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There are several remarkably active research areas in contemporary ecology. Biological 
invasions and study of ecological networks are two of them. Since the SCOPE interna-
tional programs, initiated in the final decades of the last century, the number of pub-
lications on biological invasions has been increasing exponentially. Besides NeoBiota, 
at least five other current journals are completely dedicated to this topic. The number 
of publications on ecological networks has been also increasing and recent years have 
seen a burst in the study of this subject (e.g., Polis and Winemiller 1996; Pascual and 
Dunnde 2006; Dáttilo and Rico-Gray 2018; Losapio et al. 2019; Guimaraes 2020; Kéfi 
2020; Benadi et al. 2022). Twenty-three volumes of the journal “Food Webs” have been 
published since 2014. More than 1300 ecological networks are included in Mangal – a 
database for species interaction networks (Poisot et al. 2021). Therefore, combining 
these two areas into one treatment was a good idea. True, the attempt by Hui and 
Richardson is not the first one (e.g., Romanuk et al. 2009; Galiana et al. 2014; Lurgi et 
al. 2014; Kinlock and Munch 2021). Nevertheless, building on their previous journal 
articles, mathematician Cang Hui and plant ecologist David Richardson provide, in 
423 pages, the most ambitious attempt to synthesize the two research areas so far.

The book is divided into seven chapters. The first chapter summarizes what authors 
call invader-centric “Invasion Science 1.0” and sets a stage for a more complex new 
world of “Invasion Science 2.0” that is developed in the following chapters. The sum-
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mary provided in the first chapter, while sketchy, is mostly accurate. The authors’ mul-
tiple complaints about context dependence and low predictability of existing invasion 
hypotheses is certainly justified. One important aspect that has been for some time 
already part of “1.0” and is omitted from this summary is the accent on phylogenetic 
relatedness in many recent studies of biological invasions (e,g., Strauss et al. 2006; Diez 
et al. 2008; Cadotte et al. 2009; Schaefer et al. 2011; Cadotte and Davies 2016; Park 
et al. 2020; Schmidt et al. 2021). This research is, however, touched at the end of the 
second chapter.

It is not completely clear to whom the book (“a hitchhiker’s guide” as it is charac-
terized by the authors) is addressed. However, if biologists are among them, they may 
be, unfortunately, discouraged by the very first equation in this chapter. The equa-
tion (1.1) describes spreading dynamics of biological populations: ∂n/∂t = rn(1 - n) 
+ D(∂2n/∂x2). We learn in the text that n represents the population density and is a 
function of time t and location x; the left of this equation describes the time derivative 
of population density; the first term on the right depicts a simple logistic growth, with 
the intrinsic rate of growth r. In ecological literature, population density is usually 
measured in terms of number of individuals, and a biologically trained ecologist will 
therefore probably be puzzled by the expression rn(1 – n) (“a simple logistic growth” 
according to the authors) predicting that in equilibrium (when the density of logisti-
cally growing population reaches what is called “carrying capacity”), the population 
would consist of only one individual (n = 1 ⇨1 - n = 0). Therefore, unless n means 
something else than number of individuals, using rn(1 – n/K) where K is a scaling 
constant, i.e. carrying capacity (Murray 2004, p. 400; Cosner 2012, p. 607), instead 
rn(1 – n), would be preferable. Nevertheless, readers should not be deterred by this 
confusion. The book provides a large collection of potentially applicable mathematical 
procedures for dealing with multispecies systems, mainly for theoretical ecologists, as 
well as references to many empirical studies that may be interesting for biologists.

The second chapter (“Relentless Evolution”) is dedicated to species interactions, 
their coexistence, and co-evolution of traits. Here we learn about some conceptually 
useful approaches to quantification of interaction strength in the realm of Hessian 
interaction matrices. After that, we explore different kinds of equilibria and the Lyapu-
nov stability of such systems. In this context, conditions for invasion and coexistence 
can be determined as inequalities in values of particular parameters (including com-
petition coefficients and carrying capacities), their ratios, fitness differences, and niche 
separations. A call for studies of the impacts of higher-order interactions is certainly 
justified. Some basic concepts of evolutionary biology are recalled here and the impor-
tance of adaptive interaction switching is inevitably stressed because it is important 
in the context of dynamic ecological networks. Interaction strength is then expressed 
as a niche-based interaction kernel that is a function of the relevant traits of interact-
ing species. Because co-evolution of traits could explain structures of many ecological 
networks, the rest of the chapter is dedicated to this topic. This is done mostly via 
references to rather demanding theoretical concepts (canonical equation of adaptive 
dynamics, convergence stable singularity, evolutionary stable strategy, continuously 
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stable strategy, Price equation, etc.). The evolution of competitive ability of invasive 
species (EICA) is mentioned in this context.

Chapter 3 (“Network Assembly”) is the core of the presented network-invasion 
synergy. It explores how structures of ecological networks emerge from interactions 
among species. First, a history of ideas about mechanisms of ecological succession and 
community assembly processes is extensively reviewed. Almost all relevant concepts 
and ongoing debates in contemporary ecology are packed into the introduction to this 
chapter. To summarize current knowledge, the authors proposed sorting non-random 
patterns in invaded biotic communities along three types of dispersion: temporal, spa-
tial, and ecological. The first one is reflected in time series of abundance, species rich-
ness or other relevant variables that may or may not reflect shifts due to invasions or 
some other environmental changes. Such changes may be associated with dynamics 
and instability of invaded ecological networks – the topic covered in chapters 4 and 5. 
Spatial dispersion amounts of spatial patterns of species under interest – their positive 
or negative associations and aggregations. In this context alpha, beta and zeta (devel-
oped by Hui and McGeoch 2014) indices of diversity are introduced. Ecological dis-
persion is a measure of the functional similarity or dissimilarity between resident spe-
cies. Basic concepts of network topology and architecture are introduced (connectance, 
linkage density, node degree, centrality, modularity, nestedness, etc.). Then, three types 
of networks are distinguished: competitive, antagonistic and mutualistic.

The results of several recent studies of plant communities and food webs are re-
viewed. A multivariate plant community analysis of Clidemia hirta invasion in Sabah 
(Fig. 3.14) is a nice example. Decline of connectance with network size (for the first 
time documented by Rejmánek and Starý 1979) is discussed and some results showing 
increase of invasion resistance with increasing connectance are presented. However, 
whether there is a general causal connection remains an open question. The enemy re-
lease hypothesis, as well as the evolution of increased competitive ability is mentioned 
here again. Whether there is some fundamental difference in the structure of antago-
nistic and mutualistic networks remains to be properly analyzed with respect to net-
work-area relationships. Examples of invasions into mutualistic networks are listed and 
a conceptual framework for inferring establishment success and invasion performance 
of introduced legumes is provided (Fig. 3.20). Several examples illustrate changes in 
network structure due to invasions (e.g., an increase of nestedness in pollination net-
works). Inevitably, a special research challenge is posed by ecological networks with 
multiple (trophic and non-trophic) interaction types. The rest of the chapter is dedi-
cated to the role of co-evolution in the emergence of dynamic and adaptive networks. 
Several original contributions of Cang Hui are utilized in this context. Finally, Daniel 
Janzen’s concept of ecological fitting (the formation of biotic interactions without co-
evolution) is utilized to explain the novel interactions between species that had shared 
little evolutionary history. A list of more than 300 references concludes this chapter.

Chapter 4 (“Regimes and Panarchy”) explores how invasion performance and in-
vasibility are related to the loss of network stability or instability. To do that, the au-
thors first define a complex adaptive system (CAS) as “a dynamic system comprising 
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multiple interacting parts that respond, adaptively and collectively, to perturbations, 
often reactively but sometimes actively or proactively.” Then, several different concepts 
and definitions of stability applicable on a CAS are presented. Inevitably, such a topic 
has to start with Robert May’s stability criterion and its extensions. (There is an incor-
rect reference to May 1973; it should be a reference to his book, not the article in The 
American Naturalist.) As the authors correctly reproduce, stability of May’s random 
community matrices decreases with their complexity. However, stability of matrices 
representing competition communities may increase with connectance (Rejmánek et 
al. 1983; Rozdilsky and Stone 2001; Fowler 2009). From a theoretical point of view, 
this is an extremely interesting research area. However, sooner or later we have to real-
ize that there are serious problems with the application of stability criteria based on 
eigenvalue analyses of real systems defined by their size, connectance, nestedness and 
interaction strengths. Reliable estimates of these parameters are obtained only very 
rarely from real laboratory or natural biotic communities (Seifert and Seifert 1976; 
Roxburgh and Wilson 2000; Fox and McGrady-Steed 2002; Carrara et al. 2015).

Nevertheless, the discussion about how these parameters may be changed via prop-
agule pressure, niche occupation, fluctuating resources, etc. (p. 224) may lead to some 
new research directions. Also, some theoretical studies are supported by empirical data. 
For example, modeling studies show that a highly connected and nested architecture 
promotes stability in mutualistic networks, while the stability of trophic networks is en-
hanced in compartmented and weakly connected communities. A meta-analysis of the 
architecture of 57 real networks supports this prediction (Thébault and Fontaine 2010).

The rest of the chapter is dedicated to the formal descriptions and examples of 
regime changes, adaptive cycles (panarchy), collapses and meltdowns in invaded net-
works. To illustrate a possibility of the construction of interaction matrices, the authors 
used available data on the well-studied biocontrol agent, ladybird Harmonia axylaris 
that is predicted to be a major threat to other species within the aphidophaguous 
guild. Based on the literature and expert opinions, the authors compiled the semi-
quantitative interaction matrices of agricultural and forest systems that are currently 
invaded by this species (Fig. 4.15 and Hui et al. 2016). Based on the eigenvalue analy-
sis, both systems are asymptotically stable before the invasion. After invasion, both sys-
tems become ecologically unstable, with the forest more than the agricultural system, 
suggesting stronger impact of the invader on the forest from the perspective of the 
aphidophagous guild stability. This is a nice example of how even rather tentative data 
can be used to make interesting inferences.

Finally, the potentially useful concept of marginal instability (self-organized criti-
cality, Solé et al. 1999) is introduced in this chapter. Driven by constant input of prop-
agules and successful invasions, open adaptive networks operate close to instability. 
Because of that, the stability-complexity relations discussed earlier in this chapter are 
either weak or lacking in such networks. Surfing in gentle waves is used as a metaphor 
illustrating systems under persistent transition at marginal instability (criticality).

Chapter 5 (“Network Transitions”) explores the dynamics of ecological networks 
resulting from invasion-induced instabilities. Of course, this is a domain where pre-
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dictability is very low and forecasting inherently unreliable. However, to outline some 
options, the authors introduce (1) “early warning signals” of bifurcation/regime shifts 
in ecological systems (inevitably, such signals are highly system specific); (2) “temporal 
turnover” of residing species and network interactions (theory of island biogeography 
is a starting point for actual monitoring and generalizations); (3) “weather vane” as an 
indicator of the transient dynamics of network turnover (such short-term indicators 
would certainly be helpful if required Hessian and Jacobian matrices were available). 
Finally, the role of rare species in maintaining system stability, functionality and inva-
sibility is discussed. Conclusion: “. . . rare species hold the key to network instability 
and invasibility, while the commonness-rarity gradient, captured by the weather vane, 
gives us the direction and magnitude of temporal turnover.”

Chapter 6 (“Network Scaling”) deals with the fact that ecological networks are not 
isolated, but embedded in larger systems (meta-webs, meta-communities). Assembly of 
any open ecological networks depends on constant influx of alien or regionally native 
species and extinction of species that were present earlier. Therefore, fitting a particular 
network into a broader landscape context is one topic covered in this chapter. Another 
topic is spatial scaling. The structure and functioning of ecological networks change 
with spatial scales at which they are analyzed. As the authors correctly point out, such 
scale dependence creates both problems and opportunities for our understanding of 
real nature. Several relevant questions, including scale dependent correlation of na-
tive and exotic species are discussed here. Meta-network dynamics, stability criteria of 
meta-networks and the role of dispersal in meta-network transitions are covered in the 
rest of the chapter. This is an area of active research and some new, mostly theoretical, 
results emerged since the book was written (e.g., Erös et al. 2020; Clark et al. 2021; 
Galiana et al. 2022; Liu et al. 2022; Saravia et al. 2022; Yang and Bao 2022). I would 
expect that more attention will be paid to quantification of environmental spatial het-
erogeneity and its effects on the pattern and processes discussed in this chapter.

The final chapter (“Rethinking Invasibility”) attempts to provide a fresh look at the 
classic problem of invasion biology: how trait-mediated interactions can cause invasions 
and impacts in the recipient biotic communities. First, the major points in the previous 
chapters are reiterated. Then, apparently as a backbone of the “Invasion Science 2.0”, a 
model of the eco-evolutionary dynamics of an open adaptive network (Hui et al. 2021) 
is presented. Conceptually and mathematically, this is a beautiful model. It certainly 
stimulates nontraditional and multidimensional thinking about biological invasions. 
Eventual parametrization of the four equations in this section is left to the readers. 
Nevertheless, some intuitively expected generalizations emerge from this model: “. . . 
to be successful, invaders need to position their traits relative to the trait distributions 
of resident species from different functional guilds. They must also mitigate negative 
interactions by occupying peripheral trait positions and increase positive interactions 
by seeking central trait positions.” Perhaps some generalizations based on field and 
laboratory studies of invasions (e.g., Kimball et al. 2013; Fridley et al. 2022) will 
find their place within this framework. It seems that at the end of this final chapter, 
the authors felt an obligation to say something about management. This resulted in 
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many correct but rather trivial statements with only a very loose connection to the 
rest of the book. There are several management related topics that are not covered, 
but will be important in the near future. For example, with ongoing climate change, 
maintenance of demographic/taxonomic composition will be less important than the 
functional stability – persistence of biomass production, carbon sequestration and 
climate regulation (e.g., Loreau et al 2001; Mathes et al. 2021). Also, interactive effects 
of invasions, habitat loss and global warming are a highly timely research area. The 
extensive Glossary (14 pages) after the last chapter, will be very helpful for all readers.

At the end of the preface, the readers are warned: “It is not a recipe book. . .”. 
Still, many ecologists would be interested to learn more of a real world where the data 
on ecological networks could be collected and analyzed. For example, problems with 
different kinds of sampling bias (Costa et al 2016; Fründ et al. 2016; Brimacombe et 
al. 2022) and taxon resolution (Hemprich-Bennett et al. 2021), are not trivial. Obvi-
ously, there is an open niche for a different book showing how to do it in the field. 
Of course, this does not diminish the value of the book under review. It will provide a 
lot of inspiration for theoretical ecologists and mathematicians. Biologists, if they are 
not discouraged by mathematical concepts and expressions, will find many interest-
ing references and ideas. Very likely, they will conclude that what is presented here is 
not really completely new to them. The novelty stressed by the authors is not really 
so new. Ecologists working on biological invasions are well aware of the multispecies 
and multidimensional complexity of their subject. Therefore, there is no need to break 
through an open door.
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