wiener 2002; see Hastie et al. 2017 for a discussion) 
and we used quantile-regression random forests to obtain the distribution to represent 
the prediction uncertainty (Meinshausen 2017).

Random forests analysis was applied to the data because the algorithm is indiffer-
ent to the conditional distribution of the response variable, meaning that no special 
provisions need to be taken to allow for the heavy zero inflation. The random forest 
model explained about 15% of the variation in the biofouling mass, which was bet-
ter than its alternatives. Quantile random forests was used to obtain journey-specific 
prediction distributions which could then be aggregated to obtain overall levels of 
uncertainty for the exposure of each port to biofouling for each year.

Model building for biofouling biomass

The likelihood of entry via biofouling was assumed to be proportional to the biofoul-
ing exposure at each port, each year. For a single vessel, this was assumed to be the 
predicted total mass of biofouling in the niche areas of the vessel (not including the 
hull as a niche area). However, the contemporary data did not contain biofouling mass 
measurements for each vessel but did contain measurements for each vessel’s niche area 
in metres squared. To handle this, two models were constructed: a model to predict 
the biofouling mass per vessel as a function of several variables, and another model to 
predict the quantiles of the prediction distribution. The random forest model used the 
following continuous predictor variables: dry weight tonnage, days since last antifoul-
ing paint, niche area, and mean speed. Vessel type was assessed and was excluded from 
the models because the improvement of fit was insufficient.

To predict the density of biofouling for each vessel in the contemporary data, miss-
ing data were first handled using multivariate imputation via chained equations (Bu-
uren and Groothuis-Oudshoorn 2010) to make five complete variant datasets, which 
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were analysed in parallel. The random forest biofouling presence model was applied to 
each contemporary vessel movement, which gives an estimate of the quantum of bio-
fouling. Then the prediction distributions were estimated using the quantile random 
forest. Once the density of biomass present on each vessel was predicted, it was multi-
plied by the niche area of the vessel to give a total niche biomass prediction, which was 
then used in the allocation procedure.

Ranking ports by likelihood of marine NIS entry

We calculated an entry likelihood score from ballast discharge and biofouling propagule 
pressure on a scale of 0 (lowest) to 1 (highest). That is, the mean values from the estimat-
ed prediction distribution were scaled to each of the respective discharge and biofouling 
amounts by the maximum amount within the ports, which sets the scaled score to 1 for 
the port with the highest amount. We did not subtract the smallest so that no port was al-
located a weight of 0. These scores were then averaged to give the relative entry likelihood 
score for each port. Weights were then calculated in proportion to these relative scores. 
The weights sum to 1 across the 15 ports and could, therefore, be used to allocate total sur-
veillance effort among ports relative to the likelihood of entry of marine NIS for each port.

Results

Ballast discharge

We fitted the KNN model using all combinations of vessel type and arrival port as cate-
gorical variables, DWT or date of arrival as the nearest neighbour matrix, and k = 1,3,5 
nearest neighbours to the model data set. Results of the cross-validation in Table 5 
(Suppl. material 1 – part 7) showed that the KNN that grouped by both port of arrival 
and vessel type included DWT for calculating nearest neighbours, and using five near-
est neighbours performed the best, i.e., this combination of distance variables had the 
smallest RMSE value (88732.8 for k = 5). A dataset of years 2006–2007 was used to test 
KNN validation by comparing the mean of predicted ballast water values (as predicted 
by the bootstrap) with the true values (Suppl. material 1: Fig. S18 in Suppl. material 1 
– part 8). Based on the results of the KNN validation summarised in this Fig., the KNN 
models performed reasonably well for prediction; the observations follow the 1:1 line 
and double standard deviation lines for the port-level discharge mostly cross the line.

Predicting contemporary ballast discharge

The best model arising from the cross-validation fitting study of the KNN algorithm as 
selected was used to predict contemporary ballast discharge per port. For this application, 
the full historical data (1999–2007) were used for training. Fig. 1 shows the mean and 10% 
and 90% quantiles as estimated by bootstrapping. Tauranga, with an average of 2255.73 ± 
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292.86 kilotons, had the highest predicted average ballast discharge across the years 2015–
2017, followed by New Plymouth (1025.22 ± 231.89), Lyttelton (907.44 ± 129.39), Ta-
haroa (831.84 ± 242.45), Napier (812.54 ± 191.47), Whangarei (624.92 ± 165.55), and 
Gisborne (575.33 ± 160.74). For a port receiving a high number of vessels, Auckland had 
a low volume of discharge by comparison. Following an increase in 2016, the predicted bal-
last discharge decreased in 2017 in almost all ports (Fig. 1). The lowest predicted values for 
ballast discharge were observed in Milford Sound, Picton and Bluff, and zero for Westport.

Biofouling

Based on the Random Forest statistics, e.g., Gini impurity index and MSE (mean 
squared error), important variables for biofouling prediction were days since last an-
tifouling paint, niche area, vessel speed and DWT. Variability in the modelling was 
accounted for by predicting quantiles of the vessel biomass (Fig. 2).

As summarised in Table 1, Auckland had the highest average predicted biofouling 
exposure, followed by Tauranga, Lyttelton, Napier, and Wellington. Ports with very low 
biofouling exposure were Whangarei, Gisborne, Picton, and Taharoa. Fig. 3 shows the 
variation of the actual biofouling and the prediction distribution, which demonstrates 
that the model is not of particularly good quality. That is, some of the data points, par-
ticularly for higher values of biofouling mass, are well below the 1:1 line, indicating an 
underestimation of higher values, which reflects regression to the mean.

Figure 1. Predicted ballast water discharge (kilotonnes) per port for the contemporary data. Data are the 
mean and standard deviation of total volume as estimated by bootstrapping. The figure displays the mean 
and 10% and 90% quantiles of the bootstrap distribution.



Likelihood of entry of marine non-indigenous species to New Zealand ports 193

Ballast water and biofouling exposure per port

Finally, for each arrival port, the biofouling exposure can be compared with the ballast dis-
charge (Fig. 4). This shows that the arrival ports of Auckland and Tauranga have the highest 
exposure for biofouling, and Tauranga has the highest volume of ballast discharge (i.e., high-
est entry likelihoods). The next cluster of ports comprises New Plymouth, which had the 
second highest ballast discharge but received much lower biofouling exposure than many 
other ports; Wellington, which had low volume of ballast discharge and high exposure to bi-
ofouling; and Lyttelton and Napier, which seemed to have relatively high levels of exposure 
to both ballast discharge and biofouling. The balance of ports have relatively low exposure.

Based on the relative likelihood of entry of marine NIS via these two path-
ways, the highest surveillance weights would be allocated to the ports Tauranga and 

Figure 2. Predicted vessel biofouling exposure (tonnes) to each arrival port for the contemporary data 
(2015, 2016, 2017 and combined years). The median (dot) and 10% and 90% quantiles (upper and lower 
lines) of the prediction distribution are displayed.

Table 1. Predicted biofouling exposure and 10–90% quantile for the ports with the highest average 
biofouling mass as illustrated in Fig. 2.

Port Predicted biofouling exposure (tonnes/year) 10–90% quantile (tonnes/year)
Auckland 70 58.4 – 86.02
Tauranga 65.37 49.62 – 79.82
Lyttelton 30.83 23.11 – 39.1
Napier 26.48 18.81 – 36.22
Wellington 25.81 15.44 – 37.48
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Figure 3. The variation of the actual biofouling mass (g/m2) versus the predicted biofouling mass (g/
m2). The vertical grey lines represent the 10% and 90% quantiles of predicted values. The diagonal line 
shows the 1:1 relationship.

Figure 4. Predicted vessel ballast water discharge (kilotonnes) vs biofouling exposure (tonnes) per port. 
The figure displays the mean and 10% and 90% quantiles of the bootstrap distribution for ballast water 
and from the prediction distribution for biofouling. The values are the average of ballast water and bio-
fouling mass over years 2015 – 2017.
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Auckland, followed by Lyttelton, Napier, New Plymouth, and Wellington, whereas 
the lowest surveillance effort would be allocated to the ports Gisborne, Timaru, 
Bluff, and Picton.

Priority ports for marine surveillance

The relative entry likelihood weighting, calculated from the mean values of the es-
timated prediction distributions and scaled for the respective ballast discharge and 
biofouling exposure, is provided in Table 2. Based on these results, the ports with 

Table 2. Relative entry likelihood for each port for ballast water discharge and biofouling exposure, and 
relative surveillance effort allocation weights.

Port Total ballast discharge 
(kilotonnes)

Total biofouling exposure 
(tonnes)

Relative 
entry 

likelihood

Relative allocation 
weight

Tauranga 2,205,593 64.73 1 0.23
Auckland 307,807 69.53 0.59 0.13
Lyttelton 904,603 30.07 0.43 0.1
Napier 823,096 26.19 0.38 0.09
New Plymouth 1,042,600 9.80 0.31 0.07
Wellington 288,243 25.49 0.25 0.06
Nelson 534,271 16.38 0.24 0.06
Dunedin 530,440 14.45 0.23 0.05
Whangarei 609,168 8.51 0.2 0.05
Taharoa 842,739 0.54 0.2 0.05
Gisborne 581,713 4.03 0.16 0.04
Timaru 247,965 12.82 0.15 0.04
Bluff 213,933 9.05 0.11 0.03
Picton 208,567 2.76 0.06 0.02

higher likelihood of marine NIS entry were Tauranga, Auckland, Lyttelton, Napier, 
and New Plymouth with scores of 1, 0.59, 0.43, 0.38, and 0.31, respectively. Tau-
ranga was assigned a relative allocation weight of 0.23, followed by Auckland (0.13), 
Lyttelton (0.1), and Napier (0.09). New Plymouth, Wellington, Nelson, Duned-
in, Whangarei, and Taharoa were ranked next based on their surveillance alloca-
tion weights. Gisborne, Timaru, Bluff, and Picton had the lowest relative weighted 
scores. There was a positive relationship between the number of vessel arrivals per 
port and the entry likelihood scores (r2 = 0.75). Ports where the entry likelihood 
is greater than might be predicted by numbers of arrivals alone include Tauranga, 
Napier, New Plymouth and Taharoa, where there are relatively large proportions of 
bulk carriers or tankers. Ports where entry likelihood seems lower include Auckland 
and Wellington. To investigate the variability of the ranking of sites, this allocation 
was also performed to each of the bootstrap replicates. Fig. 5 shows the histogram 
of ranks from this procedure.
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Discussion

We developed a systematic methodology that can be used to adapt surveillance effort 
over time in response to changes in propagule pressure. The methods can be applied to 
port systems in other countries or to other invasion pathways. Summarised at the high-
est level, the study applied model-based estimation to activity data, where the activity 
data were contemporary transits of marine vessels. In the case of ballast discharge, the 
model-based estimation was non-parametric, using KNN to identify the vessel transit 
trajectories that were most similar to the contemporary records on the available subset 
of fields. In a sense, the contemporary transit data reweighted the historical ballast 
discharge records, and the significant changes in activity observed in Tauranga were 
reflected in its enhanced likelihood of marine NIS entry via this pathway. For the 
biofouling exposure, we predicted vessel-level biofouling using random forests, and its 
uncertainty using quantile random forests, and computed port exposure directly from 
the contemporary transit records. Key in each case was the availability of contemporary 
activity data that could be used to calibrate the relative likelihood of marine NIS entry 
experienced by each port. In this system as in many others, the likelihood of entry 
scales smoothly with the exposure.

Based on this study, Tauranga had the highest predicted joint ballast discharge vol-
ume and exposure to biofouling. This is despite Auckland receiving the highest num-
ber of vessel visits in almost all years (Suppl. material 1: Fig. S5). It has previously been 
shown that total number of visits alone is not a reliable predictor of propagule pressure 
(Verling et al. 2005), and our results reinforce this outcome. Although the busiest 

Figure 5. Rank histograms for surveillance allocation, as estimated by bootstrap and prediction simulation.
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ports – such as Auckland, Tauranga, and Lyttelton – had the highest relative exposure 
to ballast discharge and biofouling, other highly visited ports such as Wellington and 
Nelson had lower levels when compared to less visited ports such as Napier and New 
Plymouth. Several studies have relied on vessel visits as a proxy for propagule pressure 
in ballast water (Drake and Lodge 2004) and this might be a source of error due to sig-
nificant differences between vessel types and their characterises and operational profiles 
(Minton et al. 2005; Verling et al. 2005). For example, Carney et al. (2017) reported 
that the increase in annual ballast discharge was not because of an increase in total ves-
sel arrival numbers, but instead resulted from an increase in bulk carrier traffic. Thus, 
it seems that considering vessel type, size and discharge capacity will provide a better 
predicator of ballast discharge volume for the vessel.

Higher entry likelihood at Tauranga is likely related to this port having the high-
est number of discharge declarations, vessel visits and DWT. Tauranga was also visited 
with the highest number of bulk vessels, which along with containers had the highest 
discharge counts in the historical data. Considering that bulk vessels had the highest 
DWT and discharge volume among the vessel types, it is not surprising that their size 
and discharge volume contributed to their higher likelihood of marine NIS entry in 
Tauranga. Increase in ballast discharge in Tauranga, which reached its peak in 2016, 
was accompanied by the highest number of bulk carriers and containers visiting this 
port in 2016. Predicted ballast discharges were higher in 2016 mainly because the total 
annual number of vessels visiting New Zealand ports was highest in 2016; all the ves-
sel types except for general cargo visited New Zealand’s ports more in 2016 and had a 
higher DWT in this year. The total number of visits decreased in 2017, along with the 
numbers of visits by almost all vessel types including those with high DWT. This can 
explain the decrease in ballast water predicted values in 2017.

In several studies, ballast discharge volume and frequency have been reported to 
vary significantly by ship type (Verling et al. 2005; Minton et al. 2015), with the larg-
est volumes of ballast water from bulkers and tankers (McGee et al. 2006; Cordell et al. 
2009; Carney et al. 2017). Vessel type was consistently suggested as a reliable predictor 
of biofouling, as different vessels vary in the size and number of niche areas (Lacour-
sière-Roussel et al. 2012; Lane et al. 2018). Based on the results of cross-validation and 
model fit statistics, vessel type was not included as a variable in our models, but the 
variation may have been more efficiently represented by the included predictors, e.g., 
DWT. In this study, niche area and days since antifouling paint were the two most 
important variables explaining the variation of biofouling mass. Time since last clean-
ing and last antifouling paint also played a role in the increased likelihood of entry of 
marine NIS from biofouling (Floerl and Inglis 2005; Drake and Lodge 2007; Lacour-
sière-Roussel et al. 2012). Biofouling mass on the vessel might also vary depending on 
the other factors such as vessel speed as lower speeds and inactivity appear to give the 
fouling communities opportunity to settle (Minchin and Gollasch 2003).

As noted earlier, unregulated ballast discharge is an important pathway for marine 
NIS spread. Consequently, information about ballast discharge quantities, along with 
detailed information on ballast discharge mitigation measures such as open-ocean ex-
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change, would be valuable for risk analysis. This information would enable reporting of 
potentially risky discharge events, which could then be used to inform the ports that were 
most in need of surveillance. However, such records were not available for the contem-
porary data, and only intention-to-discharge records were available in the historical data.

This study predicted the amount of discharged ballast water and biofouling mass 
per port at the voyage level, and the ports where the discharge occurred. The predicted 
values of discharged ballast water and biofouling mass were used to review New Zea-
land’s marine biosecurity surveillance programme by estimating the relative likelihood 
of entry of marine NIS at each port and allocating surveillance effort between ports 
accordingly. Some studies have aimed to identify hot spots of marine NIS exchange via 
ballast water (Drake and Lodge, 2004), or possible source ports and countries for the 
arrival of a specific NIS by analysing international shipping networks and generating 
pathway simulations to help optimise shipping container inspection protocols (Paini 
and Yemshanov 2012). This study differs from previous studies in that a combination 
of information about vessel traffic patterns and vessel characteristics was used to identi-
fy ports likely to receive marine NIS, whilst including a measure of propagule pressure 
associated with each vessel arrival. Other studies tried to prioritise locations for track-
ing biological invasions, but used less exhaustive analyses and were more descriptive to 
illustrate the utility of the database (e.g., Molnar et al. 2008) or to prioritise the path-
ways that pose the greatest threat (e.g., McGee et al. 2006). In comparison, we devel-
oped a systematic methodology that can be used to adapt surveillance effort over time 
in response to changing vessel profiles and can be applied to ports in other countries or 
globally. The techniques used in this study allowed us to consider multiple discharges 
during a voyage for ballast water analysis, and to account for biofouling presence and 
mass while predicting voyage-level, port-level, and annual propagule pressure.

This study has limitations. We did not incorporate other factors that might miti-
gate or exacerbate entry likelihood, such as the efficiency of ballast water exchange or 
treatment in removing marine NIS (Minton et al. 2005), or the influence of transit 
time on ballast water organism survival prior to discharge (Cordell et al. 2009). Our 
analysis gave equal weighting to the importance of ballast water and biofouling as 
pathways for the introduction of marine NIS. Although numerous studies have at-
tempted to summarise the relative importance of these and other pathways for the 
introduction of marine NIS based on records of established species, such studies typi-
cally include many historical (e.g., pre-1950) introduction records, hence the numbers 
of marine NIS attributed to each pathway may not reflect contemporary patterns of 
transport. Moreover, many marine NIS can be transported within ballast water and as 
biofouling, making it difficult to distinguish the relative contribution of each pathway 
(Fofonoff et al. 2003).

Drake and Lodge (2007) estimated the abundance of fouling organisms on a 
typical merchant vessel to be between 5.85 × 105 and 6.19 × 106 individuals, which 
is within the range of abundance of organisms contained in untreated ballast dis-
charges (2.63 × 105 – 9.83 × 106 individuals; Minton et al. (2005)). While these 
gross metrics of per vessel propagule pressure are comparable, it is unclear whether 
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organisms are equally likely to be introduced, or if introductions by each pathway 
have the same likelihood of survival and establishment. In the absence of this in-
formation the standardised pathway weightings seem appropriate. In aligning sur-
veillance with contemporary patterns of international shipping it is also important 
to consider other influences on the allocation of survey effort. For example, our 
analysis did not include port arrivals by small (“recreational”) craft, which also carry 
burdens of biofouling (Floerl et al. 2008; Lane et al. 2018). More than 600 small 
marine craft enter New Zealand waters each year, with around two thirds of these 
clearing Customs in Opua. Other significant places of first arrival for small craft are 
Auckland, Whangarei and Picton which, with Opua, account for more than 90% 
of annual arrivals. We also did not consider the relationship between surveillance 
effort and detection probability at the scale of the port, which can be influenced by 
the size and dispersion of habitats suitable for establishment by marine NIS. For ex-
ample, the total area of Waitematā Harbour, Auckland, is at least 3 × that of Nelson 
Harbour and contains the Port of Auckland and 11 marinas for small craft which are 
distributed from the mouth to the head of the harbour (Morrisey et al. 2012). Gain-
ing equitable survey sensitivity across the surveyed ports requires a proportionately 
larger sample effort in larger harbours.

Specific policy outcomes regarding surveillance are beyond the scope of this pa-
per. Nonetheless, the change in the pattern of vessel transits between the early 2000’s 
and the contemporary data show that the propagule pressure has sharply increased in 
Tauranga relative to the other ports, and is now similar to that of Auckland. Further, 
Napier is subject to similar levels of propagule pressure to locations currently included 
in the MHRSS programme.

Conclusions

We developed a systematic methodology that can be used to adapt surveillance effort 
over time in response to changing vessel arrival patterns and types, and that can be 
applied to maritime ports in other countries or to other invasion pathways. Aligning 
survey effort with marine NIS entry likelihoods will increase the likelihood of early 
detection and improve management outcomes. The systematic likelihood-based meth-
odology designed here is flexible and can be applied to surveillance programmes at any 
time if changes to propagule pressure occur.
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