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Abstract
Biological invasions are one of the major challenges to the restoration of post-mining sites. Most post-
mining sites are under technical reclamation with only a few left to spontaneous vegetation processes. 
Therefore, we know little about alien plant species on spontaneously-vegetated post-coal mine heaps and 
how native community characteristics predict their establishment. To fill the knowledge gap, we aimed 
to determine the drivers of alien species colonisation on post-coal mine heaps. Specifically, we asked: (i) 
Which alien species are the most successful on post-coal mine heaps and why? (ii) What are the drivers 
of alien species richness and cover, and how are they affected by the native community? (iii) What does it 
mean for predicting threats from alien species and management? We recorded vascular plant species and 
their abundance across 400 plots on post-coal mine heaps in Upper Silesia, Poland. We calculated plant 
community taxonomic and functional characteristics and, using mixed-effects models, we estimated pre-
dictors of alien species richness and cover. We found 65 alien species on post-coal mine heaps, comprising 
20.4% of all recorded species, including 36 neophytes and 29 archaeophytes. Amongst them – Erigeron 
canadensis, Solidago gigantea, Solidago canadensis, Erigeron annuus and Impatiens parviflora – were the most 
frequent on the studied heaps. We showed that native functional richness significantly predicts alien spe-
cies richness and cover. Similarly, native community-weighted mean (CWM) seed mass and plant height 
predict alien species cover. However, CWM of specific leaf area for native species marginally predicts alien 
species richness. We showed that alien species cover decreases with native species cover. Our findings re-
vealed the ecological significance of niche-filling and the biotic acceptance hypotheses on post-coal mine 
heaps. We demonstrated how exploring native community characteristics can help in understanding the 
invasibility and management of post-industrial vegetation.
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Introduction

Invasion by alien species severely threatens the biodiversity and function of trans-
formed ecosystems and may interfere with ecosystem restoration and establishment 
efforts after disturbance, for example, due to high competitiveness. In natural and 
semi-natural ecosystems invaded by alien plants, several attempts have been made to 
explain the relationships between the alien species richness and cover and the increase 
in native species functional richness. The niche-filling hypothesis states that niches 
are available for alien species in a community of functionally-rich native species. In 
contrast, in a functionally-poor community, the niches are fewer and already occupied 
by native species (Thuiller et al. 2010; Loiola et al. 2018). Alien species can benefit 
from the unoccupied niches; therefore, filling them makes the functional space more 
saturated (Loiola et al. 2018). The biotic resistance theory posits that species-rich com-
munities are more resistant to alien species invasion than species-poor ones (Jeschke 
2014; Beaury et al. 2020). The biotic resistance theory contradicts the biotic accept-
ance hypothesis (Stohlgren et al. 2006; Fridley et al. 2007), which predicts that higher 
diversity of native species supports diverse alien species establishment.

Alien species invasion represents one of the major challenges in restoration ecology 
(Weidlich et al. 2020). Numerous studies have recorded the spontaneous establish-
ment of alien plant species on different types of heaps, for example, in India (open 
cast coal field) (Ekka and Behera 2011), Indonesia (Hapsari et al. 2020) and Nigeria 
(Nsa et al. 2021). In temperate ecosystems, there are similar examples. Tomlinson et 
al. (2008) showed that alien plant species constituted approximately 40% of the flora 
on abandoned quarry sites in southern Ontario, Canada. In the Czech Republic, the 
mean proportion of alien plant species between 1945 and 2005 was 39.3% in differ-
ent types of anthropogenic vegetation including post-coal mine heaps (Simonová and 
Lososová 2008). Together, some of these studies identified noxious alien plant species 
that hinder the restoration of heaps.

In habitats that have been established due to human activity, such as post-excava-
tion mineral sites, the relationship between alien species occurrence and native plant 
community functional richness is unknown. Understanding the relationship between 
the alien and native species and communities has become increasingly important as 
ecosystems transformed by mining occupy approximately 1% of the global land area 
(Maus et al. 2022). Mining modifies the landscape, thereby creating novel ecosystems 
with profound implications for biodiversity conservation, ecosystem functioning and 
restoration (Hobbs et al. 2009). Part of mining, specifically coal mine sites, are heaps 
where overburdened materials are dumped (Prach 2013). The post-coal mining heaps 
contain sedimentary rock extracted together with coal and are characterised by extreme 
abiotic conditions, thus creating challenges for land management and restoration. In 
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these challenging habitat conditions, plant communities with non-analogous species 
composition are assembled as a result of spontaneous colonisation. Nevertheless, for 
a long time, restoration ecologists and land managers have aimed to restore species 
composition on mineral material of post-coal mine heaps towards that of undisturbed 
vegetation (Bradshaw 2000).

Possible mechanisms for alien species establishment in man-made habitats have 
been proposed by Prach and Walker (2011). Specifically, the use of functional diversity 
indices can help elucidate ecosystem processes and biotic interactions that drive alien 
species colonisation (Dyderski and Jagodziński 2019a). The ability of native communi-
ties to limit alien species invasion could be mediated by functional diversity (Feng et al. 
2019). Furthermore, functionally diverse communities are less susceptible to alien spe-
cies invasion (Hooper and Dukes 2010). When multiple species traits are considered, 
functional diversity can help predict the invasibility of native communities, as well as 
being the main mechanism directing the rate of invasibility (Catford et al. 2019; Feng 
et al. 2019). Although most studies conclude that functional diversity increases the re-
sistance of communities to invasion (Fargione et al. 2003; Fargione and Tilman 2005; 
Larson et al. 2013; Wei et al. 2015), in contrast, a few have shown that a highly func-
tionally diverse native community can increase alien species invasion success (Renault 
et al. 2022). The increased number of alien species could be linked to high resources 
produced by native plant species in the resident community (Renault et al. 2022).

Most post-industrial sites are under active technical reclamation with only a few 
left to spontaneous vegetation processes (Bradshaw 2000; Chaturvedi and Singh 2017; 
Šebelíková et al. 2019). Therefore, only limited evidence allows us to test whether alien 
plant species on spontaneously-vegetated heaps follow known patterns (Ballesteros et 
al. 2021). Similarly, the use of functional diversity metrics to determine alien species 
invasion success is very recent (Renault et al. 2022); to our knowledge, there is a lack 
of empirical study in the context of spontaneous vegetation development on post-
industrial sites, including the mineral post-coal mine habitats. Thus, our study aims to 
determine the drivers of alien species colonisation on post-coal mine heaps, therefore, 
providing a theoretical understanding of the structure and function of plant com-
munities in these novel ecosystems. Specifically, we addressed the following questions: 
(1) Which alien species are the most successful on post-coal mine heaps and why? 
(2) What are the factors affecting alien species richness and cover, and how are they 
affected by the native community? (3) What does it mean for predicting threats from 
alien species and management?

Methods

Description of the study site

The study was conducted in Upper Silesia – the region has a long tradition of coal 
mining (since the 18th century). The long-lasting black coal mining activities have re-
sulted in large areas of post-coal mine sites, occupying > 2000 ha (Szczepańska 1987). 
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These mineral material sites built of carboniferous sediments on Pre-Cambrian crystal-
line rocks have shaped the anthropogenic landscape. The carboniferous mudstone and 
sandstone complexes are mixed with numerous coal elements. These stone complexes 
are also overlain by Triassic carbonate formations (Cabała et al. 2004). Plant species 
colonisation and the development of vegetation communities on coal mine heaps is 
difficult because the mineral material habitats have extreme abiotic conditions, for ex-
ample, large variations in daily temperatures (often reaching 50 °C) and humidity, sub-
strate instability, lack of soil, susceptibility to erosion, dusting, thermal and chemical 
activities. In addition to abiotic parameters, the post-coal mine heap is characterised by 
extreme biotic conditions, such as soil organic matter deficiency in the substrate and 
lack of seed bank (Woźniak et al. 2021). These habitat characteristics impact the ability 
of diaspores to establish and the development of vegetation communities and mosaic 
of ecosystems on post-industrial sites (Bradshaw 2000; Prach et al. 2013), particularly 
on mineral oligotrophic coal mine heap sites (Woźniak 2010).

Study design and vegetation sampling

From the list of 112 post-mining sites with available information about age, size, vege-
tation and reclamation method (Woźniak 2010), we excluded 31 sites differing in size, 
land-use patterns in the neighbourhood, thermal activity or were artificially shaped. 
As these factors could significantly alter observed patterns of vegetation assembly, we 
decided to exclude them, focusing on the most frequent cases. Although this decreased 
the total variance of abiotic conditions, it allowed us to make conclusions about trends 
not affected by noise connected with the abovementioned treatments. From the re-
maining 81 sites, we randomly selected 60 sites proportionally to post-coal mine heap 
size, age and surrounding land cover. Amongst them, we distinguished five types of 
land cover and randomly selected plots proportionally to cover class (Jagodziński et al., 
in prep.). Using the results of this investigation, we randomly selected 80 vegetation 
patches, proportionally to the cover of each land-use class which forms an area of at 
least 150 × 150 m. Within each randomly selected patch, we established five plots in a 
cross design (i.e. one central plot and four subplots at distances of 50 m in the north, 
south, east and west directions; 400 plots in total; Fig. 1). Each plot was circular with 
a 3 m radius (28.3 m2). In all plots, we registered vascular plant species and their abun-
dances using the Londo scale (Londo 1976). Alien species status (i.e. casual, naturalised 
and invasive) and historical-ecological groups (i.e. archaeophytes and neophytes) were 
determined using the database of alien plants in Poland (Tokarska-Guzik et al. 2012).

Functional traits

These traits include a broad category of plant life history, leaf morphology and reproduc-
tive characteristics (Table 1). Traits data were acquired from LEDA (Kleyer et al. 2008), 
BIEN (Maitner et al. 2018), Pladias (Chytrý et al. 2021) and BioFlor (Klotz et al. 2002).

The functional approach was based on a set of traits known to have significant eco-
logical implications for plant species competitive ability, dispersal, establishment and 
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stress tolerance on post-coal mine heaps. Specific leaf area (SLA) and leaf dry-matter 
content (LDMC) serve as proxies of species status on the leaf economic spectrum 
(Perez-Harguindeguy et al. 2016). High LDMC and low SLA unveil a conservative 
approach with resistance to the harsh abiotic stress in the mineral material of post-coal 
mine heaps, while low LDMC and high SLA infer the increased importance of an ac-
quisitive strategy by plant species (Perez-Harguindeguy et al. 2016). Plant height (PH) 

Table 1. Functional traits and life history characteristics of plant species recorded within the study plots.

Plant traits Code Data type Unit Value (Min., Max.) Missing data (%)
Leaf dry matter content LDMC Numeric mg g-1 0.3, 509.5 18.9
Seed mass SM Numeric mg g-1 0.001, 13737.6 5.5
Specific leaf area SLA Numeric mm2 mg-1 51.8, 899.1 12.1
Plant height PH Numeric m 0.033, 60.0 1.1
Light EIV EIV-L Ordinal Ordinal 1, 9 1.9
Moisture EIV EIV-M Ordinal Ordinal 2, 11 13.2
Temperature EIV EIV-T Ordinal Ordinal 2, 8 27.1
Nitrogen EIV EIV-N Ordinal Ordinal 1, 9 12.3
Soil reaction EIV EIV-SR Ordinal Ordinal 1, 9 30.9
Start of flowering Flow_start Ordinal Month 1, 9 1.1
Duration of flowering Flow_dur Ordinal Month 1, 12 1.1
Insect pollinated Poll-ins Binary 4.1
Wind pollinated Poll-wind Binary 4.1
Self-pollinated Poll-self Binary 4.1
Alien status Alien_stat Categorical 2 categories 0.0
Life form Life_form Categorical 8 categories 0.0

Figure 1. Scheme of study design – distribution of study plots within land use types. Additional plots are 
in north, south, east and west directions at 50 m from the central plot.
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was used as an approximation of plant competitive competence (Westoby et al. 2002). 
The seed mass (SM) helps to explain the colonisation and establishment ability of plant 
species – with low seed mass for species found on post-coal mine heaps of younger age 
and vice versa (Piekarska-Stachowiak et al. 2014).

Trait imputation

We used a random forest algorithm in combination with phylogenetic trait imputa-
tion to fill gaps in the trait data and not omit missing data (Penone et al. 2014). To 
strengthen the predictive power of the model, we used the missForest::misForest() func-
tion (Stekhoven 2022) and phylogenetic eigenvectors (Diniz‐Filho et al. 1998) derived 
from the PVR::PVPdecomp() function (Santos 2018). The variation explained by the 
first 15 phylogenetic eigenvectors was 59.3% of phylogenetic distances. The Normal-
ised Root Mean Square Error (NRMSE) of imputed traits was 1.011 for continuous 
predictors and the proportion of falsely classified categorical variables was 0.079. In 
general, trait imputation has been shown to decrease bias when compared to removing 
species with missing trait data (Penone et al. 2014).

Community-Weighted Means (CWMs) and Functional Diversity (FD) indices

To understand important aspects of the functional community structure, we combined 
plant trait data with species cover to calculate the community-weighted means (CWMs) 
and the functional diversity indices. We calculated the CWMs of seed mass, plant height 
and specific leaf area using the FD::FunctComp() function (Laliberté et al. 2014). These 
traits influence plant germination and dispersal ability, life form and growth rate. We 
log-transformed numeric trait data to attain normality before the calculation of CWMs. 
Using the FD::dbFD() function (Laliberté et al. 2014), we quantified functional diversity 
indices: functional richness and functional dispersion. These indices show the distribu-
tion of plant species traits within the community hyperspace (Laliberté and Legendre 
2010). Functional richness (FRich) quantifies the trait space of plant functional types 
present in a community. Communities with a low functional richness of native plants 
are expected to be more invasible by competitive alien species (Renault et al. 2022). 
This implies that niche differentiation within the native community will be low, thereby 
resulting in trait convergence and competition (Czortek et al. 2021). Functional disper-
sion (FDis) measures distances between functional traits carried by plant species to the 
centroid (centre point) in the community hypervolume (Villéger et al. 2008). High func-
tional dispersion delineates strong functional differences between native species in a com-
munity – thus suggesting co-occurrence rather than competition (Carroll et al. 2011).

Data analyses

All analyses were performed in R software (version 4.2.1) (R Core Team 2022). Using 
the base::scale() function, we standardised and scaled explanatory variables before 
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analyses. Such an approach helps to reduce biases linked with uneven ranges amongst 
these variables and it ensures that the estimated coefficients are all on the same scale, 
making it easier to compare the effect sizes.

To assess the drivers of alien species richness and cover in post-coal mine heaps, we 
built a generalised linear mixed effect model (GLMM) and linear mixed effect model 
(LMM), assuming a Poisson distribution with a log linking function and Gaussian 
distribution, respectively. In these models, heap age and native community character-
istics (i.e. native species richness, native species cover, native CWM SLA, native CWM 
SM, native CWM PH, native FDis and native FRich) were predictors. In our models, 
blocks of plots nested within the heap are random variables to account for the spatial 
dependence of the study design. We used the ‘lme4’ package (Bates et al. 2015) to de-
velop GLMM and LMM, and the ‘lmerTest’ package (Kuznetsova et al. 2017) for the 
p-values of GLMMs. To extract marginal responses of models, i.e. predicted response 
excluding random effects and assuming a constant (mean) value of all other predictors, 
we use the ggeffects::ggpredict() function (Lüdecke 2018).

Prior to model development, we assessed correlations between variables using vari-
ance inflation factors (VIF). Hypothesised predictors with high collinearity (VIF > 5) 
were not included in the global model. The final model for alien species richness and 
abundance on post-coal mine heaps was: glmer(formula = alien.rich ~ native.rich + na-
tive.FRich + native.CWM.SLA + (1 |heap/block)); lmer(formula = alien.abundance ~ na-
tive.abundance + native.FRich + native.CWM.H + native.CWM.SM + (1|heap/block)), 
where alien.rich = alien species richness, native.rich = native species richness, alien.abun-
dance = alien species cover, native.abundance = native species cover, native.FRich = Func-
tional richness of native species, native.CWM.SLA = native community-weighted means 
of specific leaf area, native.CWM.H = native community-weighted means of plant 
height, native.CWM.SM = native community-weighted means of seed mass.

To identify models with variables that best predict alien species richness and cover 
on post-coal mine heaps, we used a model selection in the MuMIn::dredge() function 
(Bartoń 2022) ranked, based on corrected Akaike Information Criterion, corrected for 
small sample size (AICc). For each model, we reported the AICc of the global model 
(i.e. all hypothesised predictors), final model and null (intercept and random effect 
only) model, to show how the final model differs from them. We ensured that the Pois-
son GLMM was not biased by overdispersion using the performance::check_overdisper-
sion() function (Lüdecke et al. 2021).

Results

Amongst the 318 plant species recorded in our dataset, we found 253 (79.6%) native 
species, 36 (11.3%) neophytes (four casual, 15 naturalised and 17 invasive) and 29 
(9.1%) archaeophytes (two casual, 24 naturalised and three invasive). Amongst the 
65 recorded alien species, 15 occurred in more than 11 plots and 17 had a percentage 
mean > 9.0% (Table 2; Suppl. material 1).
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Amongst all tested predictors for alien species richness in post-coal mine heaps, the 
best-fit model was explained by the native functional richness and SLA CWM (AICc glob-
al model = 618.08; AICc null model = 663.40; AICc best model = 599.66). Predicted alien 
species richness increased by 0.47 per unit change in native functional richness (P < 0.001) 
(Table 3; Fig. 2A). A marginal increase of 0.06 predicted alien species richness was recorded 
with native CWM SLA (P = 0.052) (Table 3; Fig. 2B). We found a non-significant decrease 
of 0.03 predicted alien species richness with native species richness (P = 0.26) (Table 3).

For alien species cover, the most parsimonious model contained native species cov-
er, functional richness, CWM plant height and CWM seed mass as predictors (AICc 
global model = 1641.71; AICc null model = 1660.71; AICc best model = 1641.18). 
Predicted alien species cover decreased by 7.01 with native cover (LMM, χ2 = 16.56, 
P < 0.001) (Table 3; Fig. 3A). Conversely, an increase of 4.54 predicted alien species 
cover was found with native functional richness (LMM, χ2 = 9.91, P < 0.01) (Table 3; 
Fig. 3B). A similar trend occurred in a predicted increase in alien species cover by 6.98 
and 5.87 with native CWM seed mass and native CWM plant height, respectively 
(CWM seed mass LMM, χ2 = 5.22, P < 0.05; CWM plant height LMM, χ2 = 4.63, 
P < 0.05) (Table 3; Fig. 3C, D).

Table 2. Frequency and cover of the 15 most common alien species occurring on post-coal mine heaps. 
Status and historical-ecological group – Neo (Neophyte), Ar (Archaeophytes) source: Tokarska-Guzik et 
al. (2012). For the full list, see Suppl. material 1.

Species Native region Life form Status Frequency 
(number of plots)

Mean 
cover (%)

Pollination 
agent

Dispersal 
agent

Erigeron 
canadensis

N America Therophyte Invasive (Neo) 108 2.5 Self Anemochory 
& Autochory

Solidago gigantea N America Hemicryptophyte Invasive (Neo) 87 14.25 Insect Anemochory 
& Autochory

Solidago 
canadensis

N America Hemicryptophyte Invasive (Neo) 77 7.29 Insect Anemochory 
& Autochory

Erigeron annuus N America Therophyte Invasive (Neo) 67 5.24 Insect Anemochory 
& Autochory

Impatiens 
parviflora

Asia Therophyte Invasive (Neo) 40 14.7 Insect, Self Autochory

Tripleurospermum 
inodorum

Anecophytes Therophyte Naturalized (Ar) 38 2.21 Insect Autochory

Echinochloa 
crus-galli

Anecophytes Therophyte Invasive (Ar) 30 1.97 Wind, Self Autochory

Silene latifolia S Europe, 
Mediterranean, 

Asia

Hemicryptophyte Naturalized (Ar) 27 1.74 Insect Autochory

Hordeum jubatum N America Hemicryptophyte Naturalized (Neo) 18 3.06 Self Autochory
Kali turgidum Europe, 

Mediterranean
Therophyte Casual (Neo) 16 1.75 Wind, 

Insect, Self
Autochory

Lepidium ruderale Mediterranean Therophyte Naturalized (Ar) 15 1.53 Self Autochory
Pastinaca sativa Mediterranean Hemicryptophyte Naturalized (Ar) 14 2.29 Insect Autochory
Setaria viridis Mediterranean Therophyte Invasive (Ar) 13 9.62 Wind Autochory & 

Epizoochory
Diplotaxis muralis Mediterranean Therophyte Invasive (Neo) 12 2.33 Insect, Self Autochory
Prunus serotina N America Phanerophyte Invasive (Neo) 12 16.33 Wind, 

Insect
Autochory & 
Endozoochory
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Discussion

Which alien species are the most successful on post-coal mine heaps and why?

We found that alien plant species accounted for 20.4% of all recorded vascular plants 
(65 out of 318 taxa) on heaps, with 55% of those being neophytes and the rest being 
archaeophytes. A higher proportion of native species is well-known from other post-
industrial sites (e.g. old Solvay process heaps (Cohn et al. 2001); mining sites in the 
Czech Republic in central Europe (Prach et al. 2013); and the central German lignite 
mining district (Tischew et al. 2014)). The moderately high establishment of neophytes 
in our study is an indication that heaps are still at an early age and have relatively stable 
plant cover. Post-industrial sites left to spontaneous succession are usually characterised 

Table 3. Estimates of the most parsimonious GLMM and LMM predicting native cover, native richness, 
functional richness, community-weighted means (CWMs) of specific leaf area (SLA), plant height and 
seed mass on the alien richness and cover, respectively.

Predictor Estimate SE Z/t value* P
Alien species richness

Intercept 0.57 0.08 6.74 <0.001
Native species richness -0.08 0.08 -1.12 0.26
Native functional richness 0.51 0.07 7.79 <0.001
Native CWM of SLA 0.15 0.08 1.94 0.052

Alien species cover
Intercept 9.71 4.44 2.19 0.083
Native functional richness 4.54 1.44 3.15 <0.01
Native species cover -7.02 1.72 -4.07 <0.001
Native CWM of plant height 2.94 1.37 2.15 0.033
Native CWM of seed mass 3.49 1.53 2.28 0.023

*Z value = GLMM; t value = LMM.

Figure 2. Alien species richness, estimated using GLMM, assuming the Poisson distribution of the 
dependent variable (Table 3) as a function of A native functional richness (Native FRich) B native com-
munity weighted means of specific leaf area (Native CWM SLA). Dots represent observed values, line 
– marginal prediction and grey area – 95% confidence interval of prediction.



Quadri A. Anibaba et al.  /  NeoBiota 85: 1–22 (2023)10

by low frequencies of alien species (Prach and Pyšek 1999; Prach et al. 2013; Tischew 
et al. 2014). However, in our study site, we found a high frequency of important alien 
species – Erigeron canadensis, Solidago gigantea and Solidago canadensis. In the Czech 
Republic, Ballesteros et al. (2021) recorded 129 archaeophytes and 67 neophytes in 
spontaneously established vegetation and the most invaded successional series were the 
deforested landscapes. Similarly, Simonová and Lososová (2008) found a high propor-
tion of archaeophytes in a large variety of man-made habitats in the Czech Republic. 

Figure 3. Alien species cover, estimated using LMM assuming a Gaussian distribution of the response 
variable (Table 3) as a function of A native cover B native functional richness (Native FRich) C native 
community weighted means seed mass (Native CWM SM) D native community weighted means plant 
height (Native CWM PH). Dots represent measured values, lines – marginal prediction and grey area – 
95% confidence interval of prediction.
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The high proportion of archaeophytes in their study was due to the inclusion of less 
urbanised areas that were characterised by the presence of archaeophytes.

Erigeron canadensis, Solidago gigantea, Solidago canadensis, Erigeron annuus and 
Impatiens parviflora were the most frequent alien plant species in the studied plots on 
heap sites. Most important were S. gigantea and I. parviflora which had a high mean 
percentage cover. Solidago gigantea was found mainly in open habitats characterised 
by high light intensity and heap sites with early-successional communities. The spe-
cies germinates by seed and rhizomes (Weber and Jakobs 2005). Clonal growth al-
lows S. gigantea to form dense stands, promoting its abundance (Jakobs et al. 2004). 
Szymura et al. (2018) demonstrated the high competitiveness of S. gigantea in a re-
placement series experiment and found that S. gigantea outcompetes native grasses. 
Solidago gigantea in post-agricultural lands reaches the highest cover in sites with low 
functional richness (Czortek et al. 2020). Our study revealed the opposite pattern, as 
we focused on the cover of all alien species and we studied ecosystems with a lower 
level of interspecific competition. Two Erigeron species (E. canadensis and E. annuus) 
were frequent; however, they reached a low cover in the study plots. Both species are 
widespread in many ecosystem types on the mineral material of post-coal mine heap 
sites. This is because both E. canadensis and E. annuus plants produce 10 000–50 000 
seeds annually that are wind-dispersed over long distances (Stratton 1989; Dauer et 
al. 2007; Pacanoski 2017). However, as ruderal species, they are more frequent in the 
initial phases of heap succession.

We found Impatiens parviflora in forest habitats within gaps in the herbaceous layer 
and heap sites at the late-successional stage. I. parviflora colonises sites with high native 
species richness (Chmura and Sierka 2006). Forest management practices, for exam-
ple, canopy openings (gaps), propagule pressure from I. parviflora in plant communi-
ties around forests, increasing light availability and partial understorey disturbance 
promote invasion of I. parviflora in forests (Eliáš 1999). In general, the invasive ability 
of S. gigantea and I. parviflora is promoted through their physiological adaptation to 
water stress (Nolf et al. 2014; Quinet et al. 2015) and, for I. parviflora, through a high 
level of SLA intraspecific variability (Paź-Dyderska et al. 2020).

Prunus serotina was relatively less frequent on heap sites; however, in plots where 
it occurred, it had a high cover, thus, giving the species a high mean percent cover. 
Prunus serotina is a woody plant that encroaches on intermediate stages of succes-
sion due to its persistence in the shade and quick growth after disturbance (Clos-
set-Kopp et al. 2007; Vanhellemont et al. 2009; Dyderski and Jagodziński 2019b; 
Jagodziński et al. 2019; Esch and Kobe 2021). Prunus serotina produces large num-
bers of seeds per year (Van den Tweel and Eijsackers 1986) with a major quantity 
of seeds present within 5 m of the parent tree and further dispersal of the seeds is 
done by frugivorous birds (Pairon et al. 2006; Deckers et al. 2008). As birds perch 
in a mature tree stand, the regurgitated P. serotina seeds are defecated and emptied as 
faeces, which then germinate (Jagodziński et al. 2019), thereby creating an efficient 
establishment of P. serotina seedlings within plots. This mechanism could explain 
P. serotina dispersal and spread.
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The most frequent alien species in the studied spoil heaps were mainly herbaceous 
plants, self or insect-pollinated and self or wind-and-self dispersed. These are traits 
associated with the invasiveness of alien plants (Pyšek and Richardson 2007). In the 
analysis of the invasion success of the Czech alien flora, Pyšek et al. (1995) found that 
alien species in man-made habitats were mainly pollinated by either self or insects. 
However, Pyšek et al. (1995) found that animal or wind modes of dispersal of alien 
species were the most frequent in made-made habitats. In our studied system, most 
alien species are in the Asteraceae and Poaceae families with ruderal characteristics. 
This is expected because many of the traits contributing to the evolutionary success of 
Asteraceae and Poaceae have also encouraged some of the species within these families 
to be successful invaders (Lenzner et al. 2021).

What are the drivers of alien species richness and cover and how are they 
affected by the native community?

We found that alien species richness and cover increased with native functional rich-
ness in the studied heap sites. Our finding is consistent with the niche-filling hypoth-
esis (Thuiller et al. 2010; Loiola et al. 2018). The theory states that there are available 
niches left for alien species establishment in a functionally-rich community, while in 
a functionally-poor community, the niches are fewer and already occupied by native 
species. Alien species likely benefit from the presence of unoccupied ecological niches; 
therefore, filling them makes the functional space more saturated (Loiola et al. 2018). 
Therefore, our results do not support the biotic resistance theory – species-rich com-
munities are more resistant to alien invasion than species-poor ones (e.g. Elton (1958), 
Bezeng et al. (2015)).

Our findings revealed that alien species cover decreased with native species cover 
on heap sites. Early native colonisers may control the establishment of later-arriving 
species by occupying niches and ensuring their persistence by creating abundant 
shade (Perry and Galatowitsch 2006). In our studied system, native species, such as 
Tussilago farfara, Chamaenerion dodonaei and Calamagrostis epigejos, are perennial early 
colonisers; therefore they persist for some years on heap sites (Stefanowicz et al. 2015; 
Kompała-Bąba et al. 2020). These native perennials could reduce the chances of the 
establishment of alien species with the same ecological requirements (Connell and 
Slatyer 1977). Therefore, ecologically-similar native species and early colonisers would 
be expected to capture more resources required by alien species due to niche overlap; 
thus, further suppressing alien species cover via limiting similarity (Abrams 1983). It 
has been hypothesised that niche takeover would occur when early- and later-arriving 
species are ecologically similar (Vannette and Fukami 2014). Our finding is in contrast 
to Lanta et al. (2022), who recorded an increase in alien species cover with native spe-
cies cover in temperate lowland forests.

Our results showed that native CWM seed mass and plant height significantly pre-
dict alien species cover. Studies on the relationship between vegetation cover and the 
participation of species with different seed masses have shown that low cover (i.e. more 
open habitats) favoured the occurrence of species with small seed masses, while species 
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with heavy seeds are successful in shaded habitats (Reader 1993; Kidson and Westoby 
2000). A comparison of seedling survival of three temperate forest species differing in 
seed mass (Prunus serotina, Quercus rubra and Robinia pseudoacacia) confirmed that 
claim (Dyderski and Jagodziński 2019b). In our study, the native species pool had a 
low seed mass. Usually, alien species tend to avoid habitats where competitive natives 
with heavy seed masses were successful (Rees 1995; Turnbull et al. 1999). However, 
within early-successional communities, we found that alien plant cover increased with 
native plant seed mass. This suggests that pioneer alien species with low cover were 
frequent on newly-formed heaps (less than a year), while more competitive aliens with 
high cover (e.g. Solidago spp., Impatiens parviflora) invade sites where abiotic filtering 
does not limit the native species seedling establishment (early and mid-successional 
stage). Thus, seed mass of native species at early and mid-successional stages does not 
lead to strong competitive advantage over alien species during seedling establishment.

Plant height is an important ecological parameter in spontaneously-vegetated heap 
sites (Woźniak et al. 2011). Similarly, height controls the competitive ability of plant 
species (Weiher et al. 1999). In our study, the native species pool is characterised by 
low plant height. However, we found a positive relationship between alien cover and 
native plant height. This is because pioneer alien species usually have low cover and 
more competitive ones have a higher cover. Since our study is in successional commu-
nities, it only shows part of the whole gradient, revealing methodological differences in 
context dependence (Catford et al. 2022). Nevertheless, disturbance in closed habitats 
where natives have tall heights will continue to promote alien establishment through 
the creation of gaps. A similar result of increased alien species cover with native CWM 
plant height was obtained in temperate low-land forests (Lanta et al. 2022).

What does it mean for predicting threats from alien species and management?

Our findings showed that alien species establishment was prominent in the early stage 
of post-coal mine vegetation development, but not on newly-formed heaps. Heap sites 
at the early developmental stage were characterised by alien species showing ruderal fea-
tures that benefit from disturbance, for example, Solidago gigantea, Solidago canadensis, 
Erigeron canadensis and Erigeron annuus. These species reached a high level of eco-
logical success. Therefore, to reduce invasibility, we recommend that the management 
objectives should be directed to the early stage of spontaneous vegetation formation 
on heap sites. Similarly, reduced ecological disturbance should be encouraged on heap 
sites to prevent ruderal colonising species and promote competitive native species.

Monitoring alien species invasion level and establishment on heaps and the sur-
rounding landscape has high importance. Recent findings have shown that landscapes 
surrounding roads, railways and arable land harbour neophytes (Ballesteros et al. 2021). 
This affirms that the degree of urbanisation around colonised sites is an important in-
vasion pathway and should be prioritised in alien species management strategies.

To prevent secondary invasion – an increase in the colonisation of non-target alien 
species after the removal of targeted invasive plants (Pearson et al. 2016), native species 
addition should be encouraged, specifically at the early successional stage. Our findings 
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showed that plant communities at the early stage of spontaneous vegetation develop-
ment on heaps are most threatened by alien species; thus, the addition of competitive 
natives would prevent non-target alien species from exploiting the space created by the 
removed targeted invader (Hess et al. 2019). Similarly, species addition will not only 
help restore native species lost from the ecosystem due to mining activities, but can also 
increase the number of competitors which may act to reduce alien species recruitment, 
invasion level and ecological success (Bakker and Wilson 2004). A more detailed study 
on the abundance shifts between the alien and native plant species in the vegetation 
patches during the developmental stages might give additional insight into the relation-
ship between the role of alien and native plant species in the establishment and func-
tioning mechanisms of the novel ecosystems on post-coal mine heaps mineral habitats.

Conclusions

Our study identified successful alien species and developed models on how native com-
munity characteristics explain alien species invasion level (alien richness) and ecologi-
cal success (alien cover) on spontaneously-vegetated post-coal mine heaps. Amongst 
studied plant communities, those at the early stage of spontaneous vegetation devel-
opment are the most threatened by alien species, thus requiring active management 
and conservation. Erigeron canadensis, Solidago gigantea, Solidago canadensis, Erigeron 
annuus and Impatiens parviflora should be designated as priority aliens for manage-
ment action on post-industrial vegetation. Introducing native species at early stages of 
vegetation development can decrease the level of threat from invasive species.
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