
Limitations of invasive snake control tools in the context 
of a new invasion on an island with abundant prey

Shane R. Siers1, Melia G. Nafus2, Jeried E. Calaor3*, Rachel M. Volsteadt1, 
Matthew S. Grassi3*, Megan Volsteadt4, Aaron F. Collins5, Patrick D. Barnhart5, 

Logan T. Huse6, Amy A. Yackel Adams6, Diane L. Vice4

1 U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center, Barrigada, Guam, 
USA 2  U.S. Geological Survey Pacific Island Ecosystems Research Center, Hawai‘i National Park, Hilo, 
Hawai‘i, USA 3 Research Corporation of the University of Guam, Mangilao, Guam, USA 4 Guam Depart-
ment of Agriculture, Division of Aquatic and Wildlife Resources, Mangilao, Guam, USA 5 U.S. Department 
of Agriculture, Wildlife Services, Guam State Office, Barrigada, Guam, USA 6 U.S. Geological Survey Fort 
Collins Science Center, Fort Collins, Colorado, USA

Corresponding author: Shane R. Siers (shane.r.siers@usda.gov)

Academic editor: J. Jeschke  |  Received 6 March 2023  |  Accepted 24 November 2023  |  Published 5 January 2024

Citation: Siers SR, Nafus MG, Calaor JE, Volsteadt RM, Grassi MS, Volsteadt M, Collins AF, Barnhart PD, Huse LT, 
Yackel Adams AA, Vice DL (2024) Limitations of invasive snake control tools in the context of a new invasion on an 
island with abundant prey. NeoBiota 90: 1–33. https://doi.org/10.3897/neobiota.90.103041

Abstract
In October 2020, a new population of invasive brown treesnakes (Boiga irregularis) was discovered on the 
33-ha Cocos Island, 2.5 km off the south coast of Guam. Cocos Island is a unique conservation resource, 
providing refuge for many lizards and birds, including endangered species, which were extirpated from 
mainland Guam by invasive predators including brown treesnakes. We sought to evaluate the usefulness of 
toxic baiting with acetaminophen-treated carrion baits and cage trapping, common tools for the control 
of brown treesnakes on mainland Guam, as potential eradication tools on Cocos Island. We evaluated 
multiple bait types and bait presentations: on the ground, suspended in the canopy emulating aerial bait 
applications and in four plastic-tube bait station configurations intended to exclude non-target species. 
We monitored all baits with time-lapse cameras. Despite improved exclusion of non-targets by bait station 
design, most baits were quickly removed by non-target species, particularly coconut crabs (Birgus latro) 
and Mariana monitors (Varanus tsukamotoi). Monitoring of 1,250 baits available for 2,427 bait nights re-
sulted in no observations of brown treesnakes taking any bait. Subsequently, we tested two trap types com-
monly used on Guam and compared trapping success with live versus dead mouse lures. In 10,553 trap 
nights using live and dead mouse lures, we only captured one brown treesnake, in a trap with a live mouse 
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lure. These baiting and trapping rates are so low as to be ineffectual for all practical purposes. Concurrent 
visual searching and hand capture of brown treesnakes during initial rapid response efforts demonstrates 
that these low baiting and trapping success rates are not a result of low snake density. We make a case for 
our assumption that the ineffectiveness of these tools on Cocos Island is due to the context of extremely 
high abundance of preferred live prey, primarily large geckos and birds. Our results have profound con-
servation ramifications, because any future island invasions by brown treesnakes are likely to occur within 
similarly prey-rich environments where these baiting and trapping methods might be similarly ineffective.

Keywords
bait stations, Boiga irregularis, camera traps, conservation, eradication feasibility, incipient population, 
non-target species, trapping

Introduction

The pace and scale of the introduction and spread of non-native reptiles continues 
to increase, as does recognition of the attendant ecological and economic harms they 
cause (Kraus 2009; Reed and Kraus 2010; Kraus 2015; Capinha et al. 2017). Snakes 
comprise a considerable proportion of these reptile invasions, many of which occur 
on islands where already-imperilled native species are at risk of extirpation or extinc-
tion by snake predation; examples include wolf snakes (Lycodon aulicus) on Mauritius 
and Réunion Island (Deso and Probst 2007), corn snakes (Pantherophis guttatus) and 
boa constrictors (Boa constrictor) on multiple Caribbean islands, California kingsnakes 
(Lampropeltis californiae) in the Canary Islands and multiple colubrids in the Balearic 
Islands (Tonge 1990; Perry et al. 2003; Bushar et al. 2015; Monzón-Argüello et al. 
2015; Silva-Rocha et al. 2015). Invasive snake problems can be particularly intractable 
because of snakes’ cryptic nature and ability to withstand long periods without feeding 
(Durso et al. 2011; Siers et al. 2018a; Yackel Adams et al. 2018; Boback et al. 2020; 
Nafus et al. 2020). To date, there are no known examples of eradication of an invasive 
snake population at a scale larger than 1 ha (Campbell et al. 2012; DIISE 2023).

The most well-known and well-studied example of an island snake invasion is 
that of the brown treesnake (Boiga irregularis) on the island of Guam in the Western 
Pacific. Accidentally transported from the Admiralty Islands to Guam in shipments 
of military equipment following World War II (Rodda and Savidge 2007; Richmond 
et al. 2015), this slender, nocturnal, arboreal predator spread throughout the entire 
island by the mid-1980s (Savidge 1987) and achieved densities unprecedented for 
any natural non-aggregating snake population (Rodda et al. 1999a). The spread of 
brown treesnakes across Guam was followed by a wave of negative impacts to all native 
vertebrate taxa (Wiles 1987; Fritts and Rodda 1998) including collapses in nearly all 
native bird populations, resulting in the extirpation or extinction of 12 of 15 native 
forest birds and the functional extinction of the island’s entire forest avifauna (Savidge 
1987; Wiles et al. 2003). This bird loss was followed by cascading effects on plants, 
invertebrates and ecological processes (Perry and Morton 1999; Rogers et al. 2012; 
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Caves et al. 2013; Fricke et al. 2014; Freedman et al. 2018). Socioeconomic damages 
caused by the brown treesnake invasion of Guam include ‘home invasions’ and pain-
ful bites to humans including infants (Fritts 1988; Fritts et al. 1990, 1994), predation 
on domestic animals including the loss of small-scale poultry production (Fritts and 
McCoid 1991; Rodda and Savidge 2007), declines in tourism (Hall 1996; Shwiff et al. 
2010) and costs of power outages caused by snakes short-circuiting transmission lines 
(Fritts 2002).

Methods and strategies for brown treesnake control are being developed, tested 
and implemented for the protection and restoration of Guam’s native flora and fauna 
(e.g. Aguon et al. (2002); Siers et al. (2017a, 2020a, b); Clark et al. (2018); Klug et al. 
(2021a, b); Pollock et al. (2021)). However, the first and highest priority for invasive 
brown treesnake control has been interdiction–the prevention of further spread of this 
harmful predator from Guam to other vulnerable locations throughout the Pacific 
(Hall 1996; Stanford and Rodda 2007; Perry and Vice 2009; Clark et al. 2018; Enge-
man et al. 2018). The Commonwealth of the Northern Mariana Islands (CNMI, espe-
cially Saipan, Rota and Tinian) and the Hawaiian Archipelago are at particularly high 
risk of invasion and severe ecological and economic consequences (Fritts 1988; Shwiff 
et al. 2010; BTSTWG 2015; Yackel Adams et al. 2021). Before the implementation 
of a full interdiction programme on Guam, live brown treesnakes were too-commonly 
found in cargo from Guam to Saipan, Hawaii and other destinations; since a USDA 
Wildlife Services operational control programme began in 1993, such encounters have 
dropped to nearly zero and Saipan continues to be considered snake-free (Hall 1996; 
Stanford and Rodda 2007; Yackel Adams et al. 2018, 2021).

Cocos Island (CHamoru name: Islan Dåno’) is a small atoll island situated ap-
proximately 2.5 km off the southern tip of the main island of Guam. Cocos Island was 
considered to comprise the majority of remaining snake-free habitat in Guam and is 
home to many vertebrates susceptible to brown treesnake predation, including some 
species that no longer persist on mainland Guam. Guam rails (Hypotaenidia owstoni: 
ko’ko’), once extinct in the wild due to brown treesnake predation, were introduced 
to Cocos Island where they have reproduced and thrived (Medina and Aguon 2000). 
The endangered Mariana skink (Emoia slevini) was extirpated from mainland Guam 
by brown treesnake predation, but a remnant population was recently rediscovered on 
Cocos Island (USFWS 2019). Other species, including regionally endemic lizards and 
birds, also persist on Cocos Island (Rodda and Fritts 1992).

While the high volume of commercial and military cargo and vessels originat-
ing from central and northern Guam has been scrupulously inspected for stowaway 
snakes, traffic between southern Guam and Cocos Island has received relatively little 
attention. A biosecurity plan was developed for the Island (USDA Wildlife Services 
2009) to monitor for incursions of cats, rodents and snakes on Cocos Island, as well 
as control snakes in high traffic areas, i.e. vessels that visited Cocos Island daily for 
business. An awareness campaign targeted staff and visitors to Cocos Island to report 
sightings and conduct boat inspections. The implementation of personal craft inspec-
tions was voluntary with no regulatory enforcement.
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In October 2020, a local fisherperson reported killing snakes on Cocos Island dur-
ing a night-time visit to the atoll. Subsequent search efforts by the U.S. Geological Sur-
vey’s (USGS) Brown Treesnake Rapid Response Team (RRT; Stanford and Rodda 2007) 
confirmed a population of brown treesnakes on Cocos Island (Guam Department of 
Agriculture 2020; Barnhart et al. 2022). The RRT intermittently continued night-time 
searches through September 2021, with additional training exercises ongoing through 
September 2023 and had sighted 64 brown treesnakes (58 of which were captured and 
euthanised; U.S. Geological Survey 2023). As of September 2023, the volunteer group 
Friends of Islan Dåno had captured and removed 36 brown treesnakes (Martin Kastner, 
Friends of Islan Dåno, written communication, 2023) and USDA Wildlife Services 
had removed an additional 23 (Alyssa Taitano, USDA, written communication, 2023). 
Currently, these search and removal efforts continue intermittently while agencies plan 
for a more comprehensive response, potentially including an eradication effort (USDA 
Wildlife Services 2021a, b). Preliminary USGS data reflect an apparently reproductive 
population, with representatives of all size classes captured and much larger and heavier 
snakes than found in similar samples from Guam (Barnhart et al. 2022).

Several tools and techniques have been developed and continue to be improved 
for management of invasive brown treesnakes on Guam (Clark et al. 2018). The com-
mon human pharmaceutical acetaminophen (paracetamol) has been identified as an 
effective oral toxicant for brown treesnakes (Savarie et al. 2000; Siers et al. 2021) with 
a relatively low environmental risk profile (Johnston et al. 2002). A tablet containing 
80 mg of acetaminophen has been registered with the U.S. Environmental Protec-
tion Agency as a vertebrate pesticide for brown treesnake control (Reg. No. 56228-
34). Coupled with carrion baits (typically 4–6 g dead neonatal mice), acetaminophen 
baiting has been demonstrated to reduce brown treesnake abundance on a landscape 
scale (Savarie et al. 2001; Clark and Savarie 2012; Siers et al. 2020a, b), has become 
a mainstay of interdiction operations (Clark et al. 2012; Clark et al. 2018; Engeman 
et al. 2018) and is suggested to be capable of eradicating brown treesnakes on Guam 
within snake barriers, as part of an integrated pest management strategy (Nafus et al. 
2022). Baiting can be more cost-effective than traditional trapping methods (Clark et 
al. 2012) and, as such, was thought to be a desirable eradication tool for managing the 
established brown treesnake population on Cocos Island.

Since the early 1990s, live trapping with cage traps has been the primary method 
of brown treesnake removal and continues to be a foundational tool for research and 
management programmes (Engeman and Linnell 1998; Tyrrell et al. 2009; Clark et 
al. 2018; Engeman et al. 2018). Current trap designs are modifications of crayfish or 
minnow traps, composed of a cylindrical wire mesh trap body with a funnel at each 
end. Stock funnel openings are widened and covered with a wire mesh one-way flap to 
allow snakes access to the trap body, but blocking escape. A live mouse in a protective 
chamber is the lure that entices snakes into them. Although these brown treesnake 
traps are considered the most efficient snake traps in the world (Rodda et al. 1999b), 
care and provisioning of live mice is costly and infrared photography has indicated 
that many snakes that encounter traps fail to enter the trap (Yackel Adams et al. 2019). 
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Moreover, as food resources become more abundant, live mouse traps may have de-
creasing efficacy, which is of potential importance in rapid response settings (Gragg et 
al. 2007; Stanford and Rodda 2007). Traps are also expensive and prone to damage 
by non-target species, particularly coconut crabs (Birgus latro) and Mariana monitors 
(Varanus tsukamotoi [nee indicus]). Due to these drawbacks, trapping is seen as an ef-
fective brown treesnake removal tool, but probably with greatest value when integrated 
with acetaminophen baiting (Nafus et al. 2022).

It is important to conduct pilot evaluations of the utility of potential control tools 
to establish their effectiveness prior to substantial investments in planning eradication 
projects (Genovesi 2001; Clout and Williams 2009). Identifying the limitations of 
control tools is critical for preliminary feasibility assessments and managing eradica-
tion costs. Prior to planning for an eradication attempt on Cocos Island, we sought 
to evaluate the practicality of acetaminophen baiting and live trapping in the context 
of the Island’s prey-rich environment which is similar to possible scenarios if brown 
treesnakes were to successfully arrive and establish a population in other areas vulner-
able to invasion. Our general objectives for both methods were to evaluate: 1) brown 
treesnake removal rates with various tool implementation methods; 2) interference by 
non-target species with brown treesnake removal methods; and 3) potential harm to 
native species from brown treesnake removal methods.

Methods

Study location

Cocos Island (33.6 ha; Fig. 1) is centred at approximately 13.238°N, 144.653°E and 
located 2.5 km southwest from the southern coast of Guam, forming part of the Mer-
izo Barrier Reef surrounding Cocos Lagoon. The vegetation is described in detail in 
Fosberg (1960). The substrate is deep, well-drained loamy sand and the flora is pri-
marily Casuarina equisetifolia forest in the northeast, while the south-western portion 
of the island is primarily mixed strand forest comprising Cocos nucifera, Hernandia 
sonora, Guettarda speciosa, Merrilliodendron megacarpum, Morinda citrifolia, Intsia bi-
juga, Casuarina equisetifolia, Terminalia catappa, Tournefortia argentea, Carica papaya, 
Barringtonia asiatica, Hibiscus tiliaceus, Leucaena leucocephala and Thespesia populnea. 
Vegetation along the south-eastern shore is dominated by Pemphis acidula and Scaevola 
sericea, while the north-western coastline is mostly open sand.

The north-eastern 80% of the Island is under private ownership and the south-
western 20% is owned by the Government of Guam and managed by the Guam De-
partment of Parks and Recreation. The Island is uninhabited, but Cocos Island Resort 
operates as a day resort offering water-sports, trail walks and food and beverages. The 
resort closed when the Governor of Guam declared an island-wide public emergency 
shutdown in response to the COVID-19 pandemic on 13 March 2020. The resort has 
not yet reopened since then.
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Figure 1. Map of Cocos Island 2.5 km from the southern tip of Guam, USA. Orange lines indicate 
locations of trails used for bait applications and trapping. The top of the image is orientated to the north. 
Image: Maxar Intelligence 2021.

To minimise disturbance of threatened and endangered species present on the Is-
land, our activities were limited to the edges of existing cart paths and footpaths as per 
the conditions of our U.S. Fish and Wildlife Service Endangered Species Act consul-
tation (Fig. 1). Cart paths and trails on Cocos Island receive very little maintenance 
or traffic and are primarily under continuous canopy and do not substantially alter 
the surrounding forest structure. The majority of mainland Guam brown treesnake 
research is conducted along road edges and maintained transects (e.g. Christy et al. 
(2010); Siers et al. (2017b)) so we believe it unlikely that limiting activities to these 
areas would bias results.

Acetaminophen baiting

We sought to evaluate the relative merits of a variety of potential baits and bait presen-
tation methods on Cocos Island. Preliminary evidence from mainland Guam indicates 
that brown treesnakes with recent experience feeding on birds may be preferentially 
attracted to dead bird baits over dead rodents (Nafus et al. 2021). To evaluate bait 
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preferences, we offered three sizes of dead mice and two sizes of dead bird chicks 
as baits, which where suitable to the presentation method: 4–6-gram dead neonatal 
mice (DNM); 10–17-g small mice (SM); 18–35-g large mice (LM); 10–14-g small 
bird baits (hatchling quail, SB); and 25–35-g large bird baits (hatchling chickens, LB) 
(Fig. 2). All baits were monitored with commercial infrared game cameras (H68, Ape-
man, Shenzhen, China) set to time-lapse with one image recorded every 30 seconds 
for 24 hours per day.

Figure 2. Dead animal baits used in this study. Left to right: 4–6-g dead neonatal mouse (DNM); 10–
17-g small mouse (SM); 18–35-g large mouse (LM); 10–14-g small bird (quail chick, SB); and 25–35-g 
large bird (chicken chick, LB).

Canopy presentation: USDA Wildlife Services has engineered an Aerial Delivery 
System (ADS) for the automated assembly and aerial distribution of bait cartridges 
containing a DNM treated with a tablet containing 80 mg of acetaminophen (Siers et 
al. 2019a, 2020b, 2021; Goetz et al. 2020, 2021). These cartridges open upon ejec-
tion from the aircraft, exposing a ribbon to cause entanglement in the forest canopy 
where arboreal treesnakes forage, preventing baits from falling to the forest floor where 
they can be taken by terrestrial non-target species, such as crabs. We emulated aerial 
bait applications by positioning opened ADS cartridges on a simulated branch (45-
cm wooden dowel) with the DNM hanging in the field of view (FOV) of a camera 
mounted atop a painter’s pole, extended into the forest canopy and temporarily lashed 
to natural vegetation with bungee cords (Fig. 3A).

Ground presentation: As some ADS baits fail to tangle in the canopy or DNM 
may become unstuck from the cartridge and fall through to the forest floor, we 
sought to evaluate the fate of DNM on the ground. Additionally, recent evidence 
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Figure 3. Camera orientations for canopy and ground bait monitoring A infrared camera set-up mim-
icking aerial application of dead neonatal mouse (DNM) baits via the USDA Wildlife Services Aerial 
Delivery System (ADS) for landscape-scale brown treesnake control; the camera and bait are elevated 
into the forest canopy atop a telescoping painter’s pole B ground bait monitoring set-up, with an infrared 
camera mounted directly over a large mouse (LM) bait on a tripod constructed from extruded metal tub-
ing (conduit); the bait and a lightweight PVC background with circular size standards were lashed to a 
0.9-kg lead diving weight to prevent small crabs from dragging the bait out of the camera’s field of view.

A

B
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indicates that ADS treatments might not adequately expose large brown treesnakes 
to baits; larger brown treesnakes on prey-depleted Guam are more prone to foraging 
on the ground, might be preferentially attracted to larger baits and might require 
greater doses of acetaminophen for effective removal (Rodda and Reed 2007; Nafus 
et al. 2020; Goetz et al. 2021; Siers et al. 2021). Moreover, the estimated take rates 
for large ground baits in a treated population on Guam is greater than for stand-
ard ADS baits (Nafus et al. 2022). For these reasons, USDA Wildlife Services has 
considered an alternative aerially delivered bait system comprising a slightly larger 
mouse (SM) placed in the same bait cartridge tube, but without the ribbon assembly, 
which would let the bait fall to the forest floor where larger snakes may be more ef-
fectively targeted (Siers et al. 2021). We also considered that even larger baits placed 
on the forest floor, potentially containing larger doses of acetaminophen, could more 
effectively target larger ground-foraging snakes, so we incorporated LM and LB into 
ground presentations. Ground baits were placed on small, thin PVC plastic plat-
forms printed with 20-cm size standards and lashed to a 0.9-kg. lead diving weight 
to prevent small crabs from dragging the bait out of the field of view of the cameras. 
Cameras were mounted directly overhead on tripods fashioned from inexpensive ex-
truded metal tubing (conduit; Fig. 3B). Brown treesnake head measurements taken 
from overhead images containing a size standard can be used to estimate snake size 
(Siers 2021). As both canopy and ground baits are not protected from being taken 
by non-target species, we did not treat these baits with acetaminophen tablets for 
this pilot evaluation.

Bait station presentations: Polyvinyl chloride (PVC) tube bait stations (‘bait tubes’) 
are intended to exclude non-target species that might interfere with baits, making 
them unavailable to brown treesnakes and to protect native species from unintentional 
exposure to acetaminophen intoxication. Standard operational baiting methods in-
clude placing a DNM treated with a tablet containing 80 mg of acetaminophen into a 
5-cm diameter, 30-cm long PVC bait tube, with 6.35-mm bolts crossing the openings 
at the ends to further prevent ingress by non-targets. Bait tubes are usually suspended 
horizontally by two lengths of paracord from existing vegetation or structures, such 
as fence lines (Savarie et al. 2001; Clark et al. 2012; Lardner et al. 2013; Clark et al. 
2018). Based on the average size of brown treesnakes recovered from Cocos Island pri-
or to the testing of these tools (Barnhart et al. 2022), we elected to deploy larger baits 
(SM, LM, SB and LB) within our bait stations on Cocos Island. We evaluated stand-
ard 5 × 30-cm horizontal bait tubes (Fig. 4A), as well as alternative designs intended 
to more reliably exclude non-target species, such as crabs and Mariana monitors (e.g. 
Mathies et al. (2011)): longer 5 × 45-cm horizontal bait tubes (Fig. 4B); vertical 5-cm 
diameter × 30-cm long bait tubes capped at the top end (Fig. 4C); and capped vertical 
10-cm diameter × 30-cm long bait tubes (Fig. 4D). Both horizontal bait tube designs 
included bolts across the openings, whereas vertical tubes did not to prevent use of the 
bolts by non-targets to assist climbing into the tubes.



Shane R. Siers et al.  /  NeoBiota 90: 1–33 (2024)10

Figure 4. Camera orientations and bait station configurations for bait monitoring A standard 5-cm 
diameter × 30-cm long polyvinyl chloride (PVC) horizontal bait station suspended by nylon paracord 
from a wooden dowel armature with infrared camera positioned with the bait in the field of view; the two 
ends of the armature are temporarily lashed to natural vegetation with elastic cords B extended 5 × 45-cm 
horizontal bait tube C capped 5 × 30-cm vertical bait tube D capped 10 × 30-cm vertical bait tube. Baits 
in horizontal bait tubes were held in place by gravity, while baits were held in the caps of vertical bait tubes 
by spring clamps on one foot of the bait. As baits in vertical bait tubes were not visible to the camera, a 
length of biodegradable flagging was tied to one leg of the bait and pulled through a small hole in the side 
of the tube for ease of identifying when the bait was taken during camera image review.

B

C

D

A
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We suspended all bait station types by paracord from a wooden dowel armature to 
which the trail camera was affixed, locking the bait in the FOV of the camera. We tem-
porarily attached these armatures to existing vegetation by elastic cords, with minor 
vegetation pruning to ensure that leaves or branches did not obstruct the view of the 
bait. We placed baits in the centre of horizontal tubes where they were held in place by 
gravity and friction alone. Within vertical bait tubes, we attached baits within the caps 
clipping one foot with a small metal spring clamp, holding baits in place, but making 
them easily removed with a slight tug from snakes or non-targets. As cameras could not 
directly view baits in the vertical tubes, we tied a length of white biodegradable flagging 
tape to one leg of each bait and pulled the tape through a small hole in the side of the 
tube; when the bait was removed, the flag disappeared and the animal within the FOV 
of the camera at that time was attributed with the bait removal.

As bait stations offered some degree of protection from non-target interference, we 
treated baits in bait stations with tablets containing 80 mg of acetaminophen inserted into 
the body of the bait via the oral cavity, to remove any brown treesnakes that took baits.

We spaced bait placements at approximately 20-m intervals along existing paths 
and trails on Cocos Island (Fig. 1); entry into the forest was not authorised prior 
to a formal endangered species consultation process with the U.S. Fish and Wildlife 
Service. Paths were subdivided into nine, segments (transects). Each week we placed 
36 bait monitoring stations along one transect, alternating each of three presentation 
types (12 stations each). We monitored each transect of 36 stations for one week, with 
the bait checked and replaced once mid-week with a fresh bait, for baiting intervals 
of 3 to 4 days. Beyond 3 to 4 days, baits are degraded through putrefaction and con-
sumption by ants and fly larvae and are no longer considered viable for take by brown 
treesnakes. During Weeks 1–9 (12 December 2020–16 February 2021), we placed 
canopy, ground and standard 5 × 30-cm horizontal tubes (Figs 3A, B, 4A) in alter-
nating positions along each transect, with bait types alternated as appropriate to the 
objectives of the presentation type. During Weeks 10–18 (18 February 2021–22 April 
2021), we alternated 5 × 45-cm horizontal tubes and the two vertically orientated tube 
types (5 × 30 and 10 × 30 cm; Fig. 4B–D), along with alternating bait types. At bait 
checks, if a bait appeared to have been taken, we reviewed camera images to identify 
the time of bait removal and the species taking the bait.

This portion of the study was performed during Guam’s cooler, drier months. Av-
erage daily temperatures for Guam ranged from highs of 30.4 °C (standard deviation 
= 0.903 °C) to lows of 24.7 °C (SD = 1.03 °C) and rainfall averaged 2.16 mm/day 
(SD = 5.3 mm/day, max = 48 mm/day), based on National Oceanic and Atmospheric 
Administration data (www.weather.gov).

Live trapping

After years of experimentation with multiple live trap designs, a modified crayfish or 
minnow trap was adopted as the standard brown treesnake live trap used on Guam. 
The original trap is a two-piece dual-funnel design of galvanised wire mesh with the 
entrances modified with a PVC ring holding a one-way wire mesh flap that allows ac-
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cess to the trap body, but blocks escape by snakes (Fig. 5, left). Rodda et al. (1999b) 
showed this trap to be the most effective trap known for any snake at the time. Snakes 
are lured into the traps by a live mouse in a protected wire mesh chamber held within 
the trap body. This two-piece design was later adapted for operational purposes by cre-
ating a single-piece body of more durable stainless steel, accessed by removing one of 
the funnel ends and incorporating the mouse chamber into the trap body so that the 
mouse can be serviced without opening the trap; this version of the trap is referred to 
as the USDA Wildlife Services “WS Standard” (Fig. 5, centre; Vice et al. (2005)). In 
both trap types, mice are provisioned with a custom-made block of commercial seed 
and pellet mix embedded in a paraffin wax matrix which prevents exposure to the ele-
ments until the mouse chews through the wax (Fig. 5, right). A piece of fresh potato 
provides the necessary water.

The use of live mouse lures is less than desirable due to maintenance expense and 
perceptions regarding animal welfare; however, despite extensive efforts, no trap lure 
has been found to be nearly as effective and practical as a live mouse (Chiszar 1990; 
Shivik and Clark 1997; Shivik 1998, 1999; Lindberg et al. 2000). Prior to verification 
of brown treesnake presence on the Island, Guam’s Division of Aquatic and Wildlife 
Resources (GDAWR) performed surveillance trapping using dead mouse and rat lures 
due to concerns about escaped live mice establishing a population on the Island (D. 
Vice, GDAWR, written communication, 2023) but no snakes were ever captured in 
these traps. Prior to this study, there were no reported head-to-head tests of live versus 
dead mouse lures in brown treesnake traps.

To evaluate differences in efficacy and durability between trap types and capture 
success between live and dead mouse lures, we alternated 99 one-piece WS Standard 
and 99 original two-piece traps approximately every 20 m along the same existing trails 
as the previous baiting trials (Fig. 1). We alternated live and dead mouse lures between 

Figure 5. Two types of traps used. Left: Galvanised wire mesh two-piece trap with separate live mouse 
lure chamber within the trap body. Centre: Stainless steel one-piece Wildlife Services Standard trap with 
integrated live mouse lure chamber. Right: Integrated lure chamber in one-piece trap showing live mouse, 
feed block of pellets and seeds immersed in paraffin wax and piece of fresh potato to provide moisture; 
mice in both trap types are provisioned in this manner.
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every pair of two trap types (repeating the order of one-piece/live, two-piece/live, one-
piece/dead, two-piece/dead etc.) for a total of 100 traps with live mouse lures and 98 
with dead mice. Following the typical use patterns of these two trap types, we hung 
one-piece traps on nylon paracord and two-piece traps on metal tie wire, at about waist 
to chest height on existing vegetation. We checked traps twice weekly (every 3 or 4 
days) for 55 nights, provisioning live mouse lures and replacing dead mouse lures with 
fresh dead mice. We recorded brown treesnake captures, non-target captures and trap 
damage caused by non-target species. We also recorded traps as non-functional when 
missing lures, with funnel flaps stuck open or closed, with large holes due to crab dam-
age or with other defects making them unlikely to capture or prevent escape by snakes. 
As traps were confirmed to be functional at the beginning of each trap-checking inter-
val, we assumed traps became non-functional approximately mid-interval, on average, 
so reduced our tally of effective trap nights by one-half of the checking interval per 
non-functioning trap, similar to methods of Nelson and Clark (1973). Trapping results 
are reported as captures per unit effort (CPUE) or snake captures per night per trap.

We monitored a subset of 20 traps via infrared game cameras (Hyperfire 2, Recon-
yx, Holmen, Wisconsin). We distributed 10 cameras evenly along a rock retaining wall 
and another 10 along a transect through a bird roosting area. We positioned half of 
these cameras on traps with live mouse lures and the other half on traps with dead mice. 
We recorded time-lapse images (one photo every 60 seconds) between 1800 and 0600 
h to observe for brown treesnakes investigating traps, but failing to enter, as has been 
documented on mainland Guam (Yackel Adams et al. 2019; Amburgey et al. 2021).

We performed trapping from 17 June to 12 August, 2021, earlier months of 
Guam’s warmer, rainier season. Guam daytime highs averaged 31.4 °C (SD = 1.04) 
with night-time lows of 25.6 °C (SD = 0.969) and rainfall of 9.22 mm/day (SD = 
13.5mm, max = 71.9mm) (www.weather.gov). We measured snout-vent length (SVL, 
mm) of trapped snakes by gently stretching them along a flexible tape and measured 
weight using handheld spring scales with maximum ranges from 10 g (0.1 g precision) 
to 1000 g (10 g precision) (Pesola, Schindellegi, Switzerland). We determined sex by 
probing for inverted hemipenes with steel sexing probes (Reed and Tucker 2012).

Visual detection during rapid response

Throughout the evaluation of control tools, USGS conducted nocturnal visual search-
es and hand-removal of brown treesnakes (December 2020 through July 2021). Meth-
ods followed those applied on Guam in which individuals surveyed transects after 
dusk using powerful headlamps (Wilma, Lupine Lighting System, Lebanon, PA, USA) 
walking a slow searcher pace, such that each transect (~ 400 m) lasted approximately 
1 hour. During snake searches, observations of potential prey items (lizards, birds and 
bats) were recorded. Visual survey data are available for download (U.S. Geological 
Survey 2023). These searches were also limited to the cart paths and trails depicted in 
Fig. 1. We recorded SVL, weight and sex for captured snakes as above.
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Statistical methods

All summary statistics, statistical tests and graphing were performed in the R environ-
ment for statistical computing, Version 4.2.2 (R Core Team 2021). We evaluated the 
likelihood that an unobserved bait take due to camera malfunction could have been 
taken by a snake by describing the 95% confidence interval of brown treesnake bait 
takes given the successfully observed baits (binom.confint, method = “exact”). We eval-
uated differences in duration of bait availability amongst presentation types with Cox 
proportional hazard survival models function coxph), with trials ending when the bait 
was taken by a non-target or when the three to four days monitoring period was over. 
Differences in trap capture rates amongst trap types and trap lure types were calculated 
using Fisher’s exact tests with 95% confidence intervals (fisher.test).

Ethics statement

This study was carried out in compliance with relevant laws and guidelines. All animal 
use was approved by the USDA National Wildlife Research Center Institutional Ani-
mal Care and Use Committee under protocols QA-3106 and QA-3340 and USGS In-
stitutional Animal Care and Use Committee protocol 2021-02. Compliance with the 
Endangered Species Act was ensured through informal consultation with the U. S. Fish 
and Wildlife Service (01EPIF00-2021-I-0087 and 01EPIF00-2021-I-0087-R001).

Results

Acetaminophen baiting

After eliminating incomplete trials (camera failure etc.), we successfully monitored 
a total of 1,250 baits between December 2020 and April 2021. During these trials, 
we observed no baits being investigated or taken by brown treesnakes. As there were 
no bait takes by brown treesnakes, we could not make comparisons of bait take rates 
amongst bait types or presentation types. Of the 701 baits that were taken, we could 
not identify the species in 30 (4.3%) of the cases. The 95% binomial confidence inter-
val for brown treesnake takes for the 671 baits for which a species ID was confirmed 
is 0–0.548%; if this rate were applied to the 30 unknown takes, the upper confidence 
limit for brown treesnake bait takes would be 0.164 baits; thus, we consider it highly 
unlikely that any of the unknown animals taking these 30 baits was a brown treesnake.

A high overall proportion of the baits (56.1%) were taken by non-target species 
(Fig. 6), primarily by coconut crabs and Mariana monitors. Canopy baits were removed 
by coconut crabs (11.5%), Mariana monitors (12%) and insects (11.5%, mostly ants 
and fly larvae), while 20.7% fell from the simulated bait cartridge due to putrefaction or 
consumption by insects. One bait was removed from the bait cartridge by a large gecko 
(Gehyra oceanica). Of the DNM baits in the canopy, 43.8% remained available (i.e. were 
not taken by non-targets), but were not observed being investigated or taken by brown 
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treesnakes. All but three baits placed directly on the ground were taken by non-targets, 
mostly coconut crabs and Mariana monitors, with some take by hermit crabs (Coenobita 
spp.) and land crabs (likely Cardisoma carnifex or Discoplax spp.). One DNM ground 
bait was taken by a Pacific reef heron (Egretta sacra) and another by a Guam rail. Of baits 
offered in the standard 5 × 30-cm horizontal tubes, 66.3% were taken by Mariana moni-
tors and coconut crabs. The other bait station designs successfully repelled almost all co-
conut crabs; Mariana monitors continued to be the primary challenge for all bait station 
types, but the 5 × 45-cm horizontal tube reduced monitor takes to only 15.8% (Fig. 6).

Coconut crabs and Mariana monitors were by far the most common consumers of 
baits. Plotting the recorded time of bait takes by coconut crabs and Mariana monitors 
(Fig. 7) reflected clear patterns of nocturnal activity for coconut crabs and diurnal ac-
tivity for Mariana monitors, with bimodal peaks of monitor activity in early morning 
and late afternoon.

Figure 6. Fates of carrion baits applied on Cocos Island. No brown treesnakes were observed taking any 
baits. DNM = dead neonatal mouse (4–6 g); SM = small mouse (10–14 g); LM = large mouse (25–35 g); 
SB = small birds (10–14 g quail chick); LB = large bird (25–35 g chicken chick). Sample size is the number 
of baits successfully monitored after eliminating incomplete trials.

Figure 7. Times of bait removal by the primary non-target consumers on Cocos Island. Most baits were 
removed by coconut crabs (Birgus latro) and Mariana monitors (Varanus tsukamotoi). Light grey strips 
indicate changes in sunrise and sunset over the study period.
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We recorded the duration of bait availability before being taken by non-targets or 
removed at the end of the trial and subjected these data to survival analysis (Fig. 8). 
Non-targets removed almost all ground baits within 24 hours. The horizontal 5 × 45-
cm bait tube clearly outperformed all other presentation types, with 80% of the baits 
remaining at the end of the observation period.

Summing all the time that baits were available to brown treesnakes before being 
taken by non-targets, we recorded a total of 2,427 “bait days” with no takes by brown 
treesnakes. This amounts to an overall daily estimated brown treesnake bait take rate 
of 0.000 per 100 bait days with an upper 95% binomial confidence interval of 0.151 
baits per 100 bait days.

Trapping

We operated 198 traps (99 one-piece, 99 two-piece) with mouse lures (100 live, 98 
dead) for 55 nights, for a total of 10,890 trap nights (Table 1) between and June and 

Figure 8. Persistence of all baits offered in various presentation types. Curves depict reduction in proportion 
of baits available over time as non-targets remove them. Baits typically decline in viability through putrefac-
tion and consumption by insects after 48 to 96 hours. Shaded areas represent 95% confidence intervals.

Table 1. Trapping effort (trap nights) by trap type and lure type. Values reflect overall effort and effort 
adjusted for non-functioning traps (e.g. lure missing, entrance flaps stuck open or closed, holes due to 
crab damage). Traps were functional at the previous check, so non-functional traps were presumed to be 
functional for one-half of the check interval, on average.

Trap type Overall effort (trap nights) Adjusted for non-functioning traps
Live mouse Dead mouse Total Live mouse Dead mouse Total

One-piece 2,750 2,695 5,445 2,682.5 2,620.0 5,302.5
Two-piece 2,750 2,695 5,445 2,663.0 2,588.0 5,251.0
TOTAL 5,500 5,390 10,890 5,345.5 5,208.0 10,553.5



Control tool efficacy in presence of abundant prey 17

August of 2021. After adjusting for non-functioning traps, we achieved an effort of 
10,553.5 effective trap nights.

During this effort, we captured only one brown treesnake: a 1,249-mm SVL male 
weighing 360 g (Fig. 9). The snake was captured in a two-piece galvanised trap with a 
live mouse lure. One capture in 10,553 trap nights yields a combined CPUE of 9.47e-5 
or 0.00947 captures per 100 trap nights. Considering CPUE only for traps with live 
mouse lures increased CPUE to 0.0187 captures per 100 trap nights. The 95% bino-
mial confidence interval for trap success (probability of each trap capturing at least one 
snake on a given night) with a live mouse lure is 0.000473 to 0.0528 trap successes per 
100 trap nights.

Non-target lizards and crabs were commonly found in brown treesnake traps 
(Table 2). As with acetaminophen baiting, coconut crabs and Mariana monitors were 
the most significant non-targets, being large and powerful and capable of damaging 
traps. Smaller lizards were more common in traps with dead mouse lures, likely drawn 
by flies and other insects feeding on the carrion lure. Crabs, including coconut crabs, 
were more often found in the one-piece WS standard traps, possibly because one-piece 
traps were hung with nylon paracord, per WS standard operations, while two-piece 
traps were hung by metal tie-wire; it is conceivable that metal wire provides less pur-
chase for crabs attempting to access traps. Crabs were more prevalent in traps with live 
mouse lures, probably attracted by feed waste and faeces generated by the mouse.

Figure 9. The only brown treesnake captured in over 10,500 trap nights on Cocos Island. This was a 1,249 mm 
snout-vent length, 360 g, male. This trap contained a live mouse in a protected chamber as the lure.
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Stainless steel one-piece traps were non-functional for 5.2% of trap nights, while 
galvanised two-piece traps were non-functional for 7.1% of nights (P < 0.001). Live 
mouse lure traps were non-functional 5.6% of trap nights and dead mouse lure traps 
were non-functional 6.8% of nights (P = 0.015). Stainless steel one-piece traps re-
quired 21 field repairs for a total of 2.83 hours of labour, while galvanised two-piece 
traps required 82 repairs totalling 12.4 hours of field labour. Only one trap, a two-
piece galvanised trap, was removed for workshop repairs. At the end of the trapping 
effort, repair and cleaning requirements were recorded by trap type (Table 3). The 
one-piece stainless steel traps were more durable to crab damage and required less 
labour to fix, primarily straightening deformations of unbroken wire mesh, while all 
damaged two-piece galvanised wire traps required more serious repairs, such as hole 
patches. No traps of either type were damaged beyond repair. Although galvanised wire 
traps are likely more prone to corrosion than stainless steel over prolonged use in the 
near-marine environment, there was little noticeable corrosion over the course of this 
study. The one-piece traps required more time to clean due to the lure chambers being 
integrated into the trap body.

Table 2. Non-target captures in brown treesnake traps. Results are tabulated by trap type (one-pieces 
stainless steel versus two-piece galvanised) and lure type (live mouse or dead mouse). Counts are per trap 
observation; multiple individuals in the trap at the same time are counted as only one observation.

Common name Latin name One-piece 
Live

Two-piece 
Live

One-piece 
Dead

Two-piece 
Dead

Total

Lizards
Green anole Anolis carolinensis 1 0 2 3 6
Blue-tailed skink Emoia caeruleocauda 0 0 1 0 1
Oceanic gecko Gehyra oceanica 0 0 2 0 2
Other geckos Gekkonidae 1 1 1 1 4
Mariana monitor Varanus tsukamotoi 8 11 14 5 38
Crabs
Hermit crabs Coenobita spp. 183 24 14 1 222
Coconut crab Birgus latro 57 9 22 17 105
Totals 250 45 56 27 378

Table 3. Repair and cleaning requirements by trap type. Minor repairs included straightening wire de-
formations from coconut crab damage, while major repairs required patching of holes in the mesh from 
crab damage.

Trap type No repair (n) Minor repair 
(n)

Major repair 
(n)

Repair labour 
(hr)

Cleaning 
labour (hr)

One-piece stainless steel 28 47 24 13 20
Two-piece galvanised wire 31.5* 0 67.5 27 7
Totals 59.5* 47 31.5 40 27

* The two-piece traps were recorded by interchangeable trap halves (two halves = one trap), hence the 0.5-trap increments.
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During 1,100 trap nights monitored by infrared cameras (20 cameras, 647,733 
total photos), we recorded only two trap encounters by brown treesnakes, of 2 and 8 
minutes in duration (Fig. 10). In neither of these cases did the snake successfully enter 
the trap. Both recorded encounters were of a similarly-sized snake on the same trap 
with a live mouse lure 10 nights apart; we believe it reasonable to consider these to be 
two observations of the same snake.

Visual detection during rapid response

Throughout the time period of our baiting and trapping efforts (December 2020 to 
July 2021), USGS personnel performed 163.3 km of linear search effort over 376 
hours and sighted 31 snakes, three of which escaped capture, for a visual detection rate 
of 0.188 snakes per km and 0.083 per hour of search. Prey sighting rates were high, 
with an average lizard sighting rate of 37.8/km (including 10 species) and 32.8 birds/
km (8 species). Specifically for notable species, sighting rates were 15.5 green anoles, 
11.3 oceanic geckos, 22.3 black noddies and 8.1 white terns per km of searching (U.S. 
Geological Survey 2023). The mean SVL of snakes captured and removed was 1073 
± 295 (range: 650, 1622) and mean weight was 256 ± 195 g. The demography of the 
population encountered was biased towards snakes typically attracted to endothermic 
prey (60% of 28 captures > 900 mm SVL).

Figure 10. A large brown treesnake at a two-piece trap with a live mouse lure recorded via time-lapse 
infrared photograph. The snake probed the body of the trap for 8 minutes, then left without returning 
that night. A snake of a similar size (likely the same snake) attempted to enter the same trap for 2 minutes 
10 days later.
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Discussion

The results of this study are clear: two of the primary tools for brown treesnake removal 
on Guam will not be effective for brown treesnake eradication on Cocos Island. Brown 
treesnake detection rates, based on visual CPUE, are apparently lower on Cocos Island 
(0.188 snakes/km) than most other detection efforts on Guam. Within a long-term 
5-ha geographically enclosed population representative of disturbed limestone forest 
and secondary forest on Guam, Nafus et al. (2023) recorded 0.758 brown treesnakes 
per km of transect searched. In a 55-ha snake enclosure surrounding degraded lime-
stone forest in northern Guam, Boback et al. (2020) documented a CPUE of 0.906 
brown treesnakes per searcher hour, compared to 0.083 on Cocos Island. Following 
aerial baiting at this same site (Dorr et al. 2016; Siers et al. 2018), the CPUE dropped 
to 0.049 per hour, lower than the Cocos Island CPUE. With all of the caveats that 
come with using CPUE as an index of relative abundance (e.g. detectability differences 
amongst different habitat types), these data demonstrate that visual detection rates 
on Cocos Island are lower than unmanipulated habitat on Guam (24% compared to 
Nafus et al. (2023) per km and 9.2% compared to Boback et al. (2020) per hour be-
fore aerial suppression), but nearly twice as high as within an aerially-suppressed study 
plot (Boback et al. 2020). Nonetheless, despite 40% lower visual contact rates than on 
Cocos Island, the suppressed population on Guam continued to take non-toxic dead 
mouse baits at rates averaging approximately 20% (Siers et al. 2018b), while the Cocos 
Island bait take rate was 0%.

Live trapping with mouse lures prior to snake suppression on Guam yielded a 
capture rate of 0.3 snakes per 100 trap days (Nafus et al. 2018). These differences in 
snake detection rates by location indicate that greater bait or trap captures on Cocos 
Island would be expected given the level of effort we applied to each tool. Carrion bait 
take rates on Guam in areas without active brown treesnake control tend to range from 
approximately 30% to nearly 100% (Savarie et al. 2001; Clark and Savarie 2012; Siers 
et al. 2018b, 2019b, 2020a), while we failed to observe a single bait take within 2,427 
bait monitoring days (upper 95% confidence interval of 0.151%). Trapping captures 
per 100 trap nights on Guam are commonly higher in areas where they are not be-
ing operationally suppressed, (4–9; Nafus et al. (2018)) and ranged as high as 25 to 
60 in the 1990s (Rodda et al. 1999b). In areas on Guam in which brown treesnakes 
have been suppressed to 0.16 snake/ha (as estimated from forest interior visual survey 
CPUE), trapping CPUE was maintained at the rate of 0.3 captures per 100 trap nights 
(Nafus et al. 2018; Boback et al. 2020). When using live mouse lures on Cocos Island, 
we achieved only 0.0187 captures per 100 trap nights which is substantially lower than 
the anticipated levels based on Guam efforts (Guam CPUE 213 to 481 times higher 
than Cocos Island when compared to Nafus et al. (2018) results).

Our failure to attract brown treesnakes to baits and traps is most likely due to 
the extraordinary abundance of preferred live prey on Cocos Island, particularly large 
geckos, birds and their eggs, compared to the relatively prey-depauperate nature of 
Guam’s forests resulting from prolonged brown treesnake predation (Fritts and Rodda 
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1998; Wiles et al. 2003; Siers 2015). Cocos Island is populated by abundant lizards, 
many of which have been extirpated from parts or all of Guam by brown treesnake 
predation, such as federally and locally endangered Mariana skinks, locally endangered 
littoral skinks (Emoia atrocostata), fragile Micronesian geckos (Perochirus ateles) and 
Pacific snake-eyed skinks (Cryptoblepharus poecilopleurus), as well as mutilating geckos 
(Gehyra mutilata), oceanic geckos (G. oceanica) and green anoles (Anolis carolinen-
sis). Small brown treesnakes, in particular, appear to be specialists on small lizards, 
which are an almost exclusive prey item in stomach contents (Savidge 1988; Siers 
2015). They also exhibit strong preference during laboratory feeding trials (Lardner 
et al. 2009) and present a venom composition that is more effective for ectotherms as 
juveniles (Mackessy et al. 2006). Our green anole sighting rates were relatively high 
(15.5/km), but close to estimates from the snake-free island of Saipan (14.9/km; Lard-
ner et al. (2019a)), while observations of this species in brown treesnake stomach con-
tents from mainland Guam are extremely low in forest habitats, from where they have 
been essentially extirpated by brown treesnake predation (Rodda and Fritts 1992; Siers 
2015). Relatively large oceanic geckos, which are roughly equivalent in mass to a small 
mouse, may additionally offer a rewarding prey item that reduces the efficacy of bait- 
and lure-based control tools on Cocos Island. We commonly observed oceanic geckos 
on Cocos Island (11.3/km), while they are no longer documented in brown treesnake 
stomach contents on mainland Guam (Siers 2015), having been essentially extirpated 
by brown treesnake predation (Rodda and Fritts 1992). Nafus et al. (2023) recorded 
no observations of green anoles or oceanic geckos and their total lizard sighting rates 
were 6.0/km (4 species) compared to 37.8/km (10 species) on Cocos Island, indicating 
substantially greater lizard prey availability. Unchecked brown treesnake predation and 
population growth could put all small lizard species at risk of almost certain local ex-
tinction on Cocos Island (Rodda and Fritts 1992; Rodda et al. 1997; Fritts and Rodda 
1998; USFWS 2019).

Of all the ecological damage that have occurred since their introduction to Guam, 
the pervasive impacts of brown treesnake predation on birds have been the most pro-
found (Savidge 1987; Wiles et al. 2003; Pollock et al. 2019; Klug et al. 2021b). Our 
Cocos Island bird sighting rate of 32.8/km and 11.3/hour is high, given the well-
documented collapse and functional extinction of the forest bird avifauna on mainland 
Guam (Savidge 1987; Wiles et al. 2003). Any experienced brown treesnake search-
er can attest that bird sightings in forest habitats on mainland Guam are quite rare, 
earning Guam its reputation for “silent forests” and the cascading ecological effects of 
bird loss (Savidge 1987; Rodda et al. 1997; Rogers 2011, 2020). Nafus et al. (2023) 
documented only four bird sightings of indeterminate species in 816.2 km of transect 
searching in the northern Guam 5-ha enclosure (0.005 birds/km). It is unclear how 
severely brown treesnake predation on Cocos Island has affected the abundance of bird 
and lizard prey species, but prey resources clearly remain much more abundant on 
Cocos Island.

Brown treesnakes on Guam that forage in areas of increased prey availability, in-
cluding birds, such as urban areas and swiftlet caves, tend to be in better body con-
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dition (Siers 2015; Siers et al. 2017b; Yackel Adams et al. 2019; Klug et al. 2021b), 
a characteristic that is evident in the extremely heavy snakes that have been found 
during visual surveys on Cocos Island. The mean weight of snakes reported in other 
contemporary studies on Guam (Siers et al. 2017b) suggests that the average weight 
of snakes removed from Cocos Island during the period of this study is much greater. 
There is also emerging evidence that brown treesnakes conditioned to feeding on live 
birds exhibit less attraction to rodent-based baits and lures (Nafus et al. 2021). Dur-
ing brown treesnake removal from Cocos Island, encounters with seabirds, Guam rails 
and Micronesian starlings (Aplonis opaca) were not uncommon (U.S. Geological Sur-
vey 2023), supporting the impression that avian prey currently remain abundant on 
Cocos Island relative to Guam. For these reasons, it is apparent that, although brown 
treesnakes on Guam will readily consume carrion, live lures are far more effective than 
any dead animal baits or other inanimate lures (Shivik et al. 2000; Savarie and Clark 
2006; Kimball et al. 2016) and that the availability of abundant preferred prey (birds) 
on Cocos Island diminishes the attraction to carrion baits.

These findings demonstrate that higher prey availability negatively affects brown 
treesnake detection and capture rates. On Guam, temporary experimental suppression 
of rodent prey abundance was demonstrated to increase trap capture rates (Gragg et al. 
2007) and increasing movement distances of brown treesnakes (Christy et al. 2017). 
Free-ranging brown treesnakes that have recently taken large meals have been experi-
mentally demonstrated to significantly reduce movement for 5 to 7 days, with an associ-
ated reduction in the ability to visually detect or trap snakes during this time (Siers et al. 
2018a). Foraging for carrion may also be a futile strategy for brown treesnakes on Cocos 
Island where coconut crabs and Mariana monitors rapidly remove all carrion from the 
ground (Figs 7–9). Moreover, prior studies have indicated that brown treesnake at-
traction to carrion and especially mouse carrion, may decrease as snakes increase in 
size (Shivik and Clark 1999; Nafus et al. 2021), while large snakes may be the most 
important demographic to remove from the perspective of both avian conservation and 
eradication potential (Savidge 1988; Yackel Adams et al. 2019; Nafus et al. 2022).

Both baiting and trapping appear to be relatively safe for Cocos Island wildlife. 
In only two instances did a native bird (a Pacific reef heron and a Guam rail) take a 
bait (both DNM) from the ground. Although acetaminophen may also be toxic to 
birds, they are not known to have the same genetic basis for sensitivity to acetami-
nophen toxicosis as snakes (van den Hurk and Kerkkamp 2019) and crows in cage tri-
als picked around acetaminophen tablets rather than ingesting them, with no signs of 
toxicosis (Avery et al. 2004). Clearly, crabs and Mariana monitors quickly cleanse the 
forest floor of any carrion baits containing acetaminophen. Crabs tend to eat around 
acetaminophen tablets when consuming carrion baits and show no signs of toxicosis 
(Johnston et al. 2002). On the other hand, Mariana monitors were the most prob-
lematic scavengers of baits on the ground and in bait stations and other monitor spe-
cies are susceptible to acetaminophen toxicosis (Mauldin and Savarie 2010). Although 
recent evidence indicates that Mariana monitors are native to the Mariana Islands 
(Weijola et al. 2020), Mariana monitors on Cocos Island are being actively depredated 
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by GDAWR for the protection of endangered Guam rails and their nests. It is likely 
that several small Mariana monitors succumbed to acetaminophen toxicosis and would 
continue to do so if acetaminophen were used as part of a brown treesnake eradication 
programme on Cocos Island. Small Mariana monitors were also frequently caught live 
in traps; these could be released unharmed, but GDAWR requested that trapped Mari-
ana monitors be removed and euthanised rather than released, in furtherance of their 
Guam rail protection efforts. Some small coconut crabs and hermit crabs expired in 
brown treesnake traps, likely due to dehydration, although the numbers would not be 
expected to have population-level impacts. Factors such as these need to be considered 
when assessing the potential environmental impacts of baiting or trapping for invasive 
snakes, although ineffectiveness in our case could make these issues moot.

The practical information on baiting and trapping is of little avail when brown 
treesnake removal by these techniques is almost completely ineffectual in the context of 
abundant alternative prey availability. Initial eradication discussions for Cocos Island 
included a notional plan of a 20 × 20-m grid of bait stations and a 40 × 40-m grid of 
traps. At this density, we might have arrayed as many as 825 bait stations and 206 traps 
with live mouse lures across the entire 33 ha of the Island for the duration of an eradi-
cation attempt that is expected to last at least 5 to 10 years (based on ad hoc population 
estimates and demographic projections; USDA Wildlife Services (2021a)). The pilot 
studies we report here have forestalled what might have been very costly investments 
in baiting and trapping with little or no payoff. Financial estimates for the costs of an 
island-wide baiting and/or trapping effort are beyond the scope of this article, compli-
cated and inflated by considerations, such as boat travel, transect establishment etc., 
although these issues also affect visual search and removal efforts.

Instead, available funding is being programmed for visual searching and manual 
removal of snakes, the only tactic that has thus far been effective on Cocos Island. Al-
though night-time visual searching can be logistically challenging, disruptive to work 
schedules and tedious, it is also the tool that is considered to be the least biased with re-
spect to snake sizes, putting all brown treesnake size classes at risk of detection (Rodda et 
al. 2007; Christy et al. 2010; Yackel Adams et al. 2018; Lardner et al. 2019b). To date, 
there have been no documented successful invasive snake eradications beyond a tempo-
rary 1-ha experimental exclusion plot (Campbell et al. 2012); however, with judicious 
and sustained application of the right techniques, the small, isolated island of Cocos 
Island could potentially be the location of the first successful island-wide eradication.

Further work would be beneficial to validate whether live bird lures would be more 
effective than mice and carrion on Cocos Island. Field and laboratory experiments 
have demonstrated that traps with a live bird as the lure show increased capture rates of 
large, well-conditioned snakes, as well as longer trap investigation times overall com-
pared to those with mouse lures (Yackel Adams et al. 2019; Klug et al. 2021a; Nafus 
et al. 2021). Additionally, a pattern of feeding success on birds may reduce a brown 
treesnake’s interest in rodents and this may be particularly true on an island where ro-
dents were eradicated in 2009. Verification of the disinterest of Cocos Island snakes to 
all potential attractant-based lures would be an important next step.
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In the event of future invasions, prospects for complete removal of brown treesnakes 
from larger, prey-rich islands with difficult-to-access terrain would be challenging, par-
ticularly when our results indicate that application of the newly developed landscape-
scale aerial baiting technology would be ineffective (Siers et al. 2020b). Work to dif-
ferentiate between the context dependency of control tool attraction, based on total 
prey availability or species compositions of prey, can also be informative in amending 
current interdiction programmes or developing emergency response protocols if an 
incipient population of brown treesnakes is located on another island.

Conclusions

Our results indicate that standard invasive brown treesnake control tools, acetami-
nophen baiting and trapping with mouse lures, are seemingly not effective enough to 
warrant significant investment of limited project resources where preferred alternative 
prey are abundant. These results have profound ramifications for the potential of rapid 
removal and eradication of incipient brown treesnake populations on any other islands 
at risk of invasion, such as the Hawaiian Islands, the Northern Mariana Islands and 
throughout Micronesia and the rest of the Pacific where snake-free islands are rich in 
diversity and density of potential prey (e.g. Lardner et al. (2019a), Table 1). This work 
underscores the benefits of a continued emphasis on interdiction – prevention of acci-
dental translocation through strong pre- and post-border inspections and reduction of 
potential stowaways in high-risk areas on Guam – over reliance on early detection and 
rapid response to resolve any new brown treesnake invasions that might occur. These 
results are also important for consideration of prevention, early detection, rapid re-
sponse, suppression and/or eradication of other invasive snakes on islands or elsewhere. 
Similar issues are likely to be faced during any invasive snake removal programme, 
particularly where abundant alternative prey is available.
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Abstract
The geographical exchange of non-native species can be highly asymmetrical, with some world regions 
donating or receiving more species than others. Several hypotheses have been proposed to explain such 
asymmetries, including differences in propagule pressure, source species (invader) pools, environmental 
features in recipient regions, or biological traits of invaders. We quantified spatiotemporal patterns in the 
exchange of non-native insects between Europe, North America, and Australasia, and then tested possible 
explanations for these patterns based on regional trade (import values) and model estimates of invader 
pool sizes. Europe was the dominant donor of non-native insect species between the three regions, with 
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most of this asymmetry arising prior to 1950. This could not be explained by differences in import values 
(1827–2014), nor were there substantial differences in the sizes of modelled invader pools. Based on ad-
ditional evidence from literature, we propose that patterns of historical plant introductions may explain 
these asymmetries, but this possibility requires further study.

Keywords
International trade, non-native insects, plants, propagule pressure, species pools

Introduction

Non-native insects have been implicated in displacing native species, altering the com-
position of ecological communities, damaging economically important trees and food 
crops, vectoring diseases, and more (Kenis et al. 2009; Bradshaw et al. 2016). An in-
triguing aspect of insect invasions is that some regions appear to have donated dispro-
portionately more non-native insects during biotic exchange than others. For exam-
ple, considerably more phytophagous forest insects have invaded North America from 
Europe than the reverse (Niemelä and Mattson 1996), and Europe has contributed a 
large fraction of New Zealand’s non-native insect fauna (Edney-Browne et al. 2018). 
Consequently, the question of why such asymmetries may occur has fascinated ecolo-
gists for decades, with several mutually compatible hypotheses offered: (1) differences 
in the magnitude of invasion vectors, such as international trade, may lead to differ-
ences in the arrival and establishment rates of non-native species; (2) differences in the 
size of potential invader pools may drive differences in the numbers of species being 
donated to other regions; (3) environmental differences (e.g., climate and availability 
of host plants) in recipient regions may promote or inhibit invasion; and (4) biological 
traits of insects native to some regions may make them better at invading or competing 
than insects native to other regions (Vermeij 1991, 1996; Niemelä and Mattson 1996; 
Visser et al. 2016).

The latter two hypotheses are often tested on a single insect order or guild and at 
smaller spatial scales (e.g., Rigot et al. 2014; Guyot et al. 2015; Rassati et al. 2016), 
but less commonly on multiple insect orders and multiple geographical regions. Testing 
them requires regional knowledge of the nature of recipient environments and their eco-
logical communities, and of the biological traits of the invaders, information that is often 
available only for certain regions or certain insect groups/guilds. The former two hy-
potheses are more approachable, given the availability of datasets on international trade, 
regional insect richness, and modelling approaches that can estimate invader pool sizes.

Our research goals were firstly to test for the existence of asymmetries in the cu-
mulative numbers of insect invaders, across all taxa, exchanged between three world 
regions of interest: North America, Europe, and Australasia (limited to Australia and 
New Zealand). These regions were chosen due to their histories of anthropogenic inter-
actions and exchange of species, existing literature suggesting asymmetrical exchange 
of insects between them (see above), and the availability of data. Secondly, if clear 
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asymmetries were found, we aimed to determine if they could be explained by differ-
ences in propagule pressure (using the value of international trade as a proxy) or by 
differences in estimates of invader pool sizes. We did not statistically test hypotheses 
(3) and (4), above, but considered them as possible explanations for asymmetries that 
could not be explained by hypotheses (1) and (2).

Methods

Datasets and world regions

Insect establishment data were based on the International Non-native Insect Establish-
ment database (Turner et al. 2021), supplemented by several other online datasets (See-
bens et al. 2017; Nahrung and Carnegie 2020; Liebhold et al. 2021; GBIF.org 2022; 
Mally et al. 2022). We used an automated taxonomic cleaning script (Blake and Turn-
er 2021) using the GBIF (GBIF.org 2022) API to standardize species names (merge 
synonyms and correct misspellings). The resulting dataset contained dated records of 
non-native insect discoveries, the species identity (order, family, genus, and species), 
the region/nation in which the species was discovered, the native biogeographic range 
of the species, and other data such as whether the introduction was deliberate, if the 
species was found only indoors (e.g., greenhouses), and if the species is herbivorous.

Our choices of world regions and their spatial extents were constrained by the avail-
able data. We used a subset of the establishment database that allowed us to compare 
the reciprocal flows of insects between donor and recipient regions. The only regions 
that could be compared in this way were North America (NA), Europe (EU), and 
Australia and New Zealand combined into an Australasian region (AU). Due to spatial 
gaps in these data, there were minor mismatches in the spatial extents of these regions 
depending on context. For example, as a donor region, Australasia included Papua 
New Guinea, but as a recipient region, it only included Australia and New Zealand 
because we did not have non-native insect discovery records for Papua New Guinea. In 
this case, correcting for this mismatch would require estimating the number of insects 
from North America and Europe that have established into Papua New Guinea, and 
excluding species that also established into Australia or New Zealand. Since the spatial 
mismatches were relatively minor, and such corrections would themselves be prone to 
error, we opted not to attempt corrections.

For all analyses, we excluded discovery records where: (1) species had native ranges 
spanning multiple biogeographic regions (e.g., Holarctic or cosmopolitan species); (2) 
the native ranges and establishment regions were the same (indicating species that 
spread within these regions); (3) the establishment was limited to “indoors” (e.g., 
greenhouses); or (4) the establishment was a result of intentional introduction. This 
left us with a dataset of 2,324 non-native insect discovery records across the six pair-
wise flows between North America, Europe, and Australasia, with the dated records 
spanning 1617–2021.
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Regional import value data were obtained from the TradeHist database (Fouquin and 
Hugot 2016), modified with modern ISO-3 country codes. The TradeHist database de-
scribes the annual value of trade goods from 1827–2014 in British pounds sterling (not 
corrected for inflation) flowing from origin to destination countries. The database does 
not include details on trade volume/frequency or commodity type. We corrected all trade 
values for inflation relative to 2020 based on the annual percent change of the UK retail 
prices index (Office for National Statistics 2021). We grouped the origin and destination 
countries into the same regions as above (North America, Europe, and Australasia), with 
some minor unavoidable differences where national borders did not follow biogeographic 
boundaries. From these groupings of countries, we created a subset of the TradeHist data-
base representing the six pairwise flows between North America, Europe, and Australasia 
by summing annual trade value across all countries within each region. Records of trade 
between countries within each of the resulting biogeographic regions were dropped.

Testing for asymmetries and temporal variation in establishment rates

To test for invasional asymmetries, we tallied the number of first discoveries of non-
native insects for each of the six pairwise flows between North America, Europe, and 
Australasia. We further split these cumulative counts by insect order and (separately) 
by herbivory (herbivores vs non-herbivores). We used G-tests (log-likelihood ratio 
goodness-of-fit tests) to compare these counts between each donor/recipient pair, sepa-
rately for each order and herbivory category (e.g., one test for the counts of Coleop-
tera exchanged in both directions between Europe and North America, another for 
Hemiptera, etc.), with the null hypothesis being equal numbers of insects exchanged 
in each direction. We adjusted the P-values for multiple comparisons across orders 
and herbivory categories using the Holm-Bonferroni procedure. To visualize temporal 
variation in the establishment rates of insects over each flow, we plotted cumulative 
discoveries versus cumulative import values following Levine and D’Antonio (2003).

Testing for the effects of differential trade and invader pool sizes

To determine if asymmetries in non-native insect establishments between regions 
could be explained by unequal trade or invader pools, we adapted Poisson process 
models from Costello et al. (2007) and Morimoto et al. (2019) in which the number of 
annually established insects flowing from donor to recipient regions were proportional 
to annual import values and model-fit invader pool sizes. Because the Poisson-process 
models required dated annual discovery and import values for each observation, this 
limited our establishment records to the date range of the TradeHist database. This left 
us with 1,872 dated establishment records (~80% of the establishment dataset) with 
corresponding import values from 1827–2014.

Our models estimated the lag between establishments and discoveries, predict-
ing the annual establishments necessary to fit to observed discoveries given the lag 
estimates. This was done to address concerns over records of first discovery being poor 
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proxies for the actual timing of establishments given the extended lag frequently oc-
curring between establishment and discovery (Costello and Solow 2003). As discovery 
probability depends in large part on discovery effort, this allows our models to (indi-
rectly) account for overall differences in discovery effort between flows.

To account for the possibility of “saturation” (depletion of invader pools) that 
might gradually reduce establishment rates, we used AIC-based model selection to 
choose between models which included or omitted a rate-limiting component based 
on the observed number of cumulative discoveries compared to a predicted maximum. 
All models contained an ‘annual establishment rate’ parameter (r) representing the 
number of non-native insects per billion pounds sterling of imports prior to any deple-
tion of invader pools. If differences in import values fully explained asymmetries in 
non-native insect establishments, we would expect no significant differences between 
reciprocal flows in the value of r.

We omitted an intercept term in our models, forcing them to account for all es-
tablishments as a function of imports. We modelled the gradual depletion of invader 
pools as a non-linear rate-limiting factor based on the idea that early invaders are more 
likely the best or most numerous invaders, leading to a rapid initial decrease in the 
probability of establishment per unit of propagule pressure (Liebhold et al. 2017). 
These modifications were necessary to produce good fits to our data – initial attempts 
to use the same models as in Morimoto et al. (2019) resulted in nonsensical parameter 
estimations and poor fits in most cases. Our full model was:

λt = rvt st

= 1−
2

( )d c,t

d sat
st

 (1)

 ~ Poisson = ∑
  j =1827

( )δ t λ pj tNt

t

pj,t = π (1 − π)t−j,

where:
λt is the predicted number of new non-native establishments in year t,
r is the number of species established per billion pounds sterling (prior to saturation),
vt is the value of imports (2020 billion pounds sterling) in year t,
st is a rate-limiting factor of interval [0,1] which approaches 0 as the cumulative num-

ber of species discoveries approaches a predicted maximum,
dc,t is the (observed) cumulative species discovered by year t,
dsat is the number of discoveries after which new establishments cease (saturate),
Nt is the actual number of non-native discoveries in year t,
δt is the predicted number of non-native discoveries in year t,
pj,t is the probability that a species which established in year j will be discovered in year t,
and π is the annual probability of discovery.
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The cumulative sum of discoveries (dc,t) was calculated by summing the number of 
annual discoveries from the first year of records (1827) to year t, inclusive. We used the 
sum of discoveries instead of establishments for modelling the saturation of species pools 
because discovery sums could be easily calculated from the original data. The main draw-
back to this technique was that it slightly complicated the interpretation of the saturation 
parameter (dsat): rather than being a direct prediction of the invader pool size, it was the pre-
dicted number of cumulative discoveries at the time of full depletion of the invader pool.

We fit the models to observed annual discoveries (Nt) for each combination of 
donor and recipient region, minimizing the maximum likelihood as described by Mo-
rimoto et al. (2019):

dsat  −δj  δjπ( (, , ) )∝ exprL ∏
t Nj

1827+j = τ
 (2)

where τ = 20 as “preservation years” to prevent fitting the model to species that es-
tablished prior to 1827 (the first year of discovery records in our database) but were 
discovered after 1827. Without these “preservation years”, δt (the predicted number of 
discoveries in year t) may be underestimated near the start of the dataset because there 
will be a lack of prior years of predicted establishments from which to model the lagged 
discoveries (Morimoto et al. 2019). We also used a reduced model which omitted the 
depletion of invader pools from Eq. (1), effectively making st a constant with a value of 
1. We then removed the associated parameter (dsat) from Eq. (2). This “without satura-
tion” model was otherwise identical to the full model.

For parameter estimation, we set lower and (in a few cases) upper bounds on each 
parameter using the Limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm 
(L-BFGS-B) method (Byrd et al. 1995). We bounded the rate of establishments (r) 
to ≥ 0.005 non-native species per billion pounds sterling of imports. This was done to 
prevent model optimization from testing ecologically nonsensical parameter estimates 
(negative or zero species introductions per billion pounds sterling of imports); 0.005 
was chosen to be well below the initial slopes of the curves of cumulative non-native 
species versus cumulative import values. We bounded the annual probability of discov-
ery (π) to between 0.0125 and 0.95 (corresponding to 1.05–80 years of discovery lag), 
which was chosen as an ecologically reasonable range based on discovery lag estimates 
from prior publications (Morimoto et al. 2019; MacLachlan et al. 2021). If the lag 
estimates were left unbounded, the models typically failed to converge. For the satura-
tion term (dsat), we set the lower bound to the cumulative numbers of observed, dated 
discoveries of non-native insects (since we know the invader pool must be at least this 
large). This lower bound varied for each of the six flows (1121 for EU to NA, 205 for 
NA to EU, 349 for EU to AU, 70 for AU to EU, 74 for NA to AU, and 53 for AU to 
NA). We did not impose an upper bound on the estimates of dsat. We fit both the full 
and reduced models (the latter lacking the saturation term) to each flow and selected 
the one with the lowest Akaike information criterion (AIC) value.

To determine if asymmetries may be explained by differences in the size of invader 
pools, we compared 95% confidence intervals of the predicted numbers of non-native 
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insect discoveries after full depletion of the invader pool (dsat) between region pairs 
resulting from our Poisson process models. This was only done when full models (includ-
ing terms for finite invader pools) were selected for both directions between region pairs. 
Additionally, we compiled counts of described native insects in each of the three regions 
for qualitative comparisons to the magnitude of insect invasions across the six flows.

We used the R function optim for parameter estimation in the Poisson process mod-
els (R Core Team 2021). The confidence intervals were approximately calculated using 
the inverse of the Hessian matrix evaluated at the last iteration in the optimization pro-
cess. For parameters with lower or upper bounds, we truncated the confidence intervals 
to the parameter estimation boundaries. All analyses were performed in R 4.1.0 (R 
Core Team 2021). Model predictions (cumulative annual establishments and discover-
ies) were included on the plots of cumulative discoveries versus cumulative trade.

Results

Europe has donated approximately six times more non-native insect species to North 
America and Australasia than it has received from these regions (Fig. 1).

Asymmetries in the reciprocal flows of non-native insects between Europe and 
North America and between Europe and Australasia were highly significant in total spe-
cies, across the five largest insect orders, and among both herbivores and non-herbivores 
(all p < 0.001; Table 1). There were no significant asymmetries in the numbers of non-
native insects exchanged between North America and Australasia (all p > 0.05; Table 1).

Plots of cumulative insect establishments versus cumulative import values over 
time show that the European asymmetry developed quickly and early (Fig. 2). In 

Table 1. Counts of non-native insect species discovered for each of the six pairwise flows between North 
America (NA), Europe (EU), and Australasia (AU), by taxonomic order, herbivory, and sum totals. 
Col. = Coleoptera, Hem. = Hemiptera, Hym. = Hymenoptera, Lep. = Lepidoptera, Dip. = Diptera. The 
G statistic was computed to test the null hypothesis of no difference in the number of species exchanged 
in each direction between a given pair of world regions, separately for each column. We used the Holm-
Bonferroni method to control for multiple comparisons across orders and herbivory.

Flow Order Herbivory Total
Col. Hem. Hym. Lep. Dip. Other Yes No

EU to NA 477 368 211 144 138 76 854 560 1414
NA to EU 40 72 54 20 29 15 160 70 230
G (df=1) 435 218 99.4 106 77.3 44.7 522 434 948
p (≥ G) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
EU to AU 137 96 67 31 55 57 226 217 443
AU to EU 34 10 14 7 4 8 41 36 77
G (df=1) 66.5 80.7 37.7 16.4 52.5 41.6 141 144 285
p (≥ G) < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
NA to AU 20 26 13 8 10 11 57 31 88
AU to NA 18 22 15 4 6 7 48 24 72
G (df=1) 0.11 0.33 0.14 1.36 1.01 0.90 0.77 0.89 1.60
p (≥ G) ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 0.69 0.69 0.21
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Figure 1. Flows of non-native insects between North America (NA), Europe (EU), and Australasia (AU). 
Numbers indicate the total count of species established from donor to recipient, with flow widths being 
proportional to these counts. Overlapping flows on the donor side indicate the fraction of species that 
established in both recipient regions.

many cases (Europe to North America and Australasia, and North America to Aus-
tralasia), the rates of establishment of non-native insects per billion pounds sterling 
(hereafter referred to simply as establishment rates) were greatest near the very start of 
the dataset (circa 1827). These rates decreased over time, particularly between 1940 
and 1960, with our models explaining these declines as depletion of the invader pools. 
Approximately 75% of non-native insect species that established from Europe into 
North America and Australasia had done so by 1950 (Fig. 2a, c). In contrast, the 
establishment rates of North American insects into Europe have decreased only very 
slightly over time (Fig. 2b), and there is no evidence (as per AIC-based model selec-
tion) of any decline in the establishment rates of Australasian insects into Europe 
(Fig. 2d, Table 2).

Discoveries and modelled establishments of non-native insects between North 
America and Australasia were within the same order of magnitude in both directions 
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Figure 2. Cumulative discoveries (observed and modelled) and establishments (modelled) of non-native 
insects exchanged between Europe (EU), North America (NA), and Australasia (AU) versus cumulative 
import value (inflation-corrected to 2020 British pounds sterling, billions), 1827–2014. Alternating back-
ground shading indicates decadal increments, with shading omitted prior to the 1940s for clarity.

(Fig. 2e, f ). There was evidence of saturation in the flows of non-native insects between 
North America and Australasia, though less so from Australasia to North America.

The modelled numbers of non-native insect establishments per billion pounds ster-
ling (annual establishment rate, r) were significantly different for the reciprocal flows 
between Europe and North America and between Europe to Australasia (Table 2). 
Between Europe and North America, the predicted sizes of the invader pools (based 
on the number of discoveries at maximum establishments, dsat) favors Europe, but with 
overlapping 95% confidence intervals (Table 2).
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Discussion

Considerably more insect species have invaded North America and Australasia from 
Europe than in the opposite directions. This concurs with the previously observed 
overrepresentation of tree-feeding insects from Europe in North America (Niemelä 
and Mattson 1996), and with non-native insects from the western Palearctic (i.e., Eu-
rope) being overrepresented in New Zealand (Edney-Browne et al. 2018). Our results 
demonstrate that these asymmetries are consistent across all insect orders considered in 
the analysis, including both herbivorous and non-herbivorous insects.

International trade is considered the single most important pathway for uninten-
tional introductions of insects (Brockerhoff and Liebhold 2017), and greater trade 
activity generally results in greater propagule pressure of non-native species. Existing 
literature identifies a positive correlation between import value and the establishment 
of non-native species (Levine and D’Antonio 2003; Seebens et al. 2017; Lantschner 
et al. 2020; MacLachlan et al. 2021). Similarly, our models provided excellent fits of 
inflation-corrected import values to temporal changes in non-native insect establish-
ment rates (after accounting for gradual depletion of source pools). However, the mod-
elled establishment rates (r), which represent the maximum rates of establishments 
per billion pounds sterling of imports prior to any depletion of source pools, differed 
significantly between the Europe to North America flow and its converse, and between 
the Europe to Australasia flow and its converse (Table 2). These significant differences 

Table 2. Parameters and 95% confidence intervals of Poisson-process models of establishments and 
lagged discoveries of non-native insect species exchanged between Europe (EU), North America (NA), 
and Australasia (AU). All models included a parameter for imports (r, the number of annual establish-
ments per billion pounds sterling) and lag (π, the annual probability of discovery of established species). 
Models including an additional term for saturation (a decrease in establishment probability as the cumu-
lative number of discoveries approaches dsat) were selected in most cases, with model selection based on 
Akaike information criterion (AIC) values.

Flow Best model 
(ΔAIC of next-best model)

Annual 
establishment rate, 

r (95% CI)

Discoveries 
at maximum 

establishments, 
dsat (95% CI)

Annual discovery 
probability, 
π (95% CI)

Lag years 
(95% CI)

EU to NA Imports + saturation + lag (2118) 1.58 (1.40–1.77) 1121 
(1089–1153)

0.0277 
(0.0345–0.0208)

36.1 (29.0–48.0)

NA to EU Imports + saturation + lag (6.08) 0.0194 
(0.0144–0.0245)

701 (290–1114) 0.499 (1–0) 2.0 (1.00–∞)

EU to AU Imports + saturation + lag (251) 1.212 (0.825–1.60) 366 (312–419) 0.0245 
(0.0386–0.0103)

40.9 (25.9–96.7)

AU to EU Imports + lag (2.0*) 0.0647 
(0.0173–0.112)

n/a 0.0259 (0.0690–0) 38.5 (14.5–∞)

NA to AU Imports + saturation + lag (99.6) 0.771 (0.448–1.09) 76 (68–83) 0.0721 
(0.141–0.00354)

13.9 (7.11–283)

AU to NA Imports + saturation + lag (8.37) 0.621 (0–2.23) 53 (1.60–104) 0.0153 (0.0598–0) 65.5 (16.7–∞)

* Although this low ΔAIC could be considered “substantial evidence” for both the full and reduced model (Burnham and Anderson 
2004), the dsat parameter estimate in the full model greatly exceeded the number of insect species in the donor region, thus the full model 
effectively lacked saturation and was not ecologically appropriate.
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indicate that even after accounting for differences in trade values, large asymmetries 
between flows remain unexplained by the models. Contrary to our expectations, and 
despite the important role of trade in facilitating the establishment of non-native spe-
cies, we must look to other explanations for these asymmetries.

Temporal variation in establishment rates may hold some clues as to the possible 
causes of the invasional asymmetries. While global establishments of non-native spe-
cies have not slowed (Seebens et al. 2017; MacLachlan et al. 2021), our results show 
that establishment rates may be slowing down at regional scales. Establishments of 
European insects in North America and Australasia per billion pounds sterling of im-
ports have drastically decreased since 1950 (Fig. 2a, c). Several authors have noted or 
predicted similar declines in the rate of accumulation of exotic species into the United 
States (Levine and D’Antonio 2003; Liebhold et al. 2017; MacLachlan et al. 2021; 
Seebens et al. 2021), with two possible explanations offered: depletion of source in-
vader pools, or improved biosecurity measures.

Unequal flows of non-native insects may arise from differences in the numbers of 
potential invaders present in the donor regions (Vermeij 1991). Our models attempted 
to predict the size of these invader pools, provided that a decreasing trend in establish-
ment rates could be suitably explained (based on ΔAIC) by the depletion of these pools. 
Our results suggest that some of the asymmetry in non-native insects exchanged be-
tween Europe and North America may be due to a ~60% larger pool of European insect 
invaders. However, this was not a significant difference, given the large confidence inter-
vals around these estimates. Described insect species richness in Europe is approximately 
equal to that of North America (de Jong et al. 2014; Arnett 2000). Again, this suggests 
that the asymmetry between Europe and North America cannot be explained by differ-
ences in invader source pool sizes (assuming that the ratio of described to undescribed 
species is not strikingly greater in North America and Australasia than it is in Europe).

Scientific effort almost certainly varies regionally, and this may impact the inter-
pretation of our results. Over the last few hundred years, Europe has had a consist-
ently greater population density than either North America or Australasia (Goldewijk 
2005). If this corresponds to greater scientific effort in Europe (more biologists/natu-
ralists per unit area), the proportion of established species which have been discovered 
and the proportion of native species which have been described are likely greater in 
Europe than in North America and Australasia. This has several implications for our 
analyses. First, it suggests that we may have relatively underestimated the numbers of 
European insects in North America and Europe and thus the asymmetries may be even 
more dramatic than our analyses suggest. Second, the published counts of described 
insect species may be biased in favor of a relatively greater number in Europe, which 
may predispose us towards suggesting that the asymmetries are due to a greater richness 
of European invaders. We attempted to account for differential scientific effort in our 
models, in the form of an annual probability of detection that could vary indepen-
dently for each of the six flows. Unfortunately, this parameter seldom had a clear opti-
mum, and the resulting confidence intervals are large. These wide confidence intervals 
may be due in part to using a fixed annual probability of detection (unchanging over 
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time). Future research may benefit from allowing the discovery probability to change 
over time, perhaps by incorporating regional time series of proxies for scientific effort.

Despite the lack of statistical significance, the larger estimate for the pool of Euro-
pean insect invaders in North America versus the opposite could be considered a point 
in favor of the European crucible hypothesis proposed by Niemelä and Mattson (1996). 
This hypothesis suggests that a history of extensive glaciations may have reduced the 
niche diversity and ‘invasibility’ of Europe by leading to extinctions of plant genera, 
while simultaneously selecting for competition-hardened species that thrive in disturbed 
habitats, making European species better invaders. However, Europe has been heav-
ily colonized by insects from regions other than North America, particularly the Asian 
Palearctic (Roques et al. 2020), suggesting that Europe is not notably resistant to invasion. 
Additionally, our models suggest that European insects established into North America 
81 times more quickly (per billion pounds sterling of imports) than North American in-
sects established into Europe. If this remarkable difference could be explained largely by 
European insects being better invaders, we would expect model estimates of the invader 
pool sizes between Europe and North America (using dsat as a proxy) to be considerably 
more different than they were found to be, and significantly so.

Although we have modelled declining establishment rates as the gradual depletion 
of source invader pools, it is also likely that biosecurity measures have contributed. In-
ternational biosecurity regulations, specifically phytosanitary measures, began in earnest 
in the 20th century (Roques 2010; Allen et al. 2017). With plant-feeding insects making 
up 58% of all non-native insect species in our dataset, strengthened phytosanitary meas-
ures applied to pathways including live plants, wood, and crops have almost certainly 
led to contemporary reductions in establishment rates. Europe has also had less strict 
phytosanitary measures than Australia and New Zealand for many decades (Eschen et al. 
2015), which may partly explain the relative lack of declines in the rates of discoveries of 
North American and Australasia insects (per billion pounds sterling) in Europe. However, 
strengthening biosecurity efforts are most likely to have influenced the latter half of our 
time series (1900 and onwards), whereas considerable asymmetry in the numbers of spe-
cies exchanged between Europe, North America, and Australasia had already accumulat-
ed by 1900. Therefore, differential biosecurity is an unlikely driver of these asymmetries.

Though historical invasion discoveries began much earlier, available import data 
only began in 1827. Given that the greatest establishment rates were seen at the very 
start of the dataset, it is possible – perhaps even likely – that the main causal agents ex-
plaining the dominance of Europe as a source of non-native insects in North America 
and Australasia were transient phenomena that began prior to 1827. This is compli-
cated further by invasion biology being a relatively new discipline: early records of 
novel species may be both lacking and underrepresented in scientific literature. After 
a non-native species establishes, there is typically a time lag until it is discovered (Essl 
et al. 2011). Although our models attempt to account for lags between establishment 
and discovery, we used an annual probability of detection that does not change over 
time, and the lag estimates often have wide confidence intervals. Therefore, we are not 
confident that our data could be used to extrapolate far into the past.
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Well before our dataset begins, North America and Australasia were experiencing a 
period of dramatic change as European colonies were founded. This colonization pro-
moted both deliberate and accidental introductions of European plants (Lenzner et al. 
2018). Introductions of exotic plants by colonial powers accelerated in the 19th and early 
20th centuries, with a lasting impact on the global composition of floral communities 
(Lenzner et al. 2022). This is noteworthy, because plant imports and introductions may 
be a strong predictor of insect invasions (Liebhold et al. 2012; Liebhold et al. 2018; 
Bonnamour et al. 2023). North America and Australasia each have nearly twice as many 
extra-continental non-native plant species as Europe, and Europe is second to Asia as a 
dominant source of non-native plants worldwide (van Kleunen et al. 2015). This history, 
and the close relationships between insects and plants, suggest a potential explanation 
for both the existence of the asymmetries we observe and their temporal trends. We sug-
gest that future research focuses on European colonization and coincident plant intro-
ductions as possible explanations for why Europe has donated so many more non-native 
insects into North America and Australasia than it has received from these regions.

We cannot rule out other factors not addressed here, such as differences in es-
tablishment probability driven by climate suitability or biotic resistance, the effect of 
establishments originating from non-native populations (‘bridgeheads’), or differences 
in propagule pressure driven by the specific types of trade goods exchanged between 
regions. This latter factor is likely the most important to consider for future research, 
as overall import values may not capture changes over time in the relative contribution 
of specific commodities (such as plants and plant products) to overall trade. From the 
discussion above, we know to expect close associations between insects and plant prod-
ucts. Plant products may also have low values per unit of volume, thus being poorly 
represented in overall import values. Analyses which considered different commodities 
separately were conducted by Morimoto et al. (2019) but these were limited to Japan, 
1951–2016. Data for continent-scale regions (i.e., North America and Europe) going 
back into the early 1800s do not exist, so far as we are aware, in any cohesive form. To 
compile such data from historical records would be a major interdisciplinary effort and 
was beyond the scope of our present research. Regardless, our results are an important 
step forward in confirming the existence of strong asymmetries in insect establish-
ments between our focal regions and suggesting possible explanations for their cause.
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Abstract
Global plant trade represents one of the main pathways of introduction for invertebrates, including 
insects, throughout the world. Non-native insects include some of the most important pests affecting 
cultivated and ornamental plants worldwide. Defining the origins and updating the distribution of non-
native invasive species is pivotal to develop effective strategies to limit their spread. The agave weevil, 
Scyphophorus acupunctatus (Coleoptera, Dryophthoridae), is a curculionid beetle native to Central and 
North America, although it also occurs in Eurasia, Africa, Oceania and South America as a non-native 
species. Despite being widespread, the extent of occurrence and origins of European populations of the 
agave weevil have been overlooked. In the present study, the current and potential worldwide distribution 
of S. acupunctatus was assessed and an analysis of its genetic diversity in the native and non-native ranges 
was performed. By analysing occurrences from local phytosanitary bulletins and citizen-science platforms, 
the agave weevil was confirmed to be widely distributed and to occur on all continents, except Antarctica. 
Additionally, there is potential for expansion throughout the world, as estimated by species distribution 
models. Nucleotide and haplotype diversity of the COXI mitochondrial gene (about 650 bp) was lower 
in the non-native (n = 39 samples) than native populations (n = 26 samples). The majority of introduced 
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individuals belonged to the same haplotype, suggesting that most introductions in Europe might have 
occurred from a small geographical area in Central America. Constant transboundary monitoring and 
national laws must be considered to reduce the spread of the agave weevil, given that a bridgehead effect 
may occur from non-native populations to new suitable areas.

Keywords
Agave, mitochondrial COXI gene, non-native invasive insects, population genetics, species distribution model

Introduction

Non-native invasive species are taxa that have been introduced and/or spread into re-
gions outside their native ranges and have subsequently established and spread, affect-
ing local ecosystem dynamics (CBD 2010). Since the Holocene and the earliest explor-
ers, human migration has been essential to the movement of species from their native 
ranges to areas where they were not present (Foster et al. 2002; Banks et al. 2015). 
Globalisation has intensified the human-assisted spread of living species in non-na-
tive areas, following international trade and human journeys (Meyerson and Mooney 
2007). In addition, the creation of ecological corridors has facilitated the range expan-
sion of many taxa in non-native countries (Mattson et al. 2007; Horsák et al. 2019).

Crop pests are widely distributed worldwide due to accidental introductions 
through the intensive trade of goods, including plants of ornamental and agronomic 
interest (Deutsch et al. 2018). Amongst crop pests, many invertebrate species have 
been thoroughly studied, particularly in biocontrol and pest management research 
(Geier 1966; Parsons et al. 2020). Well-studied crop pest species include Halyomorpha 
halys (Stål) and Tuta absoluta (Meyrick) (Biondi et al. 2018; Cianferoni et al. 2018). 
However, most non-native insect pests have been poorly investigated and their impact 
and distribution are currently still under assessment (e.g. Corythauma ayyari (Drake) 
and Stator limbatus (Horn): Mazza et al. (2020); Cocco et al. (2021)). For instance, 
palms in Mediterranean countries are threatened by both the well-known red palm 
weevil, Rhynchophorus ferrugineus (Olivier) (Soroker and Colazza 2017) and the still 
mostly unknown and overlooked palm borer moth, Paysandisia archon (Burmeister) 
(Mori et al. 2023). Curculionid coleopterans (e.g. weevils) are an important threat 
to many cultivated species including corn, figs, palms and other ornamental plants 
(Guzmàn et al. 2012; Inghilesi et al. 2015; Farina et al. 2020). Amongst those, the aga-
ve weevil, Scyphophorus acupunctatus Gyllenhal (Coleoptera, Dryophthoridae), is one 
of the least-studied species. This weevil is native to southern North America, Mexico 
and other countries in Central America (Vaurie 1971), although it has been introduced 
to several parts of the world including American islands and South America (US Virgin 
Islands and Hawaii, Cayman Islands, Puerto Rico, Cuba, Haiti, Jamaica, Dominican 
Republic, Curaçao, Colombia, Venezuela and Brazil), Africa (Kenya, Tanzania and 
South Africa), Asia (Indonesia and Saudi Arabia), Oceania (South Australia and Fiji Is-
lands) and Europe (Portugal including Madeira, Spain including Canary and Balearic 
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Islands, France, Italy, Croatia, Greece and Cyprus: Setliff and Anderson (2011); CABI/
EPPO (2014); Vassiliou and Kitsis (2015); Andrade (2022); Pernek and Cvetković 
(2022)). Populations of S. acupunctatus in Central America (Honduras, Belize, Guate-
mala, Costa Rica, El Salvador and Nicaragua) have an uncertain origin, as it is unclear 
whether they are native or not. These populations may represent an undocumented 
natural range expansion from northern countries, i.e. Mexico, in recent times or they 
might have been introduced through plant and horticultural trade (Vassiliou and Kitsis 
2015; EPPO 2022a). Occurrences of the agave weevil in Israel, New Zealand, Queens-
land (Australia), Argentina and the United Kingdom that have been reported by some 
authors (CABI 2023), have never been confirmed in the scientific literature, nor in 
citizen-science platforms or social networks. In general, the distribution of this weevil 
is mainly known at the country level, with little known about its actual distribution 
within each country (Martín-Taboada et al. 2019).

The agave weevil is a major pest of agave. Agaves (Asparagaceae, Agavoideae/Aga-
vaceae) include several genera and species that have been introduced worldwide for 
ornamental purposes (Thiede et al. 2019). Most agave species are susceptible to this 
weevil, particularly those belonging to the genus Agave (Vaurie 1971; Bolaños et al. 
2014; Palemòn-Alberto et al. 2022). Plants are directly damaged by the agave weevil 
whose larvae feed on agave heads by boring galleries (Figueroa-Castro et al. 2016). 
The consumption of plant parts by the agave weevil larva may cause plant mortality 
(Aquino-Bolaños et al. 2013). Adults cause little damage in comparison to larvae.

The taxonomy of the Scyphophorus genus is still unresolved (Chamorro et al. 
2016). Although two species are traditionally recognised, S. acupunctatus and S. yuc-
cae Horn, no reliable information on the phylogeography of this genus is available. 
Genetic analyses of Scyphophorus spp. have been carried out on a limited sample size 
or in limited geographical areas of Central America (Azuara-Domínguez et al. 2013; 
Chamorro et al. 2016). Furthermore, no molecular data are available to disentangle the 
two Scyphophorus species, given that the only deposited sequence of S. yuccae is actu-
ally belonging to S. acupunctatus, questioning the actual validity of the former species 
(Chamorro et al. 2016). Assessing the geographic origin of non-native populations of 
S. acupunctatus may help to provide information for plant trade controls and assist 
with preventing new invasions. Although S. acupunctatus is also recorded in Africa, SE 
Asia and Australia, most non-native populations of this weevil occur in Europe, where 
S. acupunctatus has been introduced through the plant trade (e.g. Beaucarnea recurvata 
Lem., Agave americana L. and Yucca spp.), most likely from different countries of 
Central and North America (e.g. from Nicaragua to Italy: EPPO (2022b)). The agave 
weevil was reported for the first time in the Netherlands in 1980 (van Rossem et al. 
1981) and, subsequently, in Italy, France, Spain and Greece (Colombo 2000; Flinch 
and Alonso-Zarazaga 2007; EPPO 2008; Kontodimas and Kallinikou 2010). There-
fore, we focused mostly on European and Mediterranean countries, as these countries 
include most of the non-native range of this weevil species.

The aims of our work were to: (i) update the distribution of the agave weevil in non-
native areas with special regard to Mediterranean countries; (ii) determine the climatic 
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suitability throughout the world, with special regard to Europe, where most non-native 
populations occur and predict its potential distribution; and (iii) assess the phylogeo-
graphic pattern of S. acupunctatus and trace the origin of European populations.

Materials and methods

Updating the distribution of the agave weevil

The distribution of the agave weevil in its non-native range was updated by searching for 
published and unpublished records in the grey and scientific literature and online data-
bases, including records collected through citizen-science and validated by experts (i.e. 
iNaturalist: www.inaturalist.org; GBIF: www.gbif.org DOI: https://doi.org/10.15468/
dl.pd22mh; Forum Natura Mediterraneo: www.naturamediterraneo.com; Forum En-
tomologi Italiani: www.entomologiitaliani.net. All accessed on 15.05.2023). The search 
for occurrence records was conducted from October 2022 to May 2023. Further search-
es were performed on free posts with photos on Social Networks (e.g. Facebook) and on 
video-sharing websites (e.g. YouTube). The literature search was carried out by assessing 
studies in online databases (i.e. ISI Web of Science, Scopus, Zoological Records and 
Google Scholar). Search terms included all possible combinations of the words: ‘agave 
weevil’, ‘Scyphophorus acupunctatus’, ‘distribution’ and ‘non-native species’. The same 
words were searched in English, French, Spanish, Portuguese and Italian. Maps repre-
senting the agave weevil distribution using geographical coordinates were downloaded 
from the ESRI (https://server.arcgisonline.com) and Eurostat (Countries – GISCO – 
Eurostat, europa.eu) websites. The distribution of the weevil was mapped using QGIS 
software version 3.28 Firenze (QGIS Development Team 2019).

The suitability of current and future climates for the agave weevil: preliminary 
analyses

The potential worldwide distribution of S. acupunctatus was modelled to identify areas 
throughout the Globe that are climatically suitable for this weevil. To the best of our 
knowledge, no previous studies have focused on the climatic preferences of this weevil, 
despite its high impact on agro-economy and urban parks.

Occurrence records from both the native and non-native ranges were collected, 
representing the whole realised ecological niche (Srivastava et al. 2021). This approach 
resulted in a total of 1525 high-accuracy occurrence records (uncertainty < 1 km). The 
raw dataset underwent a meticulous analysis to identify and eliminate duplicate entries. 
This process was carried out in two steps: an initial manual inspection employing the 
duplicate search function in Microsoft Excel (Microsoft Office 365), followed by subse-
quent verification using the “duplicated” function of “spocc” package (Chamberlain et 
al. 2017) in the R software version 4.1.2 (R Core Team 2019). By implementing these 
measures, overlapping data points from various sources were successfully identified and 
removed. A final new dataset of 1135 occurrences without duplicates was obtained.
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Moran’s correlograms were employed to test for the presence of significant spatial 
autocorrelation (De Marco et al. 2008), using spatial analysis tools available in ArcGIS 
Pro (ESRI 2011). The spatial autocorrelation analysis was conducted using the final 
dataset as the input file. In detail, we assessed the spatial autocorrelation between 1 and 
10 km at 1 km intervals (De Marco et al. 2008; Crase et al. 2014).

The Moran’s correlogram is a graphical representation of the spatial autocorrelation 
coefficient (Moran’s I) at different distance intervals, which helps to identify patterns 
of spatial dependence and assess whether neighbouring observations are more similar 
or dissimilar from each other than expected by chance (Crase et al. 2014). The Moran’s 
I coefficient ranges from -1 to 1, where positive values indicate positive spatial auto-
correlation (similar values tend to cluster together), negative values indicate negative 
spatial autocorrelation (dissimilar values tend to be clustered) and values close to zero 
indicate no spatial autocorrelation (values are randomly distributed across space: Crase 
et al. (2014), Suppl. material 1: fig. S1).

In this work, the computed Moran’s Index was 0.03, indicating a slight positive 
spatial autocorrelation in the dataset. The Z-score, which measures the standard devia-
tion from the expected mean under the assumption of spatial randomness, was 0.18. 
The associated P-value was 0.86, suggesting that the observed spatial pattern was not 
significantly different from what would be expected by chance. Overall, these findings 
suggested the absence of significant spatial clustering or dispersion in the analysed spa-
tial context. The final dataset used in the model consisted of 718 occurrences.

A distance threshold of 10 km was set to define spatial relationships between ob-
servations. This threshold represents the maximum distance at which observations are 
spatially related. The analysis was performed without any specific selection set, mean-
ing that all observations within the study area were included in the analysis. No weight 
matrix file was used, suggesting that all observations were assumed to have equal influ-
ence in the analysis.

Dispersal abilities of Scyphophorus weevils are limited (< 50 metres), as reported by 
the scientific literature (Huxman et al. 1997; Figueroa-Castro et al. 2016). In line with 
the spatial autocorrelation analysis, a 10 km distance was selected to filter the occurrenc-
es (Di Cola et al. 2017; Montalva et al. 2017; Atauchi et al. 2018; Guevara et al. 2018).

In the final analysis, occurrences were filtered by selecting the minimum distance 
of 10 km between different occurrence points using the “spThin” R package (Aiello-
Lammens et al. 2015). This distance threshold allows for the consideration of occur-
rences as independent from one another and aligns with the resolution of climate data 
(Ancillotto et al. 2023).

Selection of variables

The modelling process was started by obtaining 19 climatic variable layers from the 
Worldclim (version 2.1) website, with a resolution of 2.5 minutes of a degree (Fick and 
Hijmans 2017). Subsequently, a Principal Component Analysis (PCA: Suppl. mate-
rial 1: figs S2, S3) was performed using the “ade4” package in R to identify variables 
with a high collinearity and explore their correlation structure (Fourcade et al. 2014). 
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Variables were carefully chosen for modelling S. acupunctatus by excluding those show-
ing strong intercorrelation. As a result, six highly-significant variables were selected to 
model the distribution of S. acupunctatus (Suppl. material 1: table S1). These variables 
included BIO1 (Annual Mean Temperature), BIO4 (Temperature Seasonality), BIO6 
(Minimum Temperature of the Coldest Month), BIO7 (Temperature Annual Range), 
BIO9 (Mean Temperature of the Driest Quarter) and BIO11 (Mean Temperature of 
the Coldest Quarter).

Additionally, the Variance Inflation Factor (VIF) for all selected variables was 
computed using the “usdm” package in R (Naimi et al. 2014). The VIF values were 
examined to ensure that all values were below 3, indicating a very low level of mul-
ticollinearity (Prakash 2019). Specifically, variables with a Pearson’s correlation coef-
ficient of below 0.70 or above -0.70 were retained (Alin 2010; Kock and Lynn 2012; 
Regos et al. 2020) (Suppl. material 1: table S2). The six bioclimatic variables that 
were selected to model the distribution of S. acupunctatus under current climatic 
conditions were also chosen to model the distribution of the species under future 
climates, spanning from 2041 to 2070. Future climate data were downloaded under 
the Representative Concentration Pathways (RCP 2.6) scenario. The RCP 2.6 future 
bioclimatic raster is widely acknowledged in literature as a representative case for 
mitigation strategies aimed at constraining the rise of global mean temperature to 
2 °C (van Vuuren et al. 2011).

Algorithm selection

A first comprehensive evaluation was conducted to estimate the performance of nine 
algorithms through a combination of R packages such as “ENMeval” and “sdm” (Kass 
et al. 2021; Montoya-Jiménez et al. 2022).

The evaluation encompassed a range of algorithms, namely the Generalised Lin-
ear Model (GLM, with a logit-link function), Boosted Regression Trees (BRT, with 
15% holdout validation point and bagging fraction set to 0.5: Mui (2015)), Random 
Forest (RF, with max. tree depth = 2–4: Valavi et al. (2021)), Maximum Entropy 
(MaxEnt), Generalised Additive Model (GAM), Multivariate Adaptive Regression 
Splines (MARS), Geometric Brownian Motion (GBM), BIOCLIM and Functional 
Data Analysis (FDA: Pecchi et al. 2019; Steen et al. 2021). The goal was to identify 
the most suitable models for the study and reduce computational efforts. To achieve 
this, along with presence records, 6000 random background points (1000 background 
points per continental area where the occurrence of S. acupunctatus is reported, i.e. 
North America, South America, Europe, Asia, Africa and Oceania) were generated 
(Barber et al. 2022; Buonincontri et al. 2023). In particular, background points were 
selected in a buffer of 10,000 metres around occurrences, in line with previous litera-
ture (Iturbide et al. 2015; Rotllan-Puig and Traveset 2021). Evaluation metrics, such 
as the Area Under the Curve (AUC) and True Skill Statistics (TSS), were employed to 
assess the model performance (Suppl. material 1: table S3: Steen et al. (2021)). Unsuit-
able models (AUC < 0.90; TSS < 0.75) were discarded.
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Modelling

Species Distribution Models (SDM) were performed using the R packages “biomod2” 
and “sdm” (Thuiller 2014; Naimi and Araújo 2016). Following the previous evaluation, 
only the most suitable model algorithms were selected for the inclusion in the ensemble 
model. The selection process aimed at choosing models with the highest performance 
to promote accurate forecasts and ensure reliable results (Thuiller 2014). An ensemble 
species distribution model was fitted using four algorithms: MaxEnt, RF, GLM and 
GAM (Araujo and New 2007). By incorporating both statistical and machine-learning 
approaches, the ensemble approach enables a comprehensive analysis and assessment 
of the species’ potential distribution, which cannot be reached with a single-model ap-
proach when the performance of the individual models is low (Araújo and New 2007; 
Buisson et al. 2010; Hao et al. 2019). This integration of different modelling techniques 
enhances the robustness of the analysis and improves the overall understanding of the 
studied phenomenon. Amongst the obtained models, the RF performed the best, with 
an AUC = 0.99 and TSS = 0.90 (Suppl. material 1: table S3).

The results of the models were assembled with a weighted average of all predic-
tions from all fitted models (Buisson et al. 2010; Smith et al. 2017). The variables for 
future projections (2041–2070) were then downloaded. Future projections of these 
variables were obtained for the emission-conservative scenario known as RPC 2.6. 
Built models were then projected under future climatic conditions. The bioclimatic 
rasters for future climates at a 2.5-minute degree resolution were evaluated following 
the same procedures described earlier (Ancillotto et al. 2016, 2020; Cancellario et al. 
2023). This approach provided valuable insights into the possible impacts of climate 
change on the climatic suitability of the world for the agave weevil. For the RCP 2.6 
scenario and for each variable, the median of five Global Circulation Models (GCMs) 
was used: GFDL-ESM4, UKESM1-0LL, MPIESM1-2-HR, IPSLCM6A-LR and 
MRI-ESM2-0 (Mori et al. 2023). Models were validated using spatial cross validation 
with the R package “blockCV” (Valavi et al. 2019). The K-fold cross validation was 
performed, with K = 5 as determined through the “buffer evaluation”, i.e. by using the 
function “cv_buffer” (Pohjankukka et al. 2017).

Model performance was measured using TSS and AUC. For present and future 
projections, an occurrence probability raster was obtained for each statistical model 
by calculating the mean of all the projections with a TSS > 0.75 and an AUC > 0.90 
(Mori et al. 2023).

Then, differences between predictions under future and current climates were ob-
tained using consensus models, by subtracting the average predictions under current 
climates from those under future climate. Raster cells with positive values indicated 
a predicted improvement in climatic conditions for S. acupunctatus, whereas raster 
cells with negative values indicated a decreased climatic suitability for the future. To 
estimate the uncertainty in the predictions due to disagreements amongst four differ-
ent algorithms, subtraction per model was performed and the following values were 
assigned: value -1 was assigned to all cells with negative values of the average single-
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model predictions; similarly, the value +1 was assigned to all cells with positive values 
and 0 otherwise (Mori et al. 2023).

The consensus of model predictions was obtained by summing the four three-value 
maps (-1, 0, 1). A raster map was obtained with values ranging between -4 and +4, 
with extreme values suggesting that all the four statistical models predicted a decrease 
(-4) or an increase (+4) in the probability of occurrence, whereas intermediate values 
indicated a partial (±2; ±3) or high disagreement (-1 to +1) amongst the predictions 
of the algorithms (Suppl. material 1: fig. S4).

The potential non-analogue climate was checked using a Multivariate Environmen-
tal Similarity Surface (MESS) analysis (Elith et al. 2011; Fischer et al. 2011). The MESS 
analysis estimates the similarity between environments used to train the model and the 
new projected areas for every grid cell (Elith et al. 2011). The analysis was used to detect 
regions with environments that are outside the range of environments in the training 
area (Fischer et al. 2011). Climatic similarities between regions and periods were deter-
mined by MESS values. Negative values represent non-analogue climatic conditions.

Phylogenetic and genetic diversity analysis

A total of 32 individual samples of S. acupunctatus were collected in Europe and pre-
served in 95% ethanol at -20 °C, before genetic analyses. Four other samples from 
Liguria (Pallanca and Hanbury Botanical Gardens, located in Bordighera and Ven-
timiglia, respectively, Imperia Province, NW Italy) were previously collected by the 
CNR-IRET researchers and stored in absolute ethanol at the laboratory of CNR-IRET 
in Sesto Fiorentino (Florence, Italy) (Table 1).

Genomic DNA from all samples was extracted using QIAGEN Blood and Tis-
sue kit (Qiagen Inc., USA), following the manufacturer’s protocol. A fragment of 
the mitochondrial DNA Cytochrome Oxidase I (COXI) was amplified and com-
pared with sequences deposited in the GenBank. COXI was amplified using the 
primers LCO1490: 5’-GGTCAACAAATCATAAAGATATTGG-3’ and HCO2198: 
‘5-TAAACTTCAGGGTGACCAAAAAATCA-3’ (Folmer et al. 1994). These primers 
were previously used to amplify the same gene in S. acupunctatus from Central America 
for species-identification purposes (Azuara-Domínguez et al. 2013; Chamorro et al. 
2016: Table 2) using the amplification protocol reported by Baratti et al. (2005) and 
Chamorro et al. (2016).

PCR products were run on a 1.5% agarose gel, then purified (ExoSAP-IT, Amersh-
am Biosciences) and finally sent to BMR Genomics (Padua, Italy) for Sanger sequenc-
ing. Electropherograms were visualised with the software Chromas 1.45 (http://www.
technelysium.com.au. Accessed on 17.12.2022). The sequences were visually corrected 
and aligned using ClustalX 2.1 (Thompson et al. 1997), together with all the available 
COXI sequences of S. acupunctatus retrieved from GenBank and BOLD System, for a 
total of 65 sequences (627–903 bp: Table 2).

The phylogenetic reconstruction was conducted by applying Neighbour Join-
ing (NJ), Bayesian Inference (BI) and Maximum Likelihood (ML) methods. 
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Table 1. Location of the 32 sampling sites for Scyphophorus acupunctatus in Europe. Coordinates are 
expressed in UTM WGS84.

Sample ID Location of origin Country Latitude (°N) / Longitude (°E)
S1 Isola Rossa - Costa Paradiso, Sardinia Italy 41.04893°N, 8.93734°E
S2 Isola Rossa - Costa Paradiso, Sardinia Italy 41.04588°N, 8.93496°E
S3 Isola Rossa - Costa Paradiso, Sardinia Italy 41.04454°N, 8.93399°E
S4 Isola Rossa - Costa Paradiso, Sardinia Italy 41.04150°N, 8.92494°E
S5 Isola Rossa - Costa Paradiso, Sardinia Italy 41.03500°N, 8.92161°E
S6 Isola Rossa - Costa Paradiso, Sardinia Italy 41.03612°N, 8.92197°E
S7 Isola Rossa - Costa Paradiso, Sardinia Italy 41.03348°N, 8.91776°E
S8 Isola Rossa - Costa Paradiso, Sardinia Italy 41.02657°N, 8.89292°E
S9 Isola Rossa - Costa Paradiso, Sardinia Italy 41.02547°N, 8.89186°E
S10 Isola Rossa - Costa Paradiso, Sardinia Italy 41.02617°N, 8.89052°E
S22 Villamaniscicle coll del Quirc, Girona Spain 42.38092°N, 3.07618°E
S23 Villamaniscicle coll del Quirc, Girona Spain 42.38092°N, 3.07618°E
S29 Tamaracciu, Corsica France 41.55294°N, 9.31810°E
S30 Isola Rossa - Costa Paradiso, Sardinia Italy 41.02632°N, 8.88836°E
S31 Isola Rossa - Costa Paradiso, Sardinia Italy 41.02580°N, 8.88484°E
S32 Isola Rossa - Costa Paradiso, Sardinia Italy 41.02669°N, 8.88217°E
S33 Isola Rossa - Costa Paradiso, Sardinia Italy 41.02668°N, 8.88250°E
S34 Isola Rossa - Costa Paradiso, Sardinia Italy 41.01517°N, 8.88777°E
S35 Isola Rossa - Costa Paradiso, Sardinia Italy 41.01586°N, 8.88914°E
S36 Isola Rossa - Costa Paradiso, Sardinia Italy 41.01103°N, 8.88029°E
S37 Isola Rossa - Costa Paradiso, Sardinia Italy 41.01449°N, 8.87612°E
S38 Isola Rossa - Costa Paradiso, Sardinia Italy 41.05372°N, 8.94518°E
S44 La Crau, Var France 43.16317°N, 6.09292°E
S47 Sperlonga, Latium Italy 41.25847°N, 13.43976°E
S57 Cittadella Universitaria, Catania, Sicily Italy 37.52546°N, 15.07199°E
S59 Cittadella Universitaria, Catania, Sicily Italy 37.52546°N, 15.07199°E
S61 Località Balzi Rossi, Ventimiglia, Liguria Italy 43.78361°N, 7.53638°E
Spal1 Pallanca Garden, Bordighera, Liguria Italy 43.78835°N, 7.68749°E
Spal2 Pallanca Garden, Bordighera, Liguria Italy 43.78839°N, 7.68736°E
Shan1 Hanbury Garden, Ventimiglia, Liguria Italy 43.78408°N, 7.55429°E
Shan2 Hanbury Garden, Ventimiglia, Liguria Italy 43.78445°N, 7.55415°E
Españ1 Passeig Maritim de la Barceloneta, Barcelona Spain 41.38474°N, 2.19592°E

The Kimura-2-parameters nucleotide substitution model was selected by jModelTest 
2 (Darriba et al. 2012) with the Akaike Information Criterion (AIC) and corrected for 
rate heterogeneity amongst sites with a Gamma distribution. The NJ was performed 
by MEGA 11 software with 10,000 bootstrap replicates (Tamura et al. 2021). The BI 
analysis was performed with MrBayes v.3.12 (Ronquist and Huelsenbeck 2003), using 
the best model selected. Four chains of Markov Chain Monte Carlo were simultane-
ously run and sampled every 1000 generations for 4 million generations. The first 1000 
sampled trees from each run were discarded as burn-in. The ML phylogenetic analysis 
was conducted with SeaView software (Gouy et al. 2010). Outgroups (Dryophthorus 
corticalis (Paykull), Stromboscerini sp. and Aclees taiwanensis Kôno) were selected in line 
with their close phylogenetic placement within the family to the study taxon. Nucleotide 
diversity, haplotype diversity, number of parsimony-informative and variable sites were 
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Table 2. Accession numbers of sequences used for the phylogenetic reconstructions of Scyphophorus 
acupunctatus.

Accession 
number

Sampling location Sampling country Population 
status

Reference

AY131110 Not available Continental USA Native Direct submission to GenBank
AY131122 Massachusetts Continental USA Native Direct submission to GenBank
GBCL49633-19 California Continental USA Native Direct submission to BOLD Systems
HM433616 Colorado Continental USA Native Direct submission to GenBank
KU896920 Arizona Continental USA Native Chamorro et al. (2016)
KU896921 Arizona Continental USA Native Chamorro et al. (2016)
KU896922 Arizona Continental USA Native Chamorro et al. (2016)
KU896923 Arizona Continental USA Native Chamorro et al. (2016)
KU896924 Arizona Continental USA Native Chamorro et al. (2016)
JX134898 Not available Mexico Native Azuara-Dominguez et al. (2013)
JX134899 Not available Mexico Native Azuara-Dominguez et al. (2013)
JX134900 Not available Mexico Native Azuara-Dominguez et al. (2013)
JX134901 Not available Mexico Native Azuara-Dominguez et al. (2013)
JX134902 Not available Mexico Native Azuara-Dominguez et al. (2013)
JX134903 Not available Mexico Native Azuara-Dominguez et al. (2013)
JX134904 Not available Mexico Native Azuara-Dominguez et al. (2013)
JX134905 Not available Mexico Native Azuara-Dominguez et al. (2013)
JX134906 Not available Mexico Native Azuara-Dominguez et al. (2013)
JX134907 Not available Mexico Native Azuara-Dominguez et al. (2013)
JX134908 Not available Mexico Native Azuara-Dominguez et al. (2013)
JX134909 Not available Mexico Native Azuara-Dominguez et al. (2013)
JX134910 Not available Mexico Native Azuara-Dominguez et al. (2013)
ASSCR6360-12 Not available Costa Rica Most likely native Direct submission to BOLD Systems
ASSCR6362-12 Not available Costa Rica Most likely native Direct submission to BOLD Systems
KU896927 Not available Guatemala Most likely native Chamorro et al. (2016)
KU896929 Not available Guatemala Most likely native Chamorro et al. (2016)
OQ198464 La Crau Continental 

France
Non-native Present work

OQ198455 Corsica France Non-native Present work
OQ193159 Isola Rossa – Costa 

Paradiso, Sardinia
Italy Non-native Present work

OQ193160 Isola Rossa – Costa 
Paradiso, Sardinia

Italy Non-native Present work

OQ193161 Isola Rossa – Costa 
Paradiso, Sardinia

Italy Non-native Present work

OQ193162 Isola Rossa – Costa 
Paradiso, Sardinia

Italy Non-native Present work

OQ193165 Isola Rossa – Costa 
Paradiso, Sardinia

Italy Non-native Present work

OQ193176 Isola Rossa – Costa 
Paradiso, Sardinia

Italy Non-native Present work

OQ193177 Isola Rossa – Costa 
Paradiso, Sardinia

Italy Non-native Present work

OQ194007 Isola Rossa – Costa 
Paradiso, Sardinia

Italy Non-native Present work

OQ194008 Isola Rossa – Costa 
Paradiso, Sardinia

Italy Non-native Present work
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Accession 
number

Sampling location Sampling country Population 
status

Reference

OQ194015 Isola Rossa – Costa 
Paradiso, Sardinia

Italy Non-native Present work

OQ194016 Isola Rossa – Costa 
Paradiso, Sardinia

Italy Non-native Present work

OQ198466 Isola Rossa – Costa 
Paradiso, Sardinia

Italy Non-native Present work

OQ194025 Isola Rossa – Costa 
Paradiso, Sardinia

Italy Non-native Present work

OQ194031 Isola Rossa – Costa 
Paradiso, Sardinia

Italy Non-native Present work

OQ194033 Isola Rossa – Costa 
Paradiso, Sardinia

Italy Non-native Present work

OQ198456 Isola Rossa – Costa 
Paradiso, Sardinia

Italy Non-native Present work

OQ198458 Isola Rossa – Costa 
Paradiso, Sardinia

Italy Non-native Present work

OQ198459 Isola Rossa – Costa 
Paradiso, Sardinia

Italy Non-native Present work

OQ198460 Isola Rossa – Costa 
Paradiso, Sardinia

Italy Non-native Present work

OQ194017 Balzi Rossi, 
Ventimiglia, Liguria

Italy Non-native Present work

OQ198461 Pallanca Gardens, 
Liguria

Italy Non-native Present work

OQ198457 Pallanca Gardens, 
Liguria

Italy Non-native Present work

OQ193174 Hanbury Gardens, 
Liguria

Italy Non-native Present work

OQ198462 Hanbury Gardens, 
Liguria

Italy Non-native Present work

OQ194018 Catania, Sicily Italy Non-native Present work
OQ194019 Catania, Sicily Italy Non-native Present work
OQ198463 Sperlonga, Latium Italy Non-native Present work
OQ193157 Villamaniscicle Spain Non-native Present work
OQ193158 Villamaniscicle Spain Non-native Present work
OQ193175 Passeig Maritim 

de la Barceloneta, 
Barcelona

Spain Non-native Present work

MW520550 Porto Santo Portugal Non-native Stüben et al. (2021)
HM433615 Not available Virgin Islands Non-native Direct submission to GenBank
KU896925 Not available Virgin Islands Non-native Chamorro et al. (2016)
KU896926 Not available Virgin Islands Non-native Chamorro et al. (2016)
KU896928 Not available Virgin Islands Non-native Chamorro et al. (2016)
KU896931 Not available Virgin Islands Non-native Chamorro et al. (2016)
KU896932 Not available Virgin Islands Non-native Chamorro et al. (2016)

computed both for the native and the invaded ranges of S. acupunctatus through Mega 
XI (Tamura et al. 2021). A Templeton, Crandall and Sing (TCS) parsimony Network 
(Clement et al. 2000) connecting haplotypes was obtained with popART (http://popart.
otago.ac.nz,  Accessed on 20.12.2022) with the aim to visualise the relationship amongst 
the new and previously-described mitochondrial haplotypes (see Sciandra et al. (2022)).
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Results

Species distribution

Overall, the agave weevil was reported on all continents, except for Antarctica. Based 
on genetic analyses and literature, the native range of this species includes the USA, 
Mexico and, most likely, the rest of continental Central America (Vaurie 1971). The 
invasive range of this species (Fig. 1a) includes four South American countries (Brazil, 
Colombia, Ecuador and Venezuela), the insular USA (including Hawaii and Virgin 
Islands), Caribbean islands, southern European countries (Portugal including Madei-
ra, Spain including Canary and Balearic Islands, Italy including Sardinia, Sicily and 
several small islands, Greece including Aegean Islands, Croatian islands and Cyprus), 
South Africa, Kenya, Tanzania, Saudi Arabia, Java, Sumatra, Borneo and southern 
Australia (Fig. 1b). Occurrences from other countries (i.e. Israel, the Netherlands, UK 
and Argentina) were not confirmed and may represent single interceptions.

Species distribution models

Projections of each statistical model (Suppl. material 1: fig. S5) produced slightly differ-
ent results that were averaged in the ensemble model. The ensemble model for current 
climate showed a high climatic suitability in the native range and in some parts of the 
non-native range, i.e. the eastern areas of South Africa, the northern Rift Valley (i.e. from 
Eritrea and Ethiopia to Tanzania), parts of South America and the central and western 
Mediterranean countries (Fig. 2a). Highly suitable areas were also predicted in southern 
Australia, where S. acupunctatus has been scarcely recorded so far, the area around the 
Caspian Sea and the Middle East, where the weevil has not yet been recorded (Fig. 2a).

Considering future climate scenarios forecast for 2070, the areas suitable for S. acu-
punctatus would increase especially towards temperate-cold latitudes, both in Europe 
and worldwide (Fig. 2b).

Values representing the degree of climatic similarity between future and present 
conditions are shown in Fig. 2c, with an increase in suitability of 72.62% and a de-
crease of 27.43%, based on the number of cells around the Globe. There was agree-
ment between the different algorithms used to predict the species’ distribution under 
future climates (Fig. 2d; Suppl. material 1: fig. S5). The climate suitability of most 
temperate areas of both Hemispheres will increase for S. acupunctatus in the future.

The MESS analysis showed that the projection area shared a medium to high envi-
ronmental similarity with many countries in the training area, except for a few north-
ern Eurasian areas (Suppl. material 1: fig. S6).

Genetic analyses

The COXI sequences were obtained from all analysed samples. All sequences generated 
in the present study were deposited in GenBank (Table 2). The alignment of COXI gene 
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Figure 1. a Worldwide distribution of Scyphophorus acupunctatus in both native (central and southern 
North America) and non-native ranges (n = 1135 occurrences) b distribution of S. acupunctatus in southern 
European Countries (orange dots refer to occurrence sites of agave weevil). The white dotted line includes 
occurrences from the native range, whereas the solid red line includes occurrences of uncertain origin. Oc-
currences outside dotted lines are non-native populations. Sources: Data SIO, NOAA, US Navy, NGA, 
GEBCO 2016 TerraMetrics 2016 Google; Wikimedia Commons, user Norman Einstein, CC-BY-SA-3.0.

consists of 627–903 nucleotides for 65 individuals, including 32 from the Mediterranean 
area. All individuals belonged to S. acupunctatus, as no record of S. yuccae was confirmed 
in the analysed samples nor in any sequence deposited in the GenBank. Nucleotide and 
haplotype diversity was lower in the alien than in the non-native range (Table 3).

An ML tree is presented in Fig. 3 and supports the monophyly of S. acupunctatus 
(Fig. 3). Samples from the native range (Mexico and Continental USA) clustered to-
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Figure 2. a Current potential distribution of Scyphophorus acupunctatus worldwide (suitability increas-
ing from pink to black) b future potential distribution of S. acupunctatus under climate projections using 
the global climate model for 2070 (suitability increasing from pink to black) c differences between future 
and present conditions [future-current] for the RCP 2.6 scenario obtained by subtracting, for each cell, 
the predicted suitability under current climate from that under future climates. Pink to black: increase 
in climatic suitability in the future d consensus change for RCP 2.6 scenario. Dark blue (+4) indicates 
that all models predicted an increase in suitability, whereas dark orange (-4) indicates a full agreement in 
predicting a decrease in suitability; white indicates disagreement across models (0 value).

Table 3. Indices of genetic diversity for native and most-likely native (n = 26 samples) and non-native 
(n = 39 samples) populations of Scyphophorus acupunctatus (cf. Table 2).

 Total Native and most-likely 
native populations

Alien 
populations

π (nucleotide diversity index ± standard deviation) 0.22 ± 0.05 0.59 ± 0.05 0.03 ± 0.01
h (haplotype diversity index ± standard deviation) 0.42 ± 0.15 0.61 ± 0.19 0.09 ± 0.01
Number of segregating sites 170 161 115
Number of Parsimony Informative sites 154 148 71

gether and represented the sister group of the clade that included samples from south-
ern countries of Central America (Costa Rica and Guatemala) and all the non-native 
range (Fig. 3).

The TCS network highlighted that the majority of introduced individuals in Sar-
dinia, Sicily, Corsica, continental Italy (Latium and Liguria), continental France, Spain 
and Portugal belonged to the same haplotype, as in Costa Rica and Guatemala (Fig. 4).

Discussion

This study showed for the first time the actual and potential global distribution of the 
agave weevil, both in the native and non-native ranges and assessed the phylogenetic 
relationships between native and non-native populations at the global scale.
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Figure 3. Maximum Likelihood (ML) phylogenetic tree obtained from the analysis of COXI for 65 
individuals of Scyphophorus acupunctatus (n = 39 from non-native range, n = 22 from native range, n = 4 
from most-likely native range, cf. Table 2). The statistical support of major clades is shown at their nodes 
(NJ Bootstrap support/Bayesian probabilities/ML Bootstrap support).
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Figure 4. Scyphophorus acupunctatus TCS Network showing the relationship amongst mitochondrial 
COXI haplotypes. Circles represent different haplotypes (n = 10). Circle size is proportional to the num-
ber of samples for each haplotype. Mutations are shown as hatch marks.

The presence of this species was confirmed in several countries, whereas some of 
those listed in CABI’s overview of invasive species (the Netherlands, UK, Israel, New 
Zealand and Argentina: CABI (2023)) were not confirmed. In contrast, the occurrence 
of non-native S. acupunctatus was reported for the first time in Ecuador, through the 
iNaturalist repository, as well as in many Italian regions where this weevil was previous-
ly not reported (Calabria, Sardinia, Piedmont and Campania: Suppl. material 1: fig. 
S7). In particular, the first record of this weevil in Sardinia, in the north-western part 
of the island, was due to detailed and addressed research by the authors of this work.

Despite being reported as the most important pest for agave species (Waring and 
Smith 1986), the agave weevil is not commonly identified by the public; thus, it is unsuit-
able for citizen-science surveys (cf. Mazza et al. (2020) for C. ayyari). Accordingly, most 
data on the distribution of this species were obtained from scientific research and insect 
monitoring projects conducted by specialists (Kontodimas and Kallinikou 2010; Vassiliou 
and Kitsis 2015). The occurrence of the agave weevil was also confirmed in all the other re-
gions where it was previously reported, i.e. Sicily, Basilicata, Apulia, Latium, Tuscany and 
Liguria, as well as some small Thyrrenian islands (i.e. Giglio, Elba, Giannutri and Ponza).

The presence of the agave weevil in other Italian peninsular regions along the coast-
line (e.g. Molise, Abruzzo, Marche, Emilia Romagna and Veneto) cannot be ruled out. 
Thus, a focused monitoring programme is required, particularly in late spring and dur-
ing the daytime, when most observations occur (López-Martínez et al. 2011; Figueroa 
Castro et al. 2013).

Species distribution modelling showed a high climatic suitability for this species 
throughout the Mediterranean Basin, potentially increasing with increasing tempera-
ture and decreasing precipitation, i.e. with the ongoing climatic change. According-
ly, the native range of S. acupunctatus currently includes mostly dry areas of Central 
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America, also suggesting the adaptation of this insect to hot desert areas (including 
mountainous ones), where most Agavaceae, i.e. succulent plants representing the staple 
of its diet and reproductive sites, grow. The distribution of S. acupunctatus in Europe 
and Africa is linked to the distribution of Agavaceae and Dracaenaceae as ornamental 
plants. Particularly, in the Mediterranean countries, these plants mostly occur in botani-
cal gardens and along the coastline, i.e. where most records of S. acupunctatus have been 
reported (Smith and Figueiredo 2007; Celesti Grapow et al. 2016; Cascone et al. 2021).

Genetic analyses showed a strong genetic uniformity for the non-native popula-
tions. A lower nucleotide and haplotype diversity was observed in the non-native range 
compared to the native range, possibly due to a founder effect. The presence of a single 
widespread haplotype in Europe suggested that most of the introductions may have orig-
inated from a small geographical area in Central America or a small number of introduc-
tion events occurred. This contrasts with other species, which were introduced through 
multiple unintentional introductions in Europe. These include C. ayyari, H. halys and 
Megachile (Callomegachile) sculpturalis Smith, which show a high genetic diversity linked 
to several introduction events (Cesari et al. 2018; Mazza et al. 2020; Lanner et al. 2021). 
Scyphophorus acupunctatus in Europe may have originated from one or a few introduc-
tion events from Central America (most likely from Guatemala or Costa Rica) through 
the ornamental plant trade (Global Invasive Species Database 2023). This is in line with 
EPPO’s report (EPPO 2022b), which traces the source of the first introduction of agave 
weevil to Italy to countries of southern Central America, based on interception data.

Driving definite conclusions from single-gene analyses may be misleading. How-
ever, the largest genetic library for S. acupunctatus built in the present study may serve 
as a comparison for future studies and for species identification (Azuara-Domínguez 
et al. 2013; Chamorro et al. 2016). All analysed samples belonged to S. acupunctatus 
and the only deposited sequence of the sister species S. yuccae on GenBank suggests 
that this species could be a synonym to S. acupunctatus, as already hypothesised by 
Chamorro et al. (2016).

In general, our data showed a high climatic suitability for S. acupunctatus in Eurasia 
and Africa (particularly in the Mediterranean Basin coastline), including areas where 
this weevil is not yet present. This suggests that if no management actions are taken to 
limit its spread, there is potential for range expansion towards continental and temper-
ate Europe in the upcoming years. Given the impacts on cultivated agave plants, early 
detection of this species in new areas should be promoted to prevent further invasions, 
by means of free online citizen-science platforms and coordination of phytosanitary 
services and national institutions for the prevention of biological invasions.
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Abstract
To compare the capacity of native and exotic vine species established under a rainforest canopy, a com-
parison of growth rates and resource allocation was made amongst five exotic vine species that are serious 
and common invaders and two common native vine species under two light conditions reflective of edge 
and interior canopy conditions. All species experienced heavy reductions in growth parameters in the low-
light treatment, but three exotic species showed stronger growth under the low light. All exotic species 
had higher plasticity in leaf morphology showing a significant increase in SLA under low light. Native 
vines may have a lower capacity to change leaf morphology in shade, as a result of local adaptation to 
edge habitats. Higher SLA under both low and high light conditions suggests that exotic vines species are 
able to exploit a range of forest conditions better than the native species. Three species, Anredera cordifo-
lia, Araujia sericifera and Cardiospermum grandiflorum, appear particularly capable of invading rainforest 
interiors. Individuals produced few leaves, focusing resources on roots and stems suggesting a response to 
reach the canopy quickly. With their long-distance seed dispersal, plasticity in leaf SLA and high RGR, 
these species appear most likely to invade undisturbed rainforest.
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Introduction

In forests, vines can cause structural damage to the canopy, reduce light availability 
and increase competition for underground resources, which results in reduced growth 
and survival of host and neighbouring trees (Estrada-Villegas and Schnitzer 2018). 
This fast growth strategy is achievable as vines do not invest biomass into self-support-
ing structures and therefore, they invest more in growth and reproductive structures. 
Compared to other woody plants, vines tend to be situated on the “faster end” of the 
life-history spectrum (Westoby et al. 2004), through having higher specific leaf area 
(SLA) (Llorens and Leishman 2008; Mello et al. 2020), higher photosynthetic capac-
ity (Mello et al. 2020) and more investment into stem growth (Ichihashi and Tateno 
2015). The difference in traits between vines and trees, as well as the negative impacts 
of vines on trees is well studied, especially in tropical systems (Ingwell et al. 2010; 
Estrada-Villegas and Schnitzer 2018; Mello et al. 2020); however, there is also overlap 
in trait values between some vines and trees, as well as amongst species of invasive and 
native vine species (Llorens and Leishman 2008; Osunkoya et al. 2010, 2014; French 
et al. 2017; Mello et al. 2020).

In a meta-analysis of 117 studies, Van Kleunen et al. (2010) compared traits across 
studies comparing invasive and native plants species that co-occurred, many co-famil-
ial. Invasive plant species had higher SLA, higher photosynthetic capability and faster 
growth rates than native species (Van Kleunen et al. 2010). There is some evidence 
that the pattern is also true when vines are considered separately. Greenhouse studies 
in tropical areas (Osunkoya et al. 2010, 2014) showed that four common invasive vine 
species in eastern Australia have higher photosynthetic capability, SLA and pheno-
typic plasticity than for common functionally similar native species, although relative 
growth rates were not different. This suggests that invasiveness is associated with a set 
of traits that provide a competitive advantage. However, there are other factors that 
influence invasiveness, such as release from herbivores (Keane and Crawley 2002) and 
whether the invasive environment is adequate to successfully reproduce and disperse 
(Van Kleunen et al. 2015). We predict that, if native vines show similar growth and 
plasticity to invading exotic invasive vines, then other factors, such as release from 
herbivores and pathogens may be particularly important to allow them to invade and 
become abundant. Furthermore, if a particular set of traits are critical in invasiveness, 
then we would predict that native species which can dominate sites and be extremely 
abundant would show similar invasive traits. A study in a temperate, moist sclerophyll 
forest found little difference in above-ground biomass allocation between invasive and 
native vine species (Llorens and Leishman 2008), which could indicate that other 
factors give exotic invasive vines a competitive advantage. Furthermore, there was no 
difference found in the height reached or percentage of host height reached between 
exotic invasive species and native species, suggesting that there was little difference in 
impact on the community between exotic invasive and native vine species.

Increased investment in growth can be allocated to roots, stems or leaves. Higher 
investment into stem elongation can be particularly beneficial as it allows the vine 



Exotic vine invasion into temperature rainforests 81

to reach higher into the canopy quickly and, thus, gain more light for photosynthe-
sis (Falster and Westoby 2003; Llorens and Leishman 2008). However, investment 
into stem elongation must be balanced adequately with the other needs of the vine 
to survive and reproduce. If exotic invasive vines are released from herbivores, then 
stem elongation to get their leaves into the light would be the most beneficial strategy. 
Therefore, we predict that exotic invasive vine species are likely to invest more into 
stem growth than leaf growth compared to native vine species.

While vine invasion is particularly problematic at the light-filled edges of rainfor-
est patches, the ability to grow and establish in the forest interior would be an invasive 
characteristic that increases the risk and impacts of that species in closed forests. The 
plasticity to change growth parameters in low-light situations is, thus, an important 
part of identifying exotic invasive species that pose the greatest risk. Some invasive vine 
species are considered more problematic in forests than others due to apparent high 
growth rates or high propagule pressure. In Australia, there are at least 179 species of 
exotic vines (Harris et al. 2007), though not all are considered equal threats to biodi-
versity. It is likely that the species that should be considered to be greater threats should 
have higher photosynthetic ability, invest more into stem elongation and, consequent-
ly, have higher growth rates as well as show high rates of growth even in interior light 
conditions. Furthermore, knowledge of how invasive and native vine species differ in 
these traits with light availability can help to predict the species that can exploit distur-
bances better or can invade undisturbed interiors. At present, information on growth 
rates and resource allocation under differing light levels is poorly understood for all 
exotic vine species in Australia, preventing good risk assessments and prioritisation in 
management. Collectively, invasion and establishment of exotic vines and scramblers 
are listed as a key threatening process in New South Wales (NSW) where 38 entities 
are listed as affected by vines and scramblers. However the list of vines and scramblers 
includes species that are much less abundant and problematic and some that occur 
frequently (A. Bernich and K. French, unpublished data).

In order to help evaluate the invasiveness of key exotic invasive vine species, we as-
sessed growth rates of five common invasive exotic vine species in eastern Australia and 
two common native species on host trees in a shade house with two shade treatments. 
We measured relative growth rates (RGR), stem lengths, proportion of biomass allo-
cated to leaves, stems and roots and specific leaf area. We predicted that individuals of 
each species grown in less shade will have higher RGR and longer stem lengths, though 
lower SLA. We predicted that invasive species will also have higher RGR and stem 
lengths and higher SLA indicating higher photosynthetic efficiency, which then leads 
to relatively less investment in leaves and more relative investment into stems and roots 
compared to native species. We also predicted that differences in trait values would 
occur amongst species and show that some species are able to exploit establishment 
opportunities under the rainforest canopy. One of the native species, Cissus antarctica, 
is especially abundant at the edge of disturbed rainforests in eastern Australia where 
it can dominate and smother canopy causing significant harm to native host species. 
There is concern that such dominance may cause forest interiors to become degraded.
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Methods

Study species

We grew seven vine species, five exotic invasive species (Anredera cordifolia, Araujia 
sericifera, Cardiospermum grandiflorum, Delairea odorata and Ipomoea cairica) and two 
native species (Cissus antarctica and Pandorea pandorana). All species are commonly 
found in rainforests, wet sclerophyll forests and disturbed sites on the east coast of Aus-
tralia. Anredera cordifolia (family Basellaceae) is a semi-succulent twiner from South 
America, that is listed as a Weed of National Significance in Australia. It was introduced 
in the early 1900s (Vivian-Smith et al. 2007) and quickly establishes at sites through 
vegetative reproduction via aerial tubers. Araujia sericifera (family Apocynaceae) is a 
South American twiner also introduced in the early 1900s, which disperses by produc-
ing masses of windblown seeds. Cardiospermum grandiflorum (family Sapindaceae) is a 
tendril climber from South America, introduced in the 1920s, with multiple seeds in 
a papery “balloon” that can be distributed by wind and water. Delairea odorata (fam-
ily Asteraceae) is an herbaceous twiner or scrambler from Africa that was introduced 
in the early 1900s, that spreads locally through vegetative reproduction (stolons and 
stem fragments), although it also produces viable seeds in Australia. Ipomoea cairica 
(family Convolvulaceae) is a twiner from tropical Africa and Asia and was introduced 
in the 1840s, it is common in coastal eastern Australia and can withstand a wide range 
of environmental conditions (Liu et al. 2016a). The native Cissus antarctica (family 
Vitaceae) is a tendril climber that can grow thick stems (up to 15 cm in diameter) and 
is abundant along the east coast of Australia, producing a fleshy fruit. Pandorea pan-
dorana (family Bignoniaceae) is a large woody twiner that is also abundant in eastern 
Australia, producing winged seeds.

Vine species were all collected from forests near Wollongong, with some species 
being grown as ~ 30 cm cuttings (D. odorata, I. cairica, P. pandorana and C. antarctica), 
from seeds (C. grandiflorum), tubers (A. cordifolia) or harvested seedlings (A. sericifera) 
which had the first two true leaves, around 5–15 cm in height. We attempted to grow 
both C. grandiflorum and A. sericifera as cuttings, though no C. grandiflorum cuttings 
were successful and there was only a 10% success rate for A. sericifera. Propagules for 
all species were collected in September 2021 and were grown until sufficient individu-
als were established to be used in the experiment. All propagules were collected along 
forest edges (i.e. tracks or clearings) which were more representative of the medium 
light treatment (see below). As establishment times varied amongst species, the date 
that species were potted and placed next to a host tree occurred over two months at the 
beginning of the Austral Summer (late October – mid December).

All vine individuals were grown on Acmena smithii (cultivar ‘Speedy Screener’, 
family Myrtaceae) host trees that were potted in 300 mm pots. The host trees ranged 
in height from 1 m to 1.8 m tall. Acmena smithii is a common tree in eastern Australia 
that grows in rainforests and wet sclerophyll forests.
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Experimental design

All vines and host trees were grown in a shade house at the University of Wollongong, 
NSW 34.4054°S, 150.8784°E. The shade house had two sections, one with low light 
penetration to mimic the understorey under a rainforest canopy and one with medium 
light to mimic a gap in a rainforest or rainforest edge. The roof of the low light sec-
tion was covered in two layers of shade cloth, which allowed 2% of light to reach the 
floor (similar to 85–95% canopy cover), whereas the medium light section had one 
layer of medium shade cloth, which allowed 30% of light to reach the floor (similar to 
50–60% canopy cover).

Six individuals of each species were randomly selected for the medium light and 
low light treatments and were transplanted into 300 mm pots filled with commercial 
potting mix (Osmocote Premium) and given 25 g of slow-release fertiliser (Power-
Feed 500 g All Purpose Controlled Release). They were then placed adjacent (on the 
southern side) to an A. smithii individual in their allocated shaded areas. Two to four 
extra individuals were harvested and dried in an oven at 65 °C for five days to measure 
dry biomass of roots, stems and leaves at the start of the experiment (the difference in 
number of individuals for each species was due to the death of some individuals before 
they could be dried out). Vines and trees were watered by an automatic dripper system 
attached to a tap timer, with each plant having a dripper spike in the soil of the pot. 
Plants were drip-watered for 10 minutes at 6 am and 6 pm every day.

The experiment for each species began when plants were placed next to the host 
plant. Initial plant sizes are shown in Suppl. material 3. Vines were grown for 24 weeks, 
after which time, vines were removed from host trees and laid horizontally on the 
ground to measure the longest stem (from the junction of the roots and the stem to the 
tip of the longest stem, to give a measurement of the potential height each individual 
could reach). Ten leaves for each vine individual were removed and measured using 
a Li-Cor leaf area meter (Model Li-3000A, Lincoln, Nebraska, USA), then put into 
separate labelled bags for drying (65 °C for 5 days), before being weighed and specific 
leaf area calculated (SLA = leaf area/dry weight). Then, each individual was sorted into 
leaves, stems, aerial tubers (for A. cordifolia) and roots, with roots being washed to re-
move soil, before being placed in a drying oven at 65 °C for 5 days and then weighed. 
Relative growth rate (RGR) was calculated using the formula:

RGR
lnDW lnDWi

no o d ys

where DWf is the total dry weight at the end of the experiment for an individual and 
DWi is the average dry weights of the plants sacrificed at the beginning of the experi-
ment for the species being tested.

The dry weights of each plant part (roots, stems and leaves) were divided by the 
total dry weight to give percentages of biomass allocation; these parameters are referred 
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to as root mass fraction (RMF), stem mass fraction (SMF) and leaf mass fraction 
(LMF). For A. cordifolia, aerial tuber weight was added to RMF as a measure of in-
vestment into energy storage; however, the proportion of biomass invested into aerial 
tubers by A. cordifolia was also recorded separately. Traits were only measured on indi-
viduals that did not die in the experimental period.

Data analysis

We used a Bayesian modelling approach to estimate the distribution of values for each 
of the measured plant variables for each combination of species and shade treatment. 
The fitted distributions were then used to estimate the magnitude and direction of 
differences in response between species within each treatment and between treatments 
for each species. Stem height and SLA values, which could only be positive, were 
modelled as gamma-distributed variables with the shape parameter of the distribution 
being allowed to vary between shade treatments. RGR values were modelled as being 
drawn from a Student-t distribution since values could be negative and some outliers 
were evident in the observed data. The shape (degrees of freedom) parameter of the 
distribution was treated as an unknown quantity to be estimated by the model, while 
the scale parameter (standard deviation) was allowed to vary between treatments. The 
proportion of biomass allocated to each of leaf, stem and root fractions was modelled 
using Dirichlet regression.

Models were fitted by Hamiltonian Monte Carlo sampling via the “brms” package 
version 2.18 (Bürkner 2017) in R version 4.2.1 (R Core Team 2022). For all models, 
we set weakly informative prior distributions for parameters, as recommended by Gel-
man (2009) and van de Schoot (2021), to ensure that fitted distributions reflected the 
observed data while constraining the model fitting process from exploring unrealistic 
ranges of parameter values. For the Dirichlet regression of biomass allocation fractions, 
we explored alternative choices for prior distributions on the intercept and regression 
coefficients using prior predictive simulation. This involved fitting the model, based 
only on candidate prior distributions, i.e. with no observed data. The simulations high-
lighted the potential sensitivity of model predictions to the choice of standard devia-
tion for the Normal priors on the intercept and regression coefficients. Given this, we 
chose to treat the prior standard deviation as an additional parameter to be learned 
from the data and set an exponential hyper-prior distribution on it.

For each model, we ran four Markov chains with 5000 iterations and 1000 warm-
up iterations. Model convergence was assessed using the Gelman-Rubin statistic, 
which showed convergence for all models and by checking for an adequate number 
of effectively independent samples to ensure reliable estimates of the tails of the fitted 
distributions. In addition, we graphed posterior model predictions together with ob-
served data values for each measured variable to check for any disagreement that might 
indicate a problem with model structure or convergence.

For all models other than stem growth rate, the distribution of differences in re-
sponse between each pair of species within each shade treatment was estimated by 
subtracting posterior predictions of mean response for one species from those for the 
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other species. For the stem growth rate model, difference calculations were based on 
posterior predictions of median rather than mean response as some observed values 
were close to zero, which resulted in a strongly right-tailed posterior distribution for 
which the median is a more representative summary statistic.

Results

At the end of the six months, two A. sericifera individuals had died in the medium light 
treatment. In the low light treatment 10 deaths occurred: three I. cairica individuals, 
two D. odorata, three A. sericifera, one C. antarctica and one P. pandorana.

Relative growth rate

For all species, mean RGR was consistently higher when grown under medium light 
compared to low light, with no overlap in the 95% range of predicted mean RGR val-
ues (Fig. 1, Table 1). Two exotic vines did poorly in low light, D. odorata (93% reduc-
tion in mean predicted RGR) and I. cairica (75% reduction) and the two native spe-

Figure 1. Mean relative growth rate (RGR) with 95% bounds on the mean predicted values from each 
model (black lines) and observed RGR value for individual plants (blue dots) for both light treatments. 
(E) are exotic vines, (N) are native vines.
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Table 1. The predicted mean trait values and the 95% bounds on the mean predicted values from each 
model (smaller font). RGR = relative growth rate (g g-1 day-1), stem growth = increase in stem length per 
day (cm/day), LMF = leaf mass fraction (%), RMF = root mass fraction (%), SMF = stem mass fraction 
(%), SLA = specific leaf area (cm2/g), (E) denotes exotic species, (N) denotes native species. * note that 
RMF for Anredera cordifolia includes the weight of aerial tubers.

Species Light 
treatment

Predicted mean trait values
RGR Stem 

growth
LMF RMF SMF SLA

Anredera cordifolia 
(E)

Medium 0.0274 
0.0248–0.0302

1.55 
1.29–2.31

16.5% 
14.9–22.5

65.8% 
44.3–56

17.7% 
26.3–36.2

323.0 
272.7–379.4

Low 0.0084 
0.0037–0.0129

0.47 
0.42–0.97

32.9% 
22.9–39.5

42.5% 
32.8–51.2

24.7% 
19.8–35.7

988.1 
814.2–1205.3

Araujia sericifera (E) Medium 0.0353 
0.0313–0.0387

1.14 
0.82–2.05

18.8% 
13.3–23.7

37.0% 
30.8–44.1

44.3% 
37.6–51.4

255.0 
209.83–302.27

Low 0.0141 
0.0085–0.0208

0.24 
0.14–0.81

11.3% 
6.4–21.1

52.7% 
36.6–67.4

36.0% 
20.8–50.1

625.8 
463.8–824.1

Cardiospermum 
grandiflorum (E)

Medium 0.0257 
0.0227–0.0290

1.62 
1.25–2.71

24.4% 
19.7–29.3

24.1% 
19.4–29.1

51.5% 
45.7–57.2

329.5 
281.2–383.9

Low 0.0088 
0.0056–0.0121

0.48 
0.36–1.24

42.2% 
31.3–52.3

12.6% 
7.3–20.5

45.2% 
34.2–55.7

745.7 
643.9–864.0

Delairea odorata (E) Medium 0.0229 
0.0193–0.0258

1.92 
1.46–3.20

15.3% 
11.6–19.4

12.5% 
9.2–16.6

72.3% 
66.7–76.9

570.4 
480.4–663.3

Low 0.0017 
-0.0024–0.0059

0.62 
0.43–1.75

25.6% 
15.6–36.7

12.1% 
5.9–21.3

62.3% 
48.7–73.8

1607.5 
1279.6–2013.8

Ipomoea cairica (E) Medium 0.0289 
0.0256–0.0320

2.62 
2.02–4.25

11.9% 
9.1–16.1

45.7% 
39.6–51.0

42.5% 
36.5–48.0

379.3 
321.5–443.6

Low 0.0071 
0.0013–0.0153

0.74 
0.48–2.24

29.6% 
16.4–41.8

33.5% 
21.4–49.7

36.9% 
22.7–51.3

1219.6 
957.4–1540.2

Cissus antarctica 
(N)

Medium 0.0158 
0.0127–0.0186

0.80 
0.61–1.32

45.6% 
38.5–50.3

13.4% 
10.5–18.2

41.0% 
36.0–47.1

189.8 
161.6–219.9

Low -0.0013 
-0.0046–0.0023

0.11 
0.07–0.36

45.2% 
34.8–57.8

25.3% 
15.0–35.5

29.6% 
19.0–40.0

362.7 
285.2–462.7

Pandorea pandorana 
(N)

Medium 0.0134 
0.0100–0.0174

0.91 
0.69–1.54

30.8% 
25.2–35.6

24.6% 
20.2–30.0

44.6% 
38.9–50.5

281.7 
242.1–327.8

Low 0.0022 
-0.0014–0.0059

0.20 
0.14–0.58

42.3% 
31.1–53.9

28.5% 
18.5–39.6

29.2% 
19.0–39.9

482.6 
389.1–585.4

cies, P. pandorana (84% reduction) and C. antarctica (~ 98% reduction) showed large 
reductions in RGR under low light. C. antarctica barely grew in the low light treatment 
making estimates of percentage reductions difficult to calculate. The three other exotic 
species had reductions of between 60 and 69%. Higher variability in RGR was seen 
amongst individuals of exotic invasive species in the low light (see Suppl. material 1).

All the exotic invasive species grown in the medium light treatment had higher pre-
dicted mean RGR values than the two native species (Fig. 1, Table 1). A. sericifera had 
the highest predicted mean RGR with only I. cairica having a slight overlap in the 95% 
range of predicted mean values. All other exotic invasive vine species had relatively simi-
lar predicted mean RGR values with a high percentage of overlap in the 95% bounds 
on the predicted mean. In the low light treatment, A. sericifera still tended to have the 
highest RGR, though the 95% bounds on the predicted mean substantially overlapped 
with three of the other exotic invasive species (Fig. 1, Table 1, Suppl. material 2).
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Length of main stem

Similar to RGR, the predicted median stem length grown per day for all species in the 
medium light treatment was greater than the low light treatment, with no overlap in the 
95% bounds on the predicted median values from the model (Fig. 2). In the medium 
light treatment, I. cairica had the highest predicted median stem growth per day at 3.2 
cm/day and had final raw stem lengths across individuals of 3.6–8.5 m. D. odorata also 
had high stem growth rates, with a slight overlap on the 95% bounds on the predicted 
median with I. cairica and final stem lengths of 3.9–6.4 m. A. sericifera had the lowest pre-
dicted median stem growths for the exotic invasive species. The two native species clearly 
had the lowest predicted median stem growth (Fig. 2), with there being a slight overlap 
in the 95% bounds on the predicted median with A. sericifera only (Suppl. material 1).

In the low light treatment, I. cairica and D. odorata had the highest predicted median 
stem growth per day with high variability amongst individuals. Other species had closer 
predicted median values. The gap between exotic invasive and native species in the low 
light treatment was actually higher than the medium light treatment (Fig. 2), though A. 
sericifera only had slightly higher predicted stem growth than P. pandorana at 4 mm per 
day (Fig. 2). Mean predicted values were very similar to median values (Fig. 2, Table 1).

Figure 2. Median (blue lines) and mean (red line) stem growth rate with 95% bounds on the mean pre-
dicted values from each model, for both light treatments. Blue dots show the observed value for individual 
plants. (E) are exotic vines, (N) are native vines.



Adam Bernich et al.  /  NeoBiota 90: 79–96 (2024)88

Biomass allocation

The percentage of biomass invested into leaves, stems and roots differed amongst spe-
cies and light treatments (Fig. 3, Table 1). In the medium light treatment, exotic in-
vasive species invested very little into leaves, with all species having a predicted mean 
proportion of leaf biomass less than 25%, while the two natives, C. antarctica and 
P. pandorana had predicted mean leaf biomass proportions of 47% and 31%, respec-
tively. Anredera cordifolia and I. cairica invested relatively highly into root biomass with 
the predicted mean being 66% and 46%, respectively. For A. cordifolia in the medium 
light, the mean number of aerial tubers produced was 45.3 (range 29–61). Aerial tu-
bers accounted for between 5 and 30% of the total biomass (mean = 15%). The roots, 
excluding aerial tubers, accounted for, on average, 55% of total biomass. No aerial 
tubers were produced by individuals grown in the low light treatment. Two species, 
D. odorata and C. antarctica invested very little into roots (Fig. 3). Delairea odorata in-
vested the greatest amount into stems (predicted mean of 72%) (see Suppl. material 1).

Biomass allocation for all species in the low light treatment was more varied, seen 
by wider 95% bounds on the predicted mean values (Fig. 3). Natives did invest more 
biomass in leaves compared to moderate light treatments, but overall, the allocation to 

Figure 3. Mean proportion with 95% bounds (black lines) on the mean predicted values from each 
model, of biomass invested into leaves, roots and stems for all species in both light treatments. Blue dots 
are observed proportions for individual plants.
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leaves across all vines was similar. A. sericifera tended to allocate resources into stems 
and roots rather than leaves. Delairea odorata and C. grandiflorum invested very little 
in roots, focusing on stem growth by comparison (Fig. 3, Table 1, Suppl. material 2).

Specific leaf area

The 95% bounds on the mean predicted range for SLA was substantially higher in the 
low light treatment than the medium light for all species (Fig. 4, Table 1), with there 
being no overlap in the 95% bounds on predicted means between treatments for each 
species (Suppl. material 2). The greatest difference in predicted mean SLA between the 
treatments was seen in I. cairica (222% difference) and A. cordifolia (206%). D. odora-
ta (182%), A. sericifera (145%) and C. grandiflorum (126%) had a moderate predicted 
increase in SLA, while the two natives had the lowest difference in SLA amongst treat-
ments; C. antarctica (91%), then P. pandorana (71%).

In general, exotic invasive species had higher SLA than native species, except for 
A. sericifera in the medium light which had a considerable overlap in the 95% bounds 
on predicted mean values with P. pandorana, though only a slight overlap in the low 

Figure 4. Observed specific leaf area (SLA) with 95% bounds (black line) on the mean predicted values 
from each model for all species in both light treatments. Blue dots are observed values for individual 
plants. (E) are exotic vines, (N) are native vines.
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light treatment. Delairea odorata and I. cairica had the two highest predicted mean 
SLA in both treatments (Fig. 4, Table 1). Cardiospermum grandiflorum and A. cordifolia 
had similar SLA in the medium light, though A. cordifolia had much higher SLA in the 
low light (Fig. 4, Table 1).

Discussion

All species grew at faster rates under the higher light conditions that are reflective of 
rainforest edges, suggesting that quick invasion was most likely from disturbed edges 
or light gaps for all species. Low light conditions slowed growth, but the reduction in 
growth varied amongst species reflecting a differential risk of invasion and establish-
ment into the rainforest interior. The two common native species had very low growth 
rates in all light levels, but particularly in the low light. They also showed a limited 
capacity to vary SLA and improve light capture relative to the invasive species. This 
suggests they would most likely establish in edges and better lit areas. This is despite 
one of these species being considered problematic; Cissus antartica can significantly 
smother vegetation along rainforest edges. Our results suggest that this issue will not 
occur under the canopy.

All exotic invasive species had higher relative growth rates than native species. Relative 
growth rate and high SLA are correlated with invasiveness (Poorter and Bongers 2006; 
Leishman et al. 2007; Van Kleunen et al. 2010; Dawson et al. 2011). However, some of 
the same species were used in Osunkoya et al. (2010) which measured no difference in 
RGR amongst native and exotic species in the tropics. Our work suggests that, at least 
in temperate areas, high relative growth rates were a characteristic of our invasive species.

Compared to self-supporting woody plants, the native vines in this study still sit 
on the “faster” side of the life history spectrum. For example, in a comparison of co-
existing tropical trees and vines, Mello et al. (2020) found that the mean SLA for trees 
was 141 cm2/g (± 62.41 SD) and vines was 177 cm2/g (± 80.77 SD). In our study, 
the mean SLA for C. antarctica (190 cm2/g) and P. pandorana (282 cm2/g) grown in 
medium light was higher than that of the vines measured by Mello et al. (2020). Nev-
ertheless, the difference in SLA between the exotic invasive and native species in this 
study may be due to natives investing more into leaf defence from herbivores leading 
to lower SLA, leaving the exotic invasives at an advantage with fewer herbivores in their 
introduced range (Keane and Crawley 2002).

Coupled with the higher growth rates measured, all exotic invasive vine species 
showed flexibility in leaf SLA when grown in low light conditions. All had higher SLA 
values under low light and were higher than both native species in all light conditions. 
Interestingly, the means in low light were associated with a great deal of variability 
amongst individuals (large 95% confidence intervals). Invasive exotic species, there-
fore, show plasticity in their responses to low light conditions, increasing the size of 
their leaves relative to the leaf biomass to increase light capture capacity. As a result, 
in comparison to the native species, all exotic invasive species will be capable of better 
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light harvesting under rainforest canopies, increasing photosynthesis and growth rates. 
Furthermore, increased SLA, even under medium light conditions, may also help them 
in forest gaps as they grow leaves better suited to the light environment they are in and, 
therefore, may be able to respond to canopy disturbances better (Liu et al. 2016b). 
Phenotypic plasticity of leaves is a trait often observed in invasives (Daehler 2003; 
Richards et al. 2006; Davidson et al. 2011) and Osunkoya et al. (2014) also found that 
leaf plasticity of exotic invasive vine species (including A. cordifolia and A. sericifera) 
was higher than phylogenetically similar native vine species. Therefore, while more 
native and exotic vine species need to be compared, it is likely that higher plasticity in 
leaves correlates with invasiveness and explains why exotic invasive vines often domi-
nate in disturbed forests with patchy canopy cover, but may also increase their capabil-
ity to invade low light less-disturbed closed forests.

We identified three growth strategies amongst the exotic invasive vines that we 
investigated, with regards to their risk to rainforest communities. These strategies may 
be a more general approach for other species, but further species would need to be 
considered to establish such strategies. Thus our descriptions of a strategy highlight 
some of the differences in growth responses of the exotic species we tested which may 
increase risk of invasion. The first strategy was associated with fast growth, exemplified 
by D. odorata and I. cairica which showed high SLAs and high mean stem growth rates 
under both canopy and edge conditions. Having fast stem growth rates and high stem 
biomass allocation is beneficial for vines as it allows individuals to compete with others 
through early access to canopy light (Falster and Westoby 2003; Llorens and Leishman 
2008). High SLA provides leaves with more efficient energy capture to invest into 
growth (Poorter and Bongers 2006), although it also indicates that these species are 
likely to be short-lived (Westoby et al. 2004). D. odorata also invested very little into 
roots and did not produce woody stems suggesting a quick strategy with low com-
petitive capacity. However, both of these species grow horizontal running stems which 
can form roots and support new stems, perhaps advantageous in capturing more area 
quickly under higher light conditions. This allows them to spread quickly and persist 
despite leaves (and perhaps stems) being replaced regularly. These species will be quick 
to establish both under canopy and at edges, but are likely to be more successful in 
forest gaps and edges and may do poorly through time under the canopy.

A second, more long-term invasion strategy was evident in the three other ex-
otic species. These three had the highest relative growth rates under low light condi-
tions, providing opportunities for invasion even within undisturbed rainforest patches; 
Anredera cordifolia, Araujia sericifera and Cardiospermum grandiflorum. While some 
A. sericifera individuals may be particularly effective at growing under the canopy, we 
also recorded some mortality in low light conditions. Surviving individuals produced 
few leaves, focusing resources on roots and stems suggesting a response to reach the 
canopy as quickly as possible. High dispersal capability using large numbers of wind-
blown seeds (Vivian-Smith and Panetta 2005), coupled with high RGR in higher light, 
explains why A. sericifera is listed as a major weed in multiple countries (Vivian-Smith 
and Panetta 2005), where it damages vegetation and restricts regeneration, as well 
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being poisonous to humans and livestock (NSW DPI 2020). Germination has been 
shown to be significantly reduced in cool (< 20 °C) and dark conditions (Vivian-Smith 
and Panetta 2005), suggesting that the maintenance of canopy cover can decrease es-
tablishment. Our results suggest that if it can establish under canopy, then it may well 
persist increasing its risk in rainforest interiors. If given the right conditions, A. seric-
ifera is likely the species to build biomass fastest out of the species grown in this study 
and presents one of the highest invasion risks under rainforest canopies.

One other invasive species in this group of potential understorey invaders was 
Anredera cordifolia. This species was also able to have quite high RGRs under low light 
increasing its allocation to leaves and stems in this environment, compared to the loca-
tion at the edges of rainforests. It also had much greater flexibility in changing leaf light 
capture under the canopy, compared to A. sericifera. At edges in ideal conditions, it can 
maximise growth rates through having amphistomatous leaves and high numbers of 
stomata (Boyne et al. 2013), increasing photosynthetic ability and efficiency. A. cordifo-
lia, however, utilises an additional strategy. Under better growing conditions, resources 
are used to develop canopy-held tubers which are a robust dispersal strategy, providing 
new vegetative recruits which receive greater resources maternally than germinants. 
The strategy enables the species to persist through inclement conditions (Vivian-Smith 
et al. 2007). In the six months of this experiment, individuals in the medium light pro-
duced an average of 45 aerial tubers, highlighting the high propagule pressure of this 
species, as well as the speed in which it can reach reproductive maturity, which is a trait 
often used to explain invasiveness and feasibility of control (Panetta and Grigg 2021). 
Therefore, A. cordifolia can persist under canopies through reallocation of resources to 
leaves and stems and can spread throughout a site, particularly from the edges, making 
it difficult to eradicate and contain (Panetta and Grigg 2021). Tubers (included within 
the root component) resulted in lower allocation to stem growth, but provided a capac-
ity to persist at the edges and create new individuals increasing invasion and risk. This 
places this species as one of the highest risk species under rainforest canopies.

Conclusion

Our work measured important growth parameters for a range of exotic vines and we 
were able to identify different strategies that influence how invasive exotic vine spe-
cies may invade rainforests. While all species perform better in higher light conditions 
reflective of rainforest edges and gaps, the capacity to maintain higher levels of growth 
under rainforest canopies showed that some species may well establish and persist caus-
ing host tree damage within the rainforest. Coupled with vegetative growth strategies, 
we identified differences in the capacity of species to establish and persist under cano-
pies. We suggest that maintaining canopy health and controlling edges, still remains 
the key tool for reducing vine invasion, although at least two species, Araujia sericifera 
and Anredera cordifolia have characteristics that suggest that directed control within 
rainforests is needed.
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Abstract
Alien invasive plants threaten biodiversity by rapid spread and competitive exclusion of native plant spe-
cies. Especially, tall clonal invasives can rapidly attain strong dominance in vegetation. Root-hemiparasitic 
plants are known to suppress the growth of clonal plants by the uptake of resources from their below-
ground organs and reduce their abundance. However, root-hemiparasites’ ability to interact with alien 
clonal plants has not yet been tested.

We explored the interactions between native root-hemiparasitic species, Melampyrum arvense and 
Rhinanthus alectorolophus and invasive aliens, Solidago gigantea and Symphyotrichum lanceolatum. We in-
vestigated the haustorial connections and conducted a pot experiment. We used seeds from wild hemipa-
rasite populations and those cultivated in monostands of the invasive plants to identify a possible selection 
of lineages with increased compatibility with these alien hosts. The hemiparasitic species significantly 
suppressed the growth of the invasive plants. Melampyrum inflicted the most substantial growth reduction 
on Solidago (78%), followed by Rhinanthus (49%). Both hemiparasitic species reduced Symphyotrichum 
biomass by one-third. Additionally, Melampyrum reduced the shoot density of both host species. We also 
observed some transgenerational effects possibly facilitating the growth of hemiparasites sourced from 
subpopulations experienced with the host.

Native root hemiparasites can effectively decrease alien clonal plants’ biomass production and shoot 
density. The outcomes of these interactions are species-specific and may be associated with the level of 
clonal integration of the hosts. The putative selection of lineages with higher performance when attached 
to the invasive novel hosts may increase hemiparasites’ efficiency in future biocontrol applications.
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Introduction

Alien plant invasions represent a component of global change with profound effects on 
diversity, ecosystem functioning and services. Invasive species broadly vary in their spe-
cific impacts on the habitats they invade due to different abilities to spread and achieve 
dominance or mechanisms of interaction with native biota (Blackburn et al. 2014). 
Of particular concern are the so-called transformer invaders (Richardson et al. 2000), 
which can invade indigenous natural communities over large areas, attain high domi-
nance and change ecosystem functioning. Alien tall clonal herbs with below-ground 
rhizomes are frequent examples of transformer invaders in grasslands due to their in-
creased competitiveness leading to the exclusion of native plants from infested vegeta-
tion throughout temperate regions (Divíšek et al. 2018; Wang et al. 2019; Wan et al. 
2021; Lanta et al. 2022). Although conventional control management, represented by 
mowing or grazing, can reduce the density of the invasive clonal herbs to some extent 
(e.g. Nagy et al. (2020); Szymura et al. (2022)), they are usually not eliminated and 
may spread rapidly from the rhizomes if the management measures are ceased. More 
drastic restoration measures (e.g. use of herbicides, long-term shading) may eradicate 
the invaders, but can also adversely affect native species, making their use problematic 
in areas with conservation value (e.g. Weber and Jakobs (2005); Szymura et al. (2022)).

Native parasitic plants have recently been suggested as potential biocontrol agents 
for a wide range of invasive plants globally (Těšitel et al. 2020). Following the biotic 
resistance hypothesis (Maron and Vilà 2001), generalist native adversaries, such as 
parasitic plants, may impede the success of invaders due to the lack of defence or 
tolerance mechanisms of the host plants against parasitism (Cameron and Seel 2007). 
Clonal hosts could be especially harmed by parasitism, as the parasitic uptake of re-
sources targets the cornerstone of their growth strategy, that is, the spatial spread of 
vegetative ramets and clonal integration (e.g. Song et al. (2013); Roiloa (2019)), i.e. 
the transfer of resources amongst interconnected ramets via rhizome network, which 
facilitates efficient resource acquisition and sharing (Kavanová and Gloser 2005; Gao 
et al. 2021). However, parasitic plants may turn this advantage into a liability. A para-
site that attaches to one ramet may access nutrients within the network, leading to 
its vigorous growth and potentially marked biomass decline of the clonal host, in-
cluding the non-infected ramets (Lepš and Těšitel 2015; Gao et al. 2021). This could 
explain a substantial decrease in the clonal hosts’ abundance in the communities with 
parasitic plants observed in several studies (Decleer et al. 2013; Demey et al. 2015; 
Somodi et al. 2018). Moreover, field experiments have demonstrated the ability of 
root-hemiparasitic Rhinanthus species to significantly reduce harmful expansive clonal 
grass Calamagrostis epigejos from semi-natural grasslands (Těšitel et al. 2017, 2018), 
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which was consequently introduced to ecological restoration practice (Lukavský 2020; 
SPPK D02 002 2021).

Amongst parasitic plants, species of root hemiparasites (or, more precisely, Eu-
phytoid parasites in the new parasitic plant classification of Teixeira-Costa and Davis 
(2021)) appear to be particularly suitable candidates for suppressing clonal invasive 
species due to their low host specificity (e.g. Matthies (2017, 2021)), capacity to sub-
stantially suppress host growth (e.g. Press et al. (2005); Těšitel et al. (2015b); Mat-
thies (2021)) and ability to form dense populations (van Hulst et al. 1987; Mudrák 
and Lepš 2010; Heer et al. 2018). Despite available evidence on the negative effects of 
root hemiparasites on expansive species (reviewed by Těšitel et al. (2020)), only one 
study has investigated the effect of a root-hemiparasitic species on an alien invader 
(Walder et al. 2019), which, however, did not show any adverse impact of the parasite 
on the host species. Two reasons may explain this lack of empirical research on inter-
actions between root hemiparasites and alien invaders. First, hemiparasites and alien 
invaders may not share the same habitats. For instance, in Central Europe, an analysis 
of habitats of hemiparasitic species identified natural and semi-natural communities 
as their principal habitats (Těšitel et al. 2015a). These habitats are simultaneously 
characterised by low levels of alien invasions (Pyšek et al. 2012). Second, establishing 
a parasitic association with alien invaders may be difficult. Although hemiparasites 
are mostly host generalists, host quality (i.e. the extent of support of parasite growth) 
varies between species (e.g. Rowntree et al. (2014); Matthies (2017, 2021)). Na-
tive hemiparasitic species lack a common evolutionary history with non-indigenous 
plants. The lack of experience with an alien host may limit a hemiparasite’s efficiency 
of resource withdrawal on the one hand, but also the host’s resistance or tolerance 
to parasitism on the other, as predicted by the biotic resistance hypothesis. Compat-
ibility with a host may also be affected by high intra- and interpopulation genotypic 
variability of the annual hemiparasites (Mutikainen et al. 2000; Rowntree et al. 2011; 
Unachukwu et al. 2017; Rowntree and Craig 2019; Moncalvillo and Matthies 2023). 
The recognised ability to rapidly evolve ecotypes adapted to various environmental 
conditions (Zopfi 1993; Pleines et al. 2013) may further facilitate the interaction 
with novel host species.

In this paper, we investigated the interactions between root-hemiparasitic Rhinan-
thus alectorolophus and Melampyrum arvense (Orobanchaceae) and the alien invasive 
clonal species Solidago gigantea and Symphyotrichum lanceolatum (Asteraceae). First, we 
examined the anatomy of haustoria to determine whether the hemiparasites can form 
functional parasitic connections with the novel hosts. Second, we set up a comprehen-
sive pot experiment to study the effect of host identity on hemiparasite performance 
and the impact of hemiparasite infection on the two hosts. We expected to identify dif-
ferences in vitality (measured by biomass production) of the two hemiparasite species 
(hypothesis 1), which should be reflected by a difference in host suppression (hypoth-
esis 2). Specifically, we expected lower host suppression by Rhinanthus, given its general 
preference for grass or legume hosts (Matthies 2021), than in Melampyrum, which has 
been shown to flourish when attached to various forbs, including many Asteraceae 
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(Matthies 2017). Furthermore, we investigated the potential selection of hemiparasite 
lineages and their effect on host–hemiparasite interactions. To do so, we used seeds 
from hemiparasites that had grown for two years in monoculture stands of the two host 
species and compared their performance to plants from the original population from a 
species-rich grassland (‘naïve’ plants), i.e. all tested seed sources per hemiparasite spe-
cies originated from a single hemiparasite population. We hypothesised that growth in 
a host monoculture might lead to a selection of lineages better adapted to the given 
host, reflected by improved hemiparasite growth and possibly a more deleterious effect 
on that host (hypothesis 3).

Materials and methods

Study species

Melampyrum arvense L. and Rhinanthus alectorolophus (Scop.) Pollich are annual xylem-
feeding root-hemiparasitic species native to Europe. Melampyrum typically grows in 
dry grasslands and steppes, while Rhinanthus alectorolophus (Scop.) Pollich favours dry 
to mesic grasslands. Solidago gigantea Aiton and Symphyotrichum lanceolatum (Willd.) 
G. L. Nesom are perennial rhizomatous species from the Asteraceae family, originat-
ing from North America (Pyšek et al. 2012). They began spreading across Europe in 
the 19th century and have become serious invaders (Weber and Jakobs 2005; Jedlička 
and Prach 2006; Axmanová et al. 2021). Solidago and Symphyotrichum are consid-
ered typical wetland species, but they also occur in disturbed anthropogenic habitats, 
poorly-managed fields, pastures and meadows within their native range (Chmielewski 
and Semple 2001; Weber and Jakobs 2005). Solidago has a broader ecological niche in 
the invaded areas, also occupying drier and nutrient-poorer soils (Weber and Jakobs 
2005). Both species have a perennial rhizome, which, in the spring, produces a cohort 
of shoots that start to flower in late summer (Solidago) or early autumn (Symphyotri-
chum) and yield numerous tiny wind-dispersed seeds. Jedlička and Prach (2006) noted 
the high viability of Symphyotrichum lanceolatum seeds, which, combined with the 
effective ability to penetrate established vegetation, triggers the high invasive potential 
of this species.

Haustorial connection

We initiated a pilot cultivation trial to examine the anatomy of haustorial connections 
between the hemiparasites and the two invasive hosts. The cultivation was set up in the 
experimental garden of the Department of Botany and Zoology at Masaryk University 
in Brno, Czech Republic. The hemiparasites’ seeds were collected from species-rich 
vegetation in the summer of 2019 (see Suppl. material 1: appendix S1 for localisa-
tions). In the autumn of 2019, we transplanted rhizomes of host species into 15 × 15 × 
20 cm pots (narrower at the bottom, corresponding to 3.6 litres), filled with a mixture 
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of peat and garden soil (ratio 1:3). In October, we sowed 20 hemiparasite seeds on each 
pot. We established five replicates for each hemiparasite-host combination.

In June 2020, we rinsed the hosts’ roots, harvested the haustoria and preserved 
them in 70% ethanol. Following the method of Soukup and Tylová (2014), we de-
hydrated the samples, transferred them to anhydrous butanol, infiltrated and then 
embedded them in paraffin. We prepared 12 µm sections using a sliding microtome 
(Reichert, Wien, Austria) and de-waxed and stained them with phloroglucinol-HCl 
(Wiesner solution) (Liljegren 2010) to colour the lignified cell walls.

Cultivation experiment

We established the main pot experiment in autumn 2021 to investigate and quan-
tify the outcome of the novel interactions for the hemiparasites and the extent of 
host suppression. For each hemiparasitic species, we used three seed sources: (i) seeds 
from a wild population growing in a species-rich grassland and (ii) seeds from plants 
originally obtained from the same populations as in (i), but which had been growing 
since 2019 in monostands of the two invasive host species. The aim was to investigate 
the potential selection of genotypes more adapted to the specific hosts. More specifi-
cally, the monostands were mown in the autumn of 2019, after which we sowed the 
hemiparasites’ seeds. In 2020, the monostands with hemiparasites were mown in July 
and October. We collected ripe hemiparasite seeds from all populations from June to 
July 2021. The seeds were stored at room temperature before use. As both host species 
produce a dense rhizome network in the topsoil layer, we collected soil blocks with rhi-
zomes from monostands of each host species to establish host cultivation in September 
2021. First, we removed the above-ground biomass and then cut approx. 12 × 12 cm 
rhizome blocks with a spade. The rhizomes were then inserted into the same pots and 
soil substrate described in the chapter ‘Haustorial connection’. See Suppl. material 1: 
appendix S1 for GPS coordinates of the sites of hemiparasites’ seed and host plants’ 
origin.

The experimental design comprised: (i) an uninfected control treatment (host spe-
cies without hemiparasite seed addition) and three types of ‘infected’ treatments (with 
hemiparasite seeds addition), i.e. treatments (ii) ‘naïve’ (seeds of hemiparasites origi-
nating from a wild population), (iii) ‘home’ (seeds from hemiparasites growing for two 
years in a monostand of a host species and then sown with the same host species in the 
pot) and (iv) ‘cross’ (seeds from hemiparasites growing for two years in a monostand 
of one host species and then sown into the pot with the other host species) (see the 
scheme of the origin of hemiparasites’ seeds in Fig. 1). Both hemiparasites were sown 
with both invasive species, resulting in 14 treatments. Each treatment consisted of 10 
replicates of the pots, totalling 140 pots. Each pot in the ‘infected’ treatments (treat-
ments ii–iv) received 40 seeds of one of the hemiparasitic species. Seeds were spread on 
the surface and gently mixed with the topsoil layer. The pots were then placed in the 
experimental garden in Brno, following a completely randomised design and irrigated. 
During spring 2022, the pots were irrigated as necessary. In April 2022, seedlings of 
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Figure 1. Scheme of origin of the hemiparasites’ seeds used in the cultivation experiment. In October 
2019, seeds of Melampyrum arvense and Rhinanthus alectorolophus from a single population per species, 
originating from a species-rich grassland, were sown in monostands of the host species Solidago gigantea 
and Symphyotrichum lanceolatum. By 2021, hemiparasite seeds collected from the host species’ mono-
stands and the original hemiparasite population were used in the cultivation experiment resulting in three 
types of hemiparasite seed sources: ‘naïve’, ‘home’ and ‘cross’.
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non-target species were removed from the pots. The pots were spaced 30 cm apart and 
their position within the experimental matrix was changed three times before harvest 
at the beginning of June 2022.

The experiment was harvested during hemiparasite flowering. We cut the above-
ground biomass and counted the number of host shoots and hemiparasitic plants that 
survived in each pot. The hemiparasite and host biomass from each pot were dried 
separately at 80 °C and weighed. Schmid et al. (1995) revealed a strong dependency 
of sexual reproduction and clonal growth on plant size as well as a threshold size for 
sexual reproduction in Symphyotrichum lanceolatum and Solidago canadensis, a species 
closely related to Solidago gigantea. We thus expected the vegetative biomass to reflect 
host fitness and reproductive potential sufficiently.

Statistical analyses

Initially, we conducted an exploratory analysis of patterns in counts of hemiparasite 
individuals, host ramets and above-ground biomass production to identify pots that 
were not representative due to insufficient host or hemiparasite recruitment. Only 
pots with at least six host shoots and three hemiparasite individuals (in infected treat-
ments) were subsequently included in the analysis (n = 132 out of 140 pots). Scat-
terplots of biomass vs. individual or shoot counts (Suppl. material 1: appendices S2, 
S3) demonstrated low correlations, indicating compensatory growth in pots retained 
for the analysis.

We used linear models to analyse the following parameters: hemiparasite above-
ground biomass, the number of individuals, mean biomass per individual and host 
above-ground biomass, the number of shoots and mean biomass per shoot. All vari-
ables were log-transformed before analysis to improve the normality of residuals and 
homogeneity of variances. The analysis of each parameter, used as response variables, 
was conducted at two levels: (i) the species-level model included hemiparasite, host 
species and their interaction as predictors. Seed-source treatments were disregarded in 
this analysis; (ii) seed-source analysis consisted of a series of linear models, one for each 
host–hemiparasite combination, with seed-source treatment as a single predictor. In 
this analysis, we set treatment contrasts with the ‘naïve’ treatment as the baseline level, 
to which the two other treatments were compared. Only biomass data were tested in 
the seed-source level analysis.

We first built a saturated model for each analysis with all candidate predictors and 
interactions. Individual terms of the saturated models were tested by an F-test, the 
results of which are reported in ANOVA tables as in a classical two-way ANOVA with 
interactions. Non-significant (P > 0.05) terms were subsequently removed from the 
models in the backward predictor selection procedure. Non-significant main effects 
were retained if a predictor was involved in a significant interaction. The resulting 
minimal adequate models were then used to extract regression coefficients and their 
associated tests of significance. This approach was allowed by the nature of our data 
coming from a manipulative experiment with a balanced design, which implies the or-
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thogonality of the predictors. We acknowledge that the orthogonality was not perfect 
because we removed a few pots with low establishment of hosts or parasites. Still, the 
collinearity between the tested effects (host and parasite predictors) was minimal as 
measured by the phi-coefficient (φ = 0.026; χ1 = 0.0084; P = 0.927), which justifies the 
validity of the interaction-term testing and supports backward selection as a suitable 
model-selection approach. All analyses were performed in R, version 4.2.2 (R Core 
Team 2022).

Results

Functional haustorial connection

Both hemiparasitic species formed fully developed haustoria on the roots and rhizomes 
of both host species. In all cases, the xylem bridge from hemiparasite haustoria reached 
the xylem vessels of the hosts. No signs of a defensive reaction by the hosts were ob-
served (Fig. 2).

Host–Hemiparasite interaction on the species level

Hosts successfully resprouted from rhizomes in the transferred soil blocks; 
only four pots had to be omitted because of insufficient sprouting (Fig. 3, 
Suppl. material 1: appendix S4). The number of hemiparasite plants varied in the pots, 
but their establishment was generally successful, with only four pots omitted from the 
experiment due to poor hemiparasite establishment. On average, 10.9 Melampyrum 
plants were harvested in pots with both host species (max. 20 individuals). In con-
trast, significantly higher average numbers of Rhinanthus plants, 16.2 and 13.2, were 
harvested in pots with Solidago and Symphyotrichum (max. 23 individuals), respec-
tively (Table 1, Fig. 4, Suppl. material 2 for the primary data). Hemiparasite biomass 
production differed between the two species and was also significantly affected by the 
host identity (Table 1). Specifically, Melampyrum grew larger than Rhinanthus (t110 = 
11.25, P < 10-6) and Solidago supported a more vigorous hemiparasite growth than 
Symphyotrichum (t110 = 10.12, P < 10-6). These effects were additive, i.e. the difference 
in the host quality had a similar impact on both hemiparasitic species (Fig. 4). Similar 
trends and significant interactions were also found concerning the average biomass of 
hemiparasite individuals (Table 1). Melampyrum individuals were consistently larger 
than Rhinanthus and both hemiparasitic species produced larger specimens on Solidago 
than on Symphyotrichum. However, this trend was less pronounced in Rhinanthus, i.e. 
Rhinanthus individuals growing with Symphyotrichum were larger than expected by ad-
ditive effects (t109 = 2.57, P = 0.012; Fig. 4).

Regarding host suppression, we identified strong interactive effects of host and 
hemiparasite species identities on the host biomass (Table 1). The hemiparasitic spe-
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Figure 2. Cross sections of haustorial connections between two root-hemiparasitic species and their hosts. 
In the hemiparasite haustoria (ha), there is a hyaline body (hb), the vascular core of the haustorium (vc) 
and a xylem bridge (xb) leading to host xylem vessels (xv) in the host root (hr); xx – xylem–xylem contact.

cies significantly reduced host biomass relative to uninfected controls (Melampyrum: 
t126 = -10.1, P < 10-6, Rhinanthus: t126 = -4.53, P < 10-4), but the suppression was 
significantly more pronounced in Solidago infected by Melampyrum (t126 = 4.50, P < 
10-5; Fig. 5). Overall, Solidago biomass was reduced by 77.6% and 49.1% on average 
when infected by Melampyrum and Rhinanthus, respectively. Symphyotrichum bio-
mass was reduced by 31.6% and 35.2% on average by Melampyrum and Rhinanthus, 
respectively. Host biomass was reduced by decreasing the number of host shoots or 
reducing the average biomass of host shoots. While Melampyrum acted in both ways, 
Rhinanthus mainly decreased the average host shoot biomass (Fig. 5). In detail, Mela-
mpyrum reduced the number of host shoots per pot (t128 = -4.05, P < 10-4) by 33% 
in Solidago and 21% in Symphyotrichum. The effect of Rhinanthus on the host shoot 
number was not significant (t128 = -0.76, P = 0.45). Both Melampyrum (t126 = -7.07, 
P < 10-6) and Rhinanthus (t126 = -4.00, P < 0.001) reduced the average biomass of 
host shoots. While Rhinanthus reduced the average shoot biomass of both hosts to a 
similar extent, Melampyrum was significantly less deleterious to Symphyotrichum than 
to Solidago (t126 = 3.98, P < 0.001).
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Figure 3. Representative pots for each hemiparasite seed-source treatment (‘cross’, ‘home’, ‘naïve’) and 
the uninfected control. Solidago gigantea (left) and Symphyotrichum lanceolatum (right) are infected by 
Melampyrum arvense (top) or Rhinanthus alectorolophus (bottom). The bottom photo is flipped vertically 
for clarity of the experiment presentation. Photographic documentation of all experimental pots is pro-
vided in Suppl. material 1: appendix S4. Scale bars: 50 cm.

Effect of the hemiparasite seed origin on the interaction

We identified the significant effects of the hemiparasite seed-source treatments on 
some interactions. Total hemiparasite biomass was affected in the case of Melampyrum 
growing on Solidago (R2 = 0.29, F2,24 = 4.98, P = 0.016) and Rhinanthus growing on 
Symphyotrichum (R2 = 0.32, F2,25 = 5.81, P = 0.008). Specifically, Melampyrum plants 
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Table 1. Analysis of variance tables summarising the effects of hemiparasite and host species identity on 
the growth of hemiparasites and hosts.

Response Effect df Sum Sq. F P
Hemiparasite biomass Hemiparasite 1 13.72 121.95 < 10-6

Host 1 11.65 103.48 < 10-6

Hemiparasite × Host 1 0.24 2.10 0.15
Residuals 109 12.28

Hemiparasite count per pot Hemiparasite 1 3.89 19.64 < 10-4

Host 1 0.35 1.75 0.19
Hemiparasite × Host 1 0.29 1.46 0.23

Residuals 109 21.60
Hemiparasite average 
biomass

Hemiparasite 1 32.23 203.10 < 10-6

Host 1 7.97 50.22 < 10-6

Hemiparasite × Host 1 1.05 6.61 0.011
Residuals 109 17.30

Host biomass Hemiparasite* 2 16.11 46.12 < 10-6

Host 1 0.02 0.13 0.72
Hemiparasite × Host 2 7.69 22.00 < 10-6

Residuals 126 22.00
Host shoot count per pot Hemiparasite* 2 2.53 13.09 < 10-5

Host 1 5.07 52.42 < 10-6

Hemiparasite × Host 2 0.31 1.59 0.21
Residuals 126 12.18

Host shoot average biomass Hemiparasite* 2 7.28 18.35 < 10-6

Host 1 5.77 29.10 < 10-6

Hemiparasite × Host 2 5.04 12.71 < 10-5

Residuals 126 24.99
* The hemiparasite effect on host biomass also comprises non-infected control as an extra level.

in the ‘cross’ treatment (seeds from plants previously grown with the alternative inva-
sive host) produced significantly less biomass (t24 = -2.80, P = 0.010) compared to the 
‘naïve’ treatment (seeds from species-rich vegetation), while the biomass of Melampy-
rum on Solidago from the ‘home’ (seeds from plants previously grown with the same 
host species) and ‘naïve’ treatment did not significantly differ (Fig. 6). Conversely, the 
biomass of Rhinanthus on Symphyotrichum was significantly higher in the ‘home’ treat-
ment compared to the ‘naïve’ treatment (t25 = 3.09, P = 0.005) and the hemiparasite 
biomass in the ‘cross’ and ‘naïve’ treatment did not differ (Fig. 6).

Host biomass was significantly affected only in the case of Solidago infected by 
Rhinanthus (R2 = 0.27, F2,27 = 5.09, P = 0.013) (Fig. 7). Here, Rhinanthus of ‘home’ 
and ‘cross’ treatments suppressed Solidago biomass more than ‘naïve’ Rhinanthus 
plants (t27 = -2.73, P = 0.011 and t27 = -2.80, P = 0.009 for ‘home’ and ‘cross’ treat-
ments, respectively).
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Figure 4. Effects of host species on the total biomass, number of individuals per pot and average biomass 
of the individuals of the two hemiparasitic species. Boxplots represent median, quartiles and ranges. See 
Table 1 for the ANOVA tables summarising significance tests. Note the logarithmic scale of the y-axes.
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Figure 5. Effect of hemiparasite infection on total biomass, number of shoots per pot and average shoot 
biomass of the two host species. Boxplots represent median, quartiles and non-outlier ranges, with outliers 
displayed as points outside the non-outlier ranges. Note the logarithmic scale of the y-axes. See Table 1 for 
the ANOVA tables summarising significance tests.

Discussion

The outcome of the novel host–hemiparasite interactions

Both root-hemiparasitic species established a functional parasitic association with the 
two novel host species, as evidenced by functional haustorial connection, vital growth 
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and flowering of both parasites (Figs 2, 3). In line with our first hypothesis, the hemip-
arasite species differed in compatibility with the two invasive hosts from Asteraceae, 
with Melampyrum proving a more efficient parasite than Rhinanthus. This outcome is 
not surprising, as Melampyrum has previously been shown to thrive when attached to 
a series of forbs. Asteraceae species, such as Achillea millefolium, Matricaria chamomilla 
and Taraxacum officinale, were even amongst the top five hosts out of 27 potential hosts 
tested (Matthies 2017). The average biomass of Melampyrum individuals of ca. 500 mg 
on Solidago and 300 mg on Symphyotrichum classifies these species amongst the best or 
moderately good hosts, respectively (in comparison to Matthies (2017)). Rhinanthus 
spp. have been repeatedly reported to grow better when attached to grasses or legumes 

Figure 6. Effect of seed-source treatments on hemiparasite biomass production categorised by the in-
dividual host–hemiparasite combinations. Boxplots represent median, quartiles and non-outlier ranges, 
with outliers displayed as points outside the non-outlier ranges. P-values indicate significant effects of 
seed-source treatments. Note the logarithmic scale of the y-axes.
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than forbs (Cameron and Seel 2007; Rowntree et al. 2014; Matthies 2021). The bio-
mass production of Rhinanthus alectorolophus, converted to values per 1 m2, amounted 
to 136 g DW and 75.6 g DW when attached to Solidago and Symphyotrichum, respec-
tively. These values are lower than those reported for the best grass hosts in a recent field 
cultivation experiment (Hejduk et al. 2020). Still, Solidago can be considered a similar-
ly good host for Rhinanthus alectorolophus as Lotus corniculatus, the best host amongst 
legumes. Symphyotrichum is a host of lower quality, but still comparable to some grasses 
(Festuca rubra) or legumes (Trifolium hybridum) (Hejduk et al. 2020). Compared to 
pot cultivations, the two invasive hosts can also be considered of at least moderate qual-

Figure 7. Effect of seed-source treatments on host biomass production in infected pots categorised by the 
individual host–hemiparasite combinations. Boxplots represent median, quartiles and non-outlier ranges, 
with outliers displayed as points outside the non-outlier ranges. P-values indicate significant effects of 
seed-source treatments. Note the logarithmic scale of the y-axes.
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ity for Rhinanthus alectorolophus with an average biomass of individuals of about 220 
mg and 150 mg on Solidago and Symphyotrichum, respectively. The biomass values per 
individual may be up to five times higher with the best host species in greenhouse pot 
cultivations (Těšitel et al. 2015b; Matthies 2021). However, the hemiparasitic plants 
in these cultivation experiments could benefit from optimal greenhouse conditions, 
including sufficient soil nutrients and reduced intraspecific competition due to the 
presence of only a single hemiparasite individual in each pot (Matthies 2021).

Both hemiparasitic species significantly suppressed the growth of both host species, 
which is the first experimental demonstration of an adverse effect of root hemiparasites 
on invasive species. We expected that the growth of the hemiparasites would correlate 
with the level of host suppression (hypothesis 2), which was only partially supported. 
Both hemiparasitic species reduced Symphyotrichum above-ground biomass by a third 
despite a significant difference in hemiparasite biomass (Figs 4, 5). Conversely, Solidago 
growth was reduced by 80% and 50% when parasitised by Melampyrum and Rhinan-
thus, respectively, corresponding to the difference in biomass production of the two 
hemiparasitic species and also to maximal levels of host biomass suppression reported 
from previous pot experiments (70% and 65% by Melampyrum arvense and Rhinan-
thus alectorolophus, respectively; Těšitel et al. (2015b); Matthies (2017); Sandner and 
Matthies (2018)). The difference in the host suppression could be related to their 
clonal growth characteristics, specifically the persistence of ramet connection. The 
clonal connections of Solidago ramets may persist for several years, while connections 
amongst Symphyotrichum ramets decay after one year (Schmid et al. 1995; Klimešová 
and Klimeš 2006). Schmid and Bazzaz (1987) suggested stronger physiological inte-
gration in Solidago due to the larger effects of experimental rhizome severance on Soli-
dago gigantea growth than Symphyotrichum. The persistent clonal spread was identified 
as a significant positive predictor of hemiparasite-induced growth reduction (Demey 
et al. 2015); thus, the putatively stronger integration of Solidago ramets could be one 
of the reasons for the more extensive damage inflicted by the parasites. Physiological 
integration may be a trait contributing to a species’ susceptibility to plant parasitism.

Examining the interactions between clonal hosts and hemiparasites presents a chal-
lenging task. Pot experiments are necessary to isolate the interaction between the host 
and the generalist hemiparasites from the natural community context, ensuring no 
other plant serves as a host. Typically, hosts are grown from seeds in these experi-
ments, with hemiparasites later germinating in the pots or being transplanted as pre-
germinated seedlings. Consequently, hemiparasites attach to young host individuals 
that have not yet developed clonal growth. Furthermore, arbitrary numbers of host 
and hemiparasite individuals (sometimes as low as one host with one hemiparasite) 
are used in most of the pot experiments (e.g. Cameron and Seel (2007); Rowntree et 
al. (2014); Těšitel et al. (2015b); Matthies (2017); Sandner and Matthies (2018); but 
see, for example, Matthies (1995) and Hejduk et al. (2020) for hemiparasite density-
manipulation experiments). These issues limit the potential of such experiments to 
elucidate the clonal host–hemiparasite interaction because, in natural communities, 
hemiparasite seedlings mostly attach to mature individuals of perennial plants with a 
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fully-developed root system and clonal-growth organs. Thanks to transplanting whole 
soil blocks from the host population, our experiment maintains the host plant proper-
ties (developmental stage, ramet density) as close to natural conditions as possible. In 
addition, the hemiparasite seedlings were permitted to develop under natural climatic 
conditions, host phenological development and at densities close to realistic values 
(van Hulst et al. 1987; Mudrák and Lepš 2010). Hence, our experiment paves the 
way to more realistic pot experiments studying clonal host–hemiparasite interactions, 
which are of particular significance in European grassland ecosystem (Demey et al. 
2015; Lepš and Těšitel 2015; Těšitel et al. 2017).

Conservation perspective

Pronounced biomass suppression of Solidago and Symphyotrichum is noteworthy from 
the restoration perspective. Both species are invasive, often achieving dominance and 
significantly impacting above-ground diversity (Hejda et al. 2021; Cubino et al. 2022; 
Fenesi et al. 2023). Solidago spp. also affected below-ground soil properties and the ac-
tivity and biomass of soil bacteria and fungi (Zhang et al. 2009a, b; Scharfy et al. 2010; 
Pergl et al. 2023). Both species are listed in the second most serious category in the 
Black List of invasive species (BL2) with a massive environmental impact (Pergl et al. 
2016). Hence, reducing their populations is crucial, particularly at sites of high conser-
vation values. Mowing twice, a standard management technique for vegetation infested 
with Solidago gigantea, reduces the species’ dominance. Cover reduction by 75% of the 
initial cover was reported over the long term, but the species is still persistent in the 
vegetation (Nagy et al. 2020; Szymura et al. 2022). A more pronounced suppression of 
Solidago may be achieved through cattle and sheep grazing or flooding (> 95% suppres-
sion; Nagy et al. (2020)). Despite the rapid spread of Symphyotrichum lanceolatum in 
wetland habitats of high natural value (Lanta et al. 2022), no information on managing 
this invasion is available. Biological control by introducing specialised insects or fungi 
from the species’ native range has not been established yet in the invaded ranges, though 
several non-native insect enemies may be available in the case of Solidago (Fontes et al. 
1994; Sheppard et al. 2006). Another biocontrol option available in subtropical regions 
may represent the widely-spread fungus Sclerotium rolfsii, causing the southern blight 
disease. Wilting of Solidago canadensis, induced by this fungus, has been reported from 
China (Tang et al. 2010) and the fungus application combined with soil disturbance 
led to 90% decrease in Solidago canadensis stem density (Zhang et al. 2019).

Using native hemiparasitic plants in combination with standard mowing man-
agement may offer another tool for the biocontrol of the two study species without 
any potential risks of introducing alien organisms to the ecosystems. The effects of 
hemiparasites on the invasive hosts observed in our experiment are comparable to the 
level of the suppression of Calamagrostis epigejos by Rhinanthus alectorolophus reported 
in previous research (Těšitel et al. 2017). The reduction and even elimination of this 
expansive grass by Rhinanthus have been established as a standard tool of biodiversity 
restoration in nature conservation in the Czech Republic (SPPK D02 002 2021). In 
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contrast, Melampyrum arvense has not been used in ecological restoration so far, pos-
sibly because it is now considered a vulnerable species confined mainly to steppes and 
protected areas in Central Europe (Těšitel et al. 2015a). However, this species used to 
be a noxious weed in winter cereal fields (e.g. Rau (1970); Çetinsoy (1980); Matthies 
(1995)). It can increase its biomass by 1/3 in nutrient-rich soil and prefers hosts from 
nutrient-rich environments (Matthies 2017). Such ecological characteristics align with 
the ecology of Solidago and Symphyotrichum, sometimes called ‘old-field perennials’ 
(Schmid and Bazzaz 1987; Schmid et al. 1995), which efficiently colonise bare ground, 
fallows and disturbed urban areas and thrive in humid, nutrient-rich soils. Our experi-
mental results demonstrate the ability of both hemiparasites to suppress the invasive 
species, but implementing this finding in ecological restoration requires further testing 
in the field conditions over longer periods.

Genotype adaptation

We identified transgenerational effects in hemiparasitic interactions thanks to using 
hemiparasite seeds of the same population origin, but cultivated for two generations 
(= years) with the target host. The effects were not universal across all host–hemipara-
site combinations; however, where present, they generally supported our hypothesis 3. 
Specifically, when the hemiparasites were exposed to the target host species during two 
previous generations, the offspring plants produced relatively more biomass (Fig. 6) or 
were more detrimental to the host (Fig. 7) in some host–hemiparasite combinations. 
The effects were more pronounced on the hemiparasite side of the association, a pattern 
identified in a previous study on genotype effects in root-hemiparasitic interactions 
(Rowntree et al. 2014). Two mechanisms may be at play here: classical genetics and the 
selection of alleles that provide better compatibility with a host species or epigenetic 
(maternal) effects acting in the same way (Anastasiadi et al. 2021). We are not able to 
distinguish between these two with the current data. Even in model organism studies, 
the state-of-the-art methodology struggles to provide absolute separation of selection 
and epigenetics (Schmid et al. 2018). However, any adaptive process facilitating the 
association with novel hosts is crucial for the biotic resistance role of the parasites.

The existence of transgenerational effects in host–hemiparasite compatibility sug-
gests that the breeding of genotypes more compatible with the target invasive hosts 
or exposing the mother plants to the novel host species may potentially increase the 
success of biocontrol applications, at least in the case of Rhinanthus. The feasibility of 
such an approach is also supported by the observations of rapid adaptive evolution 
in Rhinanthus alectorolophus in response to environmental conditions and host spe-
cies (Zopfi 1993; Pleines et al. 2013; Moncalvillo and Matthies 2023). The genetic 
diversity of hemiparasites was also demonstrated to be a significant predictor of their 
establishment success and fitness when cultivated with multiple host species (Rowntree 
and Craig 2019). Therefore, while breeding hemiparasites in monospecific host stands 
may be efficient for specific purposes, it is equally important to preserve the genetic 
diversity of the populations of hemiparasitic species in nature and in seed production 



Root hemiparasites suppress invasive clonal plants 115

for ecological restoration; for instance, by cultivating hemiparasites with various host 
species from different plant functional groups so that the pool of genotypes efficient in 
various host–hemiparasites combinations is not depleted.
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Abstract
The brown marmorated stink bug, Halyomorpha halys, native to East Asia, is an invasive pest of economic 
importance. It has invaded North America and many European countries and is further expanding its 
range. In Belgium, it was first observed in 2011. Halyomorpha halys is known to cause severe damage in 
commercial fruit orchards and vegetable crops. A dramatic and unmitigated expansion of H. halys in its 
adventive range could lead to significant economic implications for agricultural production. In this study, 
occurrence data of H. halys since its first observation in Belgium was analysed together with molecular 
information to map the populations and evaluate the genetic diversity of this pest. The genetic diversity of 
H. halys in Belgium was compared to data from other invaded and native countries reported in previous 
studies to identify possible invasion routes. The analysis of 1176-bp of mitochondrial DNA cytochrome c 
oxidase I and II genes (COI and COII) led to the discovery of two novel COI-COII haplotype combina-
tions currently unique to Belgium. The invasion of H. halys in Belgium is likely the result of multiple and 
ongoing introductions from its native region and from already invaded countries in Europe, particularly 
Italy. The expansion of the brown marmorated stink bug populations in Belgium is recent and ongoing. 
Presently, it appears to thrive best in northern Belgium.
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Introduction

Halyomorpha halys (Hemiptera: Pentatomidae) or the brown marmorated stink bug is 
a stink bug of economic importance, native to East Asia and an invasive pest species 
in Europe, North America, and other regions (Hoebeke and Carter 2003; Leskey et 
al. 2012; Lee et al. 2013; Haye et al. 2015; Zhu et al. 2016; Hamilton et al. 2018). In 
Europe, H. halys has already been detected as far north as The Netherlands (Aukema 
et al. 2019), Belgium (Claerebout et al. 2018) and the north of Germany (Hartung 
et al. 2022). Due to its polyphagous nature, H. halys can feed on virtually all primary 
fruit and vegetable crops in its invaded areas (Kuhar et al. 2012; Haye et al. 2015). For 
example, in northern Italy, it has become a key pest in fruit orchards, with an estimated 
economic impact of €588 million on the production of pear, apple, peach, and kiwi 
in 2019 (Bulgarini et al. 2020). Halyomorpha halys causes damage through its feeding 
activity. It inserts its stylets into the plant and injects saliva, pre-digesting the plant 
tissue before feeding on it (Rice et al. 2014). This feeding behaviour causes scarring, 
deformities, pitting, and discolouration of the product, rendering it unmarketable or 
even inedible (Rice et al. 2014; Bulgarini et al. 2020). Since its first record in Belgium 
in 2011, observations of H. halys on public citizen science databases (Observation In-
ternational and local partners 2022) only appeared in 2017. Currently, it is assumed 
that H. halys has established univoltine overwintering breeding populations in Belgium 
(Claerebout et al. 2018). An observation of H. halys from the Haspengouw region in 
July 2021 indicated that H. halys is already present in commercial pip fruit orchards 
in Belgium. However, to date, no dramatic population increases, mass occurrences or 
damage has been reported in fruit production in Belgium (Berteloot et al. 2021). In 
2022, in Belgium, 219.000 t of apples and 366.000 t of pears, some of the most vulner-
able fruits to H. halys, were produced (European Commission 2022a, b). Apples and 
pears represent a combined revenue of more than € 148 million of which pear produc-
tion is the most significant part with a revenue of € 119 million (Verbond van Belgische 
Tuinbouwcoöperaties 2022). An unmitigated expansion of H. halys in Belgium could 
therefore have a considerable impact on fruit production, especially in the Flanders 
region, which produces most of the apples, pears, and soft fruits in the country.

The increased accessibility and affordability of molecular technologies, as well as 
the expansion of databases containing publicly available DNA sequence data, have 
aided in the use of molecular tools to assess the genetic diversity and potential origin 
of invasive species (Cristescu 2016; Hamelin and Roe 2019). Due to its lack of re-
combination, relative neutrality and shorter coalescence time, mitochondrial DNA 
(mtDNA) is a highly popular molecular marker for examining genetic diversity and 
phylogeography of (invasive) animal species (Ficetola et al. 2008; Rollins et al. 2011; 
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Bras et al. 2019; Ryan et al. 2019). Furthermore, for invasive species, the accumulation 
of easily reproducible genetic data in public databases facilitates the regular addition 
of new data from the invasion front to build a global pattern of invasion dynamics. 
For example, for H. halys, mtDNA sequences (portions of the mitochondrial gene cy-
tochrome c oxidase subunits I and II – COI and COII, respectively) are already avail-
able for both native (China, Japan, Korea) and invaded countries (Gariepy et al. 2014; 
Xu et al. 2014; Cesari et al. 2015; Cesari et al. 2018; Lee et al. 2018; Yan et al. 2021).

In this study, we set out to fill one of the geographical knowledge gaps in Europe 
on the genetic diversity and distribution of H. halys. First, we investigated the genetic 
diversity of H. halys in Belgium by sequencing 99 specimens from 18 locations at two 
mitochondrial genes: COI and COII. Then, we compared those sequences to previous-
ly published H. halys sequences to infer the putative invasion routes to Belgium. Lastly, 
we used public citizen occurrence data to map the distribution of H. halys in Belgium 
from 2020 to 2022 and gain demographic insights into the Belgian populations.

Methods

Insect sampling

Halyomorpha halys specimens were collected from 18 locations in Belgium (Suppl. ma-
terial 1) from agricultural sites and private gardens in 2021 and 2022 using baited traps 
(dual lure from Trécé Inc., Adair Oklahoma, USA) or by beating of the lower part of 
a tree trunk/shrub. The collected samples were stored dry or in 70% ethanol at -20 °C 
until used for molecular analysis.

DNA extraction & sequencing

DNA was extracted from two legs using a Chelex extraction method (Walsh et al. 
1991). Briefly, the legs were crushed with a sterile pestle in 100 µl of 5% Chelex 
100 (Bio-Rad, USA) solution. They were then incubated at 85 °C for 90 min, and 
the supernatant was collected after 3 min of centrifugation at 12,000 rpm. The cy-
tochrome oxidase subunit I (COI) and II (COII) barcode regions of the mitochondrial 
DNA were amplified through PCR. For the COI region, the LCO 1490 (5’- GCT-
CAACAAATCATAAAGATATTGG-3’) and HCO 2198 (5’- TAAACTTCAGGGT-
GACCAAAAAATCA-3’) primers (Folmer et al. 1994) were used. For COII, the Hha-
lysCO2F2 (5’-TAACCCAAGATGCAAATTCT-3’) and HhalysCO2R2 (5’- CCATA-
TATAATTCCTGGACGA-3’) primers (Xu et al. 2014) were used. For both regions, 
the following PCR cycles were used: initial denaturation at 94 °C for 3 min, 38 cycles 
of denaturation at 94 °C for 30 sec, annealing at 48 °C for 30 sec and extension at 
72 °C for 45 sec, followed by a final extension step at 72 °C for 7 min. The PCR prod-
uct quality was checked on agarose gel. Both strands (forward and reverse) for each 
barcode region were sequenced (Eurofins, Germany GmbH) by Sanger sequencing.
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Haplotype diversity analysis

Forward and reverse sequences were trimmed and assembled into a consensus sequence 
using CodonCode Aligner (version 10.0.2). COI and COII sequences obtained in this 
study were compared to COI and COII sequences from Yan et al. (2021) and Cesari et 
al. (2018), retrieved from GenBank and BOLD. Other previously conducted studies 
on the genetic diversity of H. halys only sequenced COI or COII fragments (or only re-
ported unique haplotypes found without specifying which samples are associated with 
which haplotypes) (Gariepy et al. 2014; Xu et al. 2014; Valentin et al. 2017; Lee et al. 
2018; Kapantaidaki et al. 2019). All individual COI and COII haplotypes found in 
this study have already been reported in other publications (see results) and were given 
the haplotype name used in those publications (Cesari et al. 2018; Yan et al. 2021). 
However, for COI, there were discrepancies between the sequences of haplotypes with 
the same name found in Cesari et al. (2018) and Yan et al. (2021). Haplotypes found 
in our study were named after the reference haplotypes of the study of Valentin et al. 
(2017) if a sequence match was found. Haplotype names from Cesari et al. (2018) 
were distinguished with the letter “c” (Table 1). The sequence of haplotype H41 from 
Yan et al. (2021) perfectly matched the H41 haplotype from Valentin et al. (2017) but 
corresponded to the sequence of H46 from Cesari et al. (2018). Therefore, the name 
of the sequence of this haplotype was retained in the present study as H41. Another 
sequence found in this study without a match in Valentin et al. (2017) or Yan et al. 
(2021) was already named H41 in Cesari et al. (2018) and was renamed “H41c” to 
distinguish it. For H40 and H43, the same haplotype names were given to different 
sequences by Cesari et al. (2018) and Yan et al. (2021). Again, those sequences were 
compared to the ones of Valentin et al. (2017). The H40 and H43 sequences from 
Yan et al. (2021) perfectly matched the identical name sequences from Valentin et al. 
(2017), and these names were retained in the present study. A letter “c” was added to 
the H40 and H43 sequences from Cesari et al. (2018) to distinguish them. Finally, 
the H42 and H49 sequences from Cesari et al. (2018) did not match the H42 and 
H49 haplotypes from Valentin et al. (2017) (no H42 and H49 haplotypes in Yan et 
al. (2021) for comparison). To be consistent, the letter “c” was added to the H42 and 
H49 sequences from Cesari et al. (2018).

Table 1. Summary of the discrepancies between sequences of COI-haplotypes with the same name in 
different studies and the names used in the present study.

Valentin et al. (2017) Cesari et al. (2018) Yan et al. (2021) This study
H40 / H40 H40
/ H40 / H40c
H41 H46 H41 H41
/ H41 / H41c
/ H42 / H42c
H43 / H43 H43
/ H43 / H43c
/ H49 / H49c
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Sequences were aligned and analysed in R v4.0.2 (R Core Team 2020), using pack-
ages msa (Bodenhofer et al. 2015), adegenet (Jombart 2008) and pegas (Paradis 2010). 
The relationships among haplotypes within Belgium and between haplotypes from 
Belgium and other countries were investigated through haplotype networks and ge-
netic diversity indexes (haplotype, Hd, and nucleotide diversity, π). We tested for the 
presence of a genetic structure in Belgium by performing a Mantel test (Euclidean) on 
genetic and geographic distance matrices between collected specimens.

Occurrence data

Occurrences from January 1st, 2017, to December 31st, 2022 were obtained from the 
publicly available citizen science database (Observation International and local partners 
2022). For H. halys, the recorded occurrences on the public citizen science database 
are quality-controlled, and the taxonomic accuracy of each observation is confirmed or 
rejected by a specialist through photos. The occurrence data was additionally examined 
to check the validity of all the occurrences. Only occurrences with a high confidence 
level in the taxonomic identification of H. halys and with spatial coordinates were 
used. Additionally, specimens collected during this research were identified through 
morphological identification using the H. halys identification key from Maistrello et 
al. (2016) and confirmed by our molecular analysis. The occurrence data was visualised 
with QGIS 3.30.1 (QGIS Development Team 2023).

Results

DNA sequences

• COI: 99 H. halys sequences were retrieved out of 99 specimens collected. All 
specimens yielded a 658-bp DNA sequence. The DNA sequence data and specimen 
collection information were made accessible on GenBank with accession numbers 
OR581617–OR581715.

• COII: 93 sequences with a length of 518-bp were retrieved from 99 H. halys 
specimens collected. The DNA sequence data and specimen collection information 
were made accessible on GenBank with accession numbers OR602454–OR602546.

Haplotype diversity of H. halys

For the COI fragment individually, nine distinct haplotypes were found, consisting 
of 14 polymorphic sites (Fig. 1a). Three haplotypes were dominant (H01, H03 and 
H08) and were shared by roughly 80% of the individuals collected. Haplotype diver-
sity was 0.77 ± 0.02 (mean ± SD). The obtained COI sequences from this study were 
compared with 609 COI sequences from other European countries, Chile, the USA, 
China, and Japan. H01 and H03 haplotypes are shared with those in invaded areas in 
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Europe and America, as well as with those in the native area of China, but not with 
Japan. Haplotype H08 is shared only with some invaded areas in Europe (Austria and 
Italy). The remaining haplotypes are shared with Italy (H40c, H41, H41c, H42c and 
H49c), Japan (H23 and H41) and Hungary (H41).

For the COII fragment individually, five distinct haplotypes were found, consist-
ing of 5 polymorphic sites (Fig. 1b). Haplotype diversity was 0.70 ± 0.01. Our COII 
sequences were compared with 651 COII sequences from other European countries, 
Chile, the USA, China, and Japan. Haplotypes h01, h03 and h11 accounted for 91 out 
of 95 haplotypes from Belgium. Haplotypes h01 and h03 are shared with invaded areas 
in Europe, the USA and China but not with Japan. Haplotypes h11 and h15 are only 
shared with some other European countries (Austria, Hungary, and Italy) and Japan. 
Haplotype h21 is shared only with Italy.

The resulting concatenated 1176-bp sequences rendered 12 distinct COI-COII 
haplotypes among 95 specimens consisting of 22 polymorphic sites in total (Fig.1c). 
Two novel COI-COII haplotypes were identified (H03h11 and H08h21) in our sam-
ples; these haplotypes are unique to Belgium. The ten other haplotype combinations 
were previously reported in the literature. The comparison of COI-COII haplotypes 
from Belgium to previously published sequences confirm the pattern observed for in-
dividual loci. The most frequent haplotype H01h01 is shared with all native and in-
vaded countries included in this study (Table 2). H03h03, the second most frequent 
haplotype, has been recorded in Austria, Chile, China, Italy, and Hungary. Some of the 
remaining haplotypes (H03h11, H03h21, H41ch03 and H49ch03) are only shared 
with Italy (and Austria for H08h11) and are close to haplotypes from China. Others 
(H23h11, H41h15 and H41ch11) are shared with Italy (and Hungary for H41h15) 
and/or with (or close to) Japan (H46h15, H42h11, H23h11 and H08h11). Finally, 
the H08h21 and the H03h11 haplotypes are unique to Belgium and are close to the 
haplotypes from Italy (within the group of haplotypes found in most invaded countries 
and China).

Figure 1. Haplotype network using A COI B COII and C COI-COII fragments of H. halys in Belgium. 
The circle size is proportional to the square root of the frequency of the haplotypes. The tick marks on each 
line represent a base pair difference.
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The results of our Mantel test indicated a significant but weak correlation (r = 
0.14, p = 0.001) between the genetic distance and the geographical distances for pairs 
of individuals. High haplotype diversity was observed in Belgium, Hd = 0.79 ± 0.02, 
with a nucleotide diversity value of π = 0.0031 ± 0.0018 (Table 2). This level of genetic 
diversity was lower than that of native regions Japan and China (Hd = 0.94 ± 0.014 
and 0.86 ± 0.023, respectively) but similar to Italy (Hd = 0.72 ± 0.033) (Table 2). 
Other invaded areas of H. halys typically had lower haplotype diversity but their esti-
mation may be approximate due to shallower sampling depth (low sample size and/or 
few sampling locations; Table 2). The genetic data analysis of this research is publicly 
available through the following link: https://zenodo.org/records/10210286.

Distribution of H. halys in Belgium

The 740 observations from 6 years (2017–2022) were checked for accuracy and com-
pleteness. Since the first record in 2011, occurrences in subsequent years initially re-
mained low, without any public citizen database records or specimens collected until 
2017. Halyomorpha halys was recorded once in 2017 and 2018, 5 times in 2019 and 
35 times in 2020. In recent years, the number of observations of H. halys has increased 
dramatically. In 2021, 183 observations were recorded, followed by a substantial in-
crease to 515 in 2022. Up until November 2023, the Belgian public citizen data-
base reported more than 2200 observations, a more than tenfold increase compared 
to 2021. From the occurrences of H. halys in 2020–2022, most of the observations 
were made in northern Belgium, mainly around the urban areas of the cities of Gent, 
Leuven, and Mechelen and the region of Haspengouw (Fig. 2a–c).

Table 2. Summary table of mtDNA (COI-COII) diversity by country. With N: sample size, Hn: number 
of haplotypes, h: haplotype diversity and π: nucleotide diversity (only countries with available COI-COII 
sequences are listed).

Continent Country First record N Hn Hd ± SD π ± SD Study
Asia China Native 90 24 0.86 ± 0.02 0.0033 ± 0.0018 Yan et al. 2021

Japan Native 65 32 0.94 ± 0.01 0.0024 ± 0.0014 Yan et al. 2021
Turkey 2017 (Güncan and Gümüş 2019) 11 1 0 0 Yan et al. 2021

Europe Austria 2015 (Rabitsch and Friebe 2015) 15 4 0.69 ± 0.10 0.0021 ± 0.0013 Yan et al. 2021
Belgium 2011 (Claerebout et al. 2018) 95 12 0.79 ± 0.02 0.0031 ± 0.0018 This study
Georgia 2015 (Gapon 2016) 31 1 0 0 Yan et al. 2021
Greece 2011 (Milonas and Partsinevelos 2014) 8 3 0.61 ± 0.16 0.0025 ± 0.0017 Cesari et al. 2018

Hungary 2014 (Vétek et al. 2014) 90 3 0.11 ± 0.04 0.0003 ± 0.0003 Yan et al. 2021
Italy 2012 (Maistrello et al. 2014) 16 18 0.72 ± 0.03 0.0028 ± 0.0016 Cesari et al. 2018; 

Yan et al. 2021
Romania 2015 (Macavei et al. 2015) 30 1 0 0 Cesari et al. 2018

Serbia 2015 (Šeat 2015) 13 5 0.61 ± 0.07 0.0014 ± 0.0008 Yan et al. 2021
Slovenia 2017 (Rot et al. 2018) 15 3 0.51 ± 0.12 0.0012 ± 0.0008 Yan et al. 2021

North America United States 2001 (Hoebeke and Carter 2003) 24 1 0 0 Yan et al. 2021
South America Chile 2017 (Faúndez and Rider 2017) 31 2 0.06 ± 0.06 0.0001 ± 0.0002 Yan et al. 2021
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Discussion

This study uncovered 9 COI, 5 COII and 12 COI-COII distinct haplotypes from 99 
H. halys specimens collected in Belgium. Among these, two new COI-COII haplotype 
combinations (H03h11 and H08h21), currently unique to Belgium, were observed.

The principal COI haplotypes present in Belgium were H01 (33%), H08 (24%) 
and H03 (23%). H01 and H03 are the most frequent haplotypes in China and in most 
invaded countries (Gariepy et al. 2014; Valentin et al. 2017; Cesari et al. 2018; Lee et al. 
2018; Yan et al. 2021; Gariepy et al. 2021). As such, their presence in Belgium is to be 
expected and therefore does not help to determine the origin of H. halys in Belgium. In-
terestingly, however, H08 is the second most abundant haplotype in Belgium. So far, this 
haplotype has been exclusively detected in certain European countries: Austria, France, 
Italy, Switzerland and Serbia (Valentin et al. 2017; Cesari et al. 2018; Gariepy et al. 2021; 
Yan et al. 2021). This suggests that at least part of the H. halys population in Belgium 
originates from previously invaded territories in Europe (i.e., bridgehead effect; Lombae-
rt et al. 2010). Remarkably, eight out of the nine COI haplotypes found in Belgium are 
shared with Italy. Furthermore, half of these haplotypes were reported exclusively in these 
two countries (H40c, H41c, H42c and H49c) suggesting that Italy is a direct region of 
origin of H. halys in Belgium. The rare H23 haplotype was only found once in Belgium 
and has been reported in Japan and the Western USA (Oregon) (Valentin et al. 2017). 
It was also detected in a shipment in Australia originating from Italy, suggesting that the 
H23 haplotype is also present in Italy (Horwood et al. 2019; Gariepy et al. 2021). Intro-
ductions may thus have originated from Japan or the USA in addition to Italy.

For the COII fragment, h01, h03 and h11 each accounted for 32% of the abun-
dance. The h01 and h03 haplotypes are native to China and Korea (but have not been 
reported in Japan yet) and are the most frequent COII haplotypes in invaded countries 
(Xu et al. 2014; Cesari et al. 2018; Yan et al. 2021). The distribution of the h11 COII 
haplotype is more restricted and has only been reported in Austria, Italy, Japan, and 
Korea (Xu et al. 2014; Cesari et al. 2018; Yan et al. 2021). Consistent with Italy as a 
source of H. halys for Belgium, the h21 haplotype was isolated from two specimens 
collected in Belgium and is only shared with Italy (Cesari et al. 2018).

In this study, the combination of COI and COII fragments did not result in a 
significantly better geographic resolution to reveal possible origins of the invasion. 

Figure 2. Map of Belgium with recorded occurrences of H. halys in A 2020 B 2021, and C 2022. Each 
dot is an individual record, and density clouds indicate the level of density of occurrences in one area.
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However, the presence of haplotype H03h21 provides some additional support for 
Italy as a source of the invasion since this combination is only shared with a sample 
from the Piedmont region of Italy (Cesari et al. 2018). Additionally, the inclusion of 
the COII fragment in this study revealed two novel haplotype combinations unique 
to Belgium: H08h21 and H03h11. The former is likely to originate from Italy since 
haplotype h21 has been exclusively reported there (Piedmont region, same sample as 
for H03h21), while H08 has been detected multiple times (Piedmont and Lombardy 
regions of Italy). H03h11 is more singular because it combines a COI haplotype na-
tive to China (H03) and a COII haplotype native to Korea or Japan (h11; see above). 
Such a combination could arise from recent COI or COII mutations. H03 is only two 
substitutions from the closest COI haplotype native to Japan (H27), and h11 is only 
one substitution from three COII haplotypes native to China (h03, h05 and h10). 
Alternatively, this combination could also exist in the regions of origin (China and/or 
Japan/Korea) but has not yet been sampled. Belgium’s dominant haplotypes generally 
overlap with those from previously invaded European countries, such as Italy, Switzer-
land, Austria, and Hungary. In contrast, rarer haplotypes are exclusively shared with 
Italy and its native region of Japan (H23).

The genetic diversity found in Belgium is surprisingly high (Hd = 0.79, π = 0.0018, 
N = 95) compared to other invaded countries previously studied (Table 2), several dis-
tinct haplotypes were isolated from single sampling sites (Suppl. material 1). A reduced 
genetic diversity is usually expected for introduced species because of a limited number 
of founders associated with early genetic drift. However, genetic bottlenecks associated 
with introductions can be counteracted if many individuals are introduced at the same 
time or if repeated introductions occur (Dlugosch and Parker 2008). Similarly, Schuler 
et al. (2020) found a high haplotype diversity (Hd = 0.68, π = 0.0046, N = 156) in 
the H. halys population of South Tyrol in Northern Italy. The population in Tyrol was 
established by a secondary introduction from Eastern USA into the Emilia Romagna 
region of Italy and the spread of the founder population in Switzerland to the neigh-
bouring countries. In contrast, Valentin et al. (2017) concluded that most invasive 
populations in North America and Europe were established from a direct introduc-
tion of H. halys from China with separate introductions into Eastern and Western 
USA and Canada, as well as into Switzerland and Greece. The high genetic diversity 
of H. halys populations in Belgium and the overlap of haplotypes with previously in-
vaded European countries, such as Italy, Switzerland, Austria, and Hungary but also 
with Japan indicates that the Belgian populations probably originated from multiple 
invasions from already invaded European countries, mainly Italy, but also directly from 
Japan through inadvertent human-mediated transportation (often due to global trade 
of goods) (Valentin et al. 2017). The weak genetic structure detected by our Mantel 
test could be related to the recent local expansion of these genetically diverse clusters.

Previous studies have shown that citizen science provides valuable data to char-
acterise the spread of H. halys (Maistrello et al. 2016; Stoeckli et al. 2020; Streito et 
al. 2021). From our data in Belgium, more H. halys observations are recorded in the 
nosrthern part of Belgium compared to the southern part of Belgium, with more urban 
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areas than agricultural, forested, and rural areas. However, on a national scale, spa-
tial biases are commonly associated with human population density, settlements, and 
road infrastructure (Kelling et al. 2015; Geldmann et al. 2016; Girardello et al. 2019. 
The bias towards urban areas in citizen-collected occurrence data and rising popularity 
of tools to make observations (e.g., smartphones) represents a challenge to infer true 
spatio-temporal patterns from our occurrence data (Bowler et al. 2022). Neverthe-
less, it also provides natural experimental gradients to examine the impacts of future 
environmental scenarios including climate change (Lahr et al. 2018). Urban areas are 
often seen as heat islands, offering more suitable refugia to survive winters or more fa-
vourable conditions throughout the seasons to develop and reproduce. Therefore, these 
urbanised areas often comprise a larger population of insects (Kaiser et al. 2016; Frank 
and Backe 2023). According to Kistner (2017), the northern part of Belgium lies near 
the latitudinal border of the climate in Europe suitable for the winter survival and sum-
mer reproduction of H. halys. In contrast, the southern part of Belgium is currently 
modelled to be an unsuitable eco-climatic region for H. halys, with colder summer and 
winter temperatures and fewer refugia to survive winter due to the lower urbanisation 
(Kistner 2017). Niche modelling through climate suitability by Streito et al. (2021) 
essentially confirms this, with the northern part of Belgium having more suitable areas 
for H. halys while the southern part is more marginal to unsuitable for its survival and 
expansion. Despite the possibility of spatio-temporal bias in our occurrence data, some 
temporal trends can still be derived from citizen-collected occurrence data (Powney et 
al. 2019; Outhwaite et al. 2020; Sheard et al. 2021; Zattara and Aizen 2021; Bowler et 
al. 2022). Our observational data shows an almost fifteenfold increase in observations 
from 2020 to 2022. However, to date, no damage related to H. halys has been reported 
in agricultural production in Belgium (Berteloot et al. 2021). Based on the occurrence 
data, it is likely that the population expansion of H. halys in Belgium is very recent, 
as a relatively high number of observations were only made in 2021, 2022 and 2023. 
Streito et al. (2021) define three main phases in the invasion of H. halys: (1) the very 
beginning of the invasion, when populations of H. halys are low, and naturalists and 
official monitoring services who are excellent observers and expecting the emergence of 
H. halys can detect its presence, (2) when abundance increases, non-naturalist citizens 
are able to detect the species and start to provide information on the dynamics of the 
invasion and indirectly on the level of populations through citizen science platforms, 
and (3) when populations have expanded and become large enough, agricultural pro-
fessionals take over and can predict and assess the population density and damages. 
From our occurrence data, the H. halys population in Belgium is seemingly under 
expansion, being numerously recorded in the citizen science databases.

Lastly, the univoltine H. halys population in Belgium likely expands in the summer 
and declines in the winter in current climatic conditions due to Belgium being situ-
ated at the northern latitudinal border of climatic suitability for H. halys, with winters 
cold enough to kill more individuals than winter temperatures in southern European 
countries like Italy, possibly delaying the fast expansion of its populations. However, 
both parts of Belgium are modelled to be suitable for the survival and development of 
H. halys by 2100 (Kistner 2017).
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Conclusions

The results of this study provide haplotype information for H. halys from a newly in-
vaded region. The haplotype diversity in Belgium is surprisingly high, with 9 COI, 5 
COII and 12 COI-COII haplotypes found. The invasion of H. halys in Belgium likely 
occurred repeatedly and is assumed to be still ongoing through human-mediated trans-
portation from other invaded European countries and directly from its native regions 
in Eastern Asia. A significant overlap between Belgian and Italian haplotypes points to 
Italy as the most probable source for a significant proportion of haplotypes currently 
present in Belgium. By combining the citizen-collected occurrence data with the mo-
lecular data, we assume the population expansion of H. halys is recent and ongoing.
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Abstract
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Introduction

Many non-native species introduced by human agency outside their original area of dis-
tribution invade natural areas and cause ecological impacts to native species, communities 
and ecosystems (Simberloff et al. 2013). Ecological impacts are defined in this paper as 
any statistically significant ecological change occurring when an invasive species is present 
compared to when the invasive species is absent. This change can be a decrease (i.e. nega-
tive impact) or an increase (i.e. positive impact) of any ecological attribute of the invaded 
ecosystem (Jeschke et al. 2014). Thus, it is important to note that negative and positive 
impacts are independent of ethical and societal human values (Vimercati et al. 2020).

Information on the impacts of invasive species is of fundamental importance to 
assist management and policy (Vilà et al. 2019). In particular, empirical studies of eco-
logical impacts provide essential scientific evidence to underpin risk assessment of in-
vasions that are often used to rank and prioritise management actions. Despite the fast 
increase in the number of field studies testing for invasive species impacts, the majority 
focus on a few species and regions. Consequently, there are still important biases and 
gaps in knowledge that preclude our capacity to provide information for management 
and policy actions (IPBES 2023). It is thus of paramount importance to synthesise the 
scientific evidence on impacts to identify which are the most studied invasive species, 
the most studied habitats and the most studied impact types.

Meta-analyses have shown a strong context-dependency not only in the magnitude, 
but also in the direction of the impacts (Pyšek et al. 2012; Gallardo et al. 2016; Volery 
et al. 2021; Romero-Blanco et al. 2023). For example, an invasive N-fixing plant may 
strongly increase soil fertility in a recipient ecosystem with N-deficient soils and lack-
ing native N-fixing species, but may have negligible impacts in communities including 
native N-fixing plants or in soils otherwise rich in N (Vitousek and Walker 1989; Cas-
tro-Díez et al. 2014, 2016). Moreover, invasive species can cause multiple, sometimes 
contrasting, impacts at different levels of ecological organisation (species, communities 
and ecosystems). For example, an invasive N-fixing plant may increase N soil avail-
ability and this can favour the establishment of some native plant species at the expense 
of others, with a neutral effect on species richness (Marchante et al. 2011). Thus, the 
impact of an invasive species can vary, presenting a neutral, negative or positive effect. 
This variability depends on factors such as the identity of the native species under study 
or whether the focus is on particular native species or the entire community. Therefore, 
to guide management decisions and biodiversity conservation efforts, it is important to 
document a broad spectrum of numerical increases and decreases in ecological responses 
following invasion. Given the conservation interest in native species and communities, 
adopting a value-laden perspective, their decrease may be considered deleterious, while 
an increase may be considered beneficial (Vimercati et al. 2020).

The environmental assessment of the impacts of invasive species requires the analy-
sis of the full range of ecological changes after invasion. To this end, we conducted a 
comprehensive review of field studies reporting ecological impacts of invasive plant 
species in Europe to identify the most studied species, countries and habitats and to de-
scribe the frequency and direction of impacts. We classified impacts according to four 



Impacts by invasive plant species in Europe 141

criteria: i) the ecological level at which the impact is measured, i.e. species, communi-
ties and ecosystems; ii) the affected taxonomic level, i.e. microbes, plants and animals; 
and iii) the trophic level of the affected taxa. Beyond identifying the most-studied 
invasive plant species and habitats and their most-studied impacts, our database also 
enables the exploration of differences in the frequencies and directions of impact types 
studied. Specifically, we explored if there were differences in the frequency of impacts 
amongst levels of organisation and taxa.

Material and methods

We started from the studies conducted in Europe extracted from the databases construct-
ed and analysed in Pyšek et al. (2012) and in Castro-Díez et al. (2019). Additionally, we 
searched for new publications on the Web of Science (https://www.webofscience.com/
wos/alldb/basic-search) database on 31 December 2022 with no restriction on publica-
tion year, using the following search term combinations: (plant inva* OR exotic plant 
OR alien plant OR non-native plant) AND (impact* OR effect*) AND (community 
structure* OR diversity* OR ecosystem process* OR competition*). Amongst the re-
trieved documents, we first screened titles and abstracts to identify all publications on 
the impacts of invasive plants conducted in Europe. We then examined each publication 
and constructed a database of impacts according to the following selection criteria:

1. The studies had to be in natural or semi-natural field conditions in Europe. The 
habitat type of the study was classified according to the IPBES unit of analysis (IPBES 2018) 
with the exception that, in this study, coastal areas was considered for terrestrial plants. The 
evidence of impact was based on observational or experimental (i.e. removal or addition 
of target species) field studies comparing simultaneously invaded or uninvaded sites where 
the identity of single invasive species of study was explicitly mentioned. We excluded tree 
plantations. We also excluded those referring to impacts by several invasive species.

2. When the same publication examined different response variables, different 
invasive species, different ecosystem types or geographically different localities, we con-
sidered each as different entries in the database (i.e. study, hereafter).

3. When a response variable was measured at different times (e.g. sampling spe-
cies diversity across years), we made an informed decision on whether to take the 
mean value across times or to consider each measure as independent. However, when 
the variable was repeated across short periods (e.g. sampling N availability in different 
weeks), we only used the final measurement or the most representative (e.g. when the 
soil activity was the highest).

4. When the study manipulated other environmental factors in addition to inva-
sion, we only considered results from the non-manipulated plots.

5. When the study investigated the effects of different degrees of invasion and dif-
ferent residence times (i.e. old vs. recent invasions), we examined differences between 
the least invaded sites and the most invaded sites and differences between uninvaded 
sites and sites with the longest time since invasion.
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As all studies dealt with established non-native plant species and their threats to 
biological diversity and/or ecosystems, for simplicity, we refer to them as “invasive spe-
cies” through out the text.

Following Vilà et al. (2011), impacts were classified according to the affected level 
of ecological organisation as follows: impacts to native species (e.g. abundance, perfor-
mance, biomass), to communities (e.g. abundance, biomass or diversity) and to ecosys-
tem properties (e.g. soil C/N, nutrient fluxes, decomposition rates, pH, nutrient pools, 
resource availability, soil minerals, soil organic matter and soil salinity/cation exchange 
capacity) (Table 1, Suppl. material 1: table S1). Furthermore, when the information 
was available, the impacts to species and communities were also classified according 
to the affected taxa (i.e. microbes, plants and animals) and to the trophic level of the 
affected taxa (i.e. impacts to herbivores, parasites, plants, pollinators, predators, omni-
vores, decomposers and symbionts) (Table 2). If the native species of concern belongs 
to different trophic levels along its life history, we considered the one during the stage 
of the study. In total, the database considered 23 impact types, which integrate the 
main biodiversity and ecosystem changes after invasion and allow for comparing im-
pacts across studies (see Tables 1, 2).

For each impact, we recorded the statistical significance (no/yes) and direction (in-
crease/decrease) of differences between invaded and uninvaded plots. For the purpose 
of this analysis, the direction does not mean a desirable/undesirable impact, but a sig-
nificant increase or decrease of the response variable analysed in the invaded compared 
to the uninvaded control treatment, respectively.

To search for differences in the frequency of significant impacts across different 
levels of organisation (species, community, ecosystem) and taxa (animals, microbes, 
plants), we summed the number of responses – whether significant or non-significant 
– for each impact type. Responses were grouped, based on the identity of the invasive 
species and the respective publication.

We employed generalised linear mixed models (GLMMs) with a binomial 
(logit link function) error distribution family (lmerTest package; Kuznetsova et al. 
(2017)). The response variable was a two-column matrix generated using the ‘cbind’ 
function to combine the counts of significant and non-significant impacts. In each 
model, we included as a fixed factor the levels of ecological organisation or taxa. 
To account for the non-independence of data, we included the publication and the 
identity of the invader as random factors. Post-hoc Tukey tests (emmeans pack-
age; Russell (2018)) were then applied to evaluate differences in impact frequencies 
amongst levels of ecological organisation and taxa. To visualise these differences, 
we used the package ggeffects (Lüdecke 2018). All analyses were performed in R 
(v. 4.2.1, R Core Team (2022)).

Open research statement

All data employed in this research are archived in Figshare repository https://doi.
org/10.6084/m9.figshare.23579082.
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Table 1. Ecological impacts of invasive plant species studied in field conditions in Europe classified by 
categories of ecological organization (species, communities, ecosystems), with indication of the response 
variables examined in the literature. In parenthesis, the sample size (number of field studies testing for 
impacts). See Table S1 for definitions of the impact type classification.

Level of ecological 
organization

Impact type Variables related to

Species (576) Animal (176) Animal abundance (143), activity (10), fitness (4), 
performance (19)

Microbial (5) Microbial abundance (5)
Plant (395) Plant abundance (223), biomass (34), fitness (66), 

performance (72)
Community (2541) Animal (1142) Animal abundance (682), activity (3), biomass (11), 

diversity (446)
Microbial (370) Microbial abundance (111), activity (150), biomass 

(17), diversity (92)
Plant (1016) Plant abundance (254), biomass (130), diversity (632)

Ecosystem (1155) Soil carbon to nitrogen ratio (C/N) (74) C/N (74)
Nutrient fluxes (25) C fluxes (11), N fluxes (14)

Decomposition rates (39) Litter decomposition (38), soil organic matter 
mineralization (1)

pH (134) pH (134)
Nutrient pools (402) C pools (114), N pools (194), P pools (94)

Resource availability (83) Light (19), moisture (60), soil temperature (4) 
Soil minerals (264) Soil minerals (264)

Soil organic matter (85) Soil organic matter (85)
Soil salinity/cation exchange capacity 

(CEC) (49)
Soil CEC (1), salinity (3), salinity/CEC (45)

Table 2. Ecological impacts of invasive plant species studied in field conditions in Europe classified by 
the trophic level of affected species (i.e. decomposers, herbivores, omnivores, parasites, plants, pollinators, 
predators, symbionts) with indication of the response variables examined in the literature. In parenthesis, 
sample size (number of field studies testing for impacts).

Trophic level of the affected 
taxa

Variables related to

Decomposer (269) Decomposer abundance (189), biomass (7), diversity (62), activity (11)
Herbivore (100) Herbivore abundance (62), diversity (36), performance (2)
Omnivore (47) Omnivore abundance (41), diversity (3), fitness (2), performance (1)
Parasite (50) Parasite abundance (44), biomass (2), diversity (4)
Plant (1411) Plant abundance (477), biomass (164), diversity (632), fitness (66), performance (72)
Pollinator (353) Pollinator abundance (190), activity (9), diversity (142), fitness (2), performance (10)
Predator (287) Predator abundance (224), activity (4), biomass (1), diversity (54), performance (4)
Symbiont (23) Symbiont abundance (16), biomass (1), diversity (6)

Results

Our final database included 266 publications describing 4259 field studies of 104 in-
vasive plant species in Europe (Fig. 1, Suppl. material 1: tables S2, S3).
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Figure 1. Total number of field studies testing for impacts in Europe classified by invasive plant species, 
ecological organisation and impact type. The grey shading legend indicates whether the impact is on ani-
mals, microbes, plants or ecosystems.
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Impacts of invasive plants are widely studied across Europe, although around 50% 
of studies were carried out in six countries (Spain, Poland, Czech Republic, Germany, 
Italy and Portugal) and there are some countries without any studies (e.g. Albania, 
Bulgaria, Estonia and Latvia) (see Fig. 2). Most studies were conducted in temperate 
and boreal forests and woodlands (33%) and temperate grasslands (26%), followed by 
coastal areas (14%) and Mediterranean forests and woodlands (12%) (Fig. 3).

Figure 2. Map of locations (red dots) of field studies on the ecological impacts of invasive plant species 
in Europe. Twelve publications described studies in multiple countries and were represented by a dot in 
each country.
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Figure 3. Percentage of publications on field studies testing for impacts classified by the invaded habitat 
in Europe. Habitats were classified according to the IPBES unit of analysis (IPBES 2018).

While the number of invasive plant species studied has increased linearly since 
about 2005, the number of publications on impacts have increased exponentially 
(Fig.  4a). One third of the publications examined the impacts of only five species 
(Reynoutria japonica, Impatiens glandulifera, Solidago gigantea, Carpobrotus edulis and 
Robinia pseudoacacia) out of 104 (Fig. 5). The studies on these five species have been 
concentrated in the last two decades and are still increasing to date (Fig. 4b).

The most studied impacts are on the abundance of species followed by impacts on 
the abundance and diversity of communities. Impacts on plants have been more stud-
ied than impacts on other taxa and trophic groups (Fig. 6). The second most studied 
impacted group is that of pollinators, followed by predators and decomposers (Fig. 6d). 
Impacts on microbial communities, although less frequently studied, have increased in 
the last few years (Fig. 6b). The number of field studies testing for impacts to ecosys-
tem properties have increased one order of magnitude in the last decade (Fig. 4c), with 
impacts on nutrients pools and soil minerals being the most common (Fig. 6c).

Overall, 43% of studies found significant impacts of invasive plants with more 
decreases (26%) than increases (17%) on the response variables. Although more than 
half of the species (58 out of 104) have impacts in both directions, 10% of the invasive 
species showed only increase responses and 30% decrease responses (Fig. 5).
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Figure 4. Cumulative total number of publications on impacts and invasive plant species studied (a), 
number of field studies testing for impacts on the five most studied species (b) and across ecological levels 
of organisation (c) in Europe. See Table 1 for impact type classification.
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Figure 5. List of invasive plant species with the total number of field studies testing for impacts, publica-
tions and impact frequency (i.e. percentage of significant responses). Blue and orange bars indicate the 
proportion of decreases and increases, respectively.



Impacts by invasive plant species in Europe 149

Figure 5. Continued.
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Figure 5. Continued.

Figure 6. Cumulative number of field studies testing for impacts to species (a) and communities (b) by taxa, 
ecosystem properties (c) and amongst trophic levels (d) in Europe. See Tables 1, 2 for impact type classification.
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Results on the frequency of significant impacts and their direction can be found in 
Fig. 7. In studies where the affected level is species, 41% of the impacts (n = 576) were 
significant, with more decreases (25%) than increases (16%) on the response variables. 
At the community level, 47% of impacts (n = 2528) were significant, with two times 
more decreases (32%) than increases (15%). At the ecosystem level, 38% of impacts 
(n = 1155) were significant, with fewer decreases (15%) than increases (23%). When 
impacts were classified by the affected trophic levels, altogether 45% of impacts (n = 
2807) were significant, with two times more decreases (30%) than increases (15%).

The frequency of significant impacts was similar between the species and com-
munity levels (z = 0.17, p = 0.99), but higher than at the ecosystem level (z = 2.32, p = 
0.05 and z = 3.94, p < 0.001, respectively). Additionally, the frequency of significant 
impacts was similar between animals and microbes (z = 0.17, p = 0.99), but lower than 
for plants (z = 3.86, p < 0.001 and z = 2.94, p < 0.01, respectively) (Fig. 8).

Figure 7. Frequency of significant plant invader impacts vs. percentage of non-significant impacts (grey 
bars) studied in field conditions in Europe. Blue and orange bars indicate the percentage of decreases and 
increases, respectively. See Tables 1, 2 for impact type classification.
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Figure 8. Frequency of significant plant invader impacts studied in field conditions in Europe across lev-
els of ecological organisation (left) and taxa (right). Open circles are observed values (i.e. the proportion of 
significant impacts grouped by invader species and publication). Black dots are predicted values obtained 
from the models and their 95% confidence intervals.

Discussion

Evidence about the impacts of invasive plants on different properties of the recipient 
ecosystems is scattered across many different studies and technical reports (Kumschick 
et al. 2015), preventing its efficient transfer to managers and policy-makers. Here, we 
provide the first harmonised database synthesising results from field studies about the 
ecological impacts of invasive plants at a continental scale. However, a great proportion 
of studies focuses on a few invasive species in temperate central European countries or 
in southern Mediterranean countries. As already indicated ten years ago (Hulme et al. 
2013), bias continues to be the norm in the study of impacts, probably reflecting the 
academic interest of research groups on the most common species in their countries. 
This database can be of scientific, management and policy use at different national and 
international scales.

The exploration of impact studies indicates that the main geographic gap of knowl-
edge in Europe corresponds to Baltic and Balkan countries. The least represented habi-
tats in impact studies are desert and xeric shrublands, high mountains and subtropi-
cal forests. In Europe, subtropical forests of major conservation status are located in 
Macaronesian islands, where non-native species invasion is prevalent. Many of these 
islands exhibit a higher proportion of non-native than native plant species in their flora 
(Kueffer et al. 2010), emphasising the crucial need to identify invasive species causing 
major impacts (Silva et al. 2008). The impacts of invasive plants in desert and semi-arid 
habitats are also poorly studied, despite an increasing number of dry-tolerant invasive 
plants promoted by ornamental xero-gardening (Morente-López et al. 2023). In the 
face of climate change, it is also imperative to focus more on the impacts of invasive 
plants in mountain regions. Climate warming is expected to enhance the dispersal 
and establishment of invasive species at higher altitudes, making this an area of critical 
concern (Carboni et al. 2018).
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Ecological impacts were statistically heterogeneous in their significance and direc-
tion. Significant impacts were more frequent on species and communities than on eco-
systems. Any change in ecosystem properties can be considered adverse, as it modifies 
ecosystem functioning (Strayer 2012; Vilà and Hulme 2017; Castro-Díez et al. 2019). 
Compared to impacts on ecosystems, the impacts on species and communities are 
more directly linked to changes in biodiversity. According to our database, there were 
two times more studies reporting negative effects than positive effects on the studied 
species and community response variables. Negative effects indicate a decrease in na-
tive species abundance, fitness or diversity after invasion and are, therefore, considered 
detrimental for nature conservation. On the contrary, positive effects indicate the re-
verse and, thus, can be assumed to be beneficial. However, even increasing effects on 
native species and communities can have cascading effects, depending on the position 
of the native species in the trophic network (Gallardo et al. 2016).

While the correspondence from value-free to value-laden effects of invaders on bio-
diversity is not always straightforward (Vimercati et al. 2020), our database on impacts 
studied in Europe contributes significantly to the global assessment on impacts of inva-
sive species. This comprehensive database aligns with the broader finding that invasive 
species globally tend to cause more harm than benefits on nature (Bacher et al. 2023).

Significant impacts were more frequently reported on native plants than on native 
animals or microbes. In general, it seems that invasive species most frequently impact 
native species from the same broad taxonomic group (Bacher et al. 2023). For plants, 
this is an expected result because the main mechanism of interaction amongst plants is 
resource competition or facilitation, while the mechanisms of impact of invasive plants 
on animals are more diverse and often indirect, depending on the type of interaction, 
feeding mode and trophic position. Furthermore, impact studies on microbes are rela-
tively recent and predominantly focused on soil bacteria and fungi (Dawson and Sch-
rama 2016). However, it is important to note that, since our focus was on field studies, 
our review may not have captured all the impacts on plant-soil feedbacks, which are 
often mediated by microorganisms, such as pathogens or symbionts. It is largely un-
known how the strength of plant-soil feedbacks compares with plant-plant competi-
tion. This is an area of research which deserves more attention because such interactions 
influence the co-occurrence of native and invasive species (Lekberg et al. 2018).

Other areas of research interest might include the analysis of the major causes of 
the variation in impacts and improving their prediction. For this purpose, the infor-
mation provided in our database could be associated with other aspects of biological 
invasions (Strayer 2012). For instance, links with their pathways of introduction (Pergl 
et al. 2017), their local or regional abundances (Bradley et al. 2019), the species traits 
and the biotic and abiotic characteristics of the invaded habitats (Pyšek et al. 2012; 
Sapsford et al. 2020) or their invasion history (Lenzner et al. 2022). The frequency and 
direction of impacts could also be compared to those of invasive animals and amongst 
invaded areas to determine taxonomic differences in impact across regions.

Causal impacts, together with the probability of arrival and establishment, is one 
of the main requested information to identify potential invasive species. Therefore, 
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from a management point of view, the database displays and harmonises the available 
peer-reviewed publications that can be used for horizon scanning to identify potential 
invasive species in countries where they are not yet present (e.g. Lucy et al. (2020); 
Cano-Barbacil et al. (2023)). The information from the database can also be used to 
populate standardised impact assessments, such as the EICAT-IUCN (Blackburn et al. 
2014) and to assist species management prioritisation, based on the magnitude of their 
impacts on biodiversity.

From a policy perspective, it is important to highlight that, although our analysis 
screened all European countries, the database does not include information for 29 of 
the 39 invasive plant species of EU concern (European Union 2014, 2017). Moreover, 
of the 20 most studied species according to our database, only three are regulated, 
namely Impatiens glandulifera, Heracleum mantegazzianum and H. sosnowskyi. These 
mismatches can be explained by some of the features of the EU Regulation (Car-
boneras et al. 2018). Some regulated species are not yet present in the EU (e.g. many 
aquatic plant species), but, if introduced, would be capable of establishing self-sustain-
able populations. On the other hand, some species are present, form self-sustainable 
populations and cause significant adverse impacts on biodiversity and ecosystem ser-
vices in Europe, but listing the species will not prevent, minimise or mitigate their 
impacts and are therefore not listed.

Conclusion

Our first comprehensive European database of the field studies reporting on the eco-
logical effects of invasive non-native plants indicates that invasive plants cause impacts 
to species, communities and ecosystem processes of a wide range of taxa at different 
trophic levels. Major gaps in knowledge are found in Baltic and Balkan countries, in 
desert and semi-arid shrublands, subtropical forests and high mountains. To improve 
the knowledge of the impacts of invasive plant species, we also advocate for more stud-
ies on species that are still locally rare and with restricted distribution, and on how they 
modify plant-soil-microbe interactions.

The information provided in this database is of interest for academic, manage-
ment and policy-related purposes at the national, European and international scale. 
We acknowledge that our database may not encompass all relevant studies. The Web of 
Science has been the most widely used database for bibliometric analysis, offering more 
comprehensive coverage of older literature compared to Scopus. However, Scopus in-
cludes a larger list of journals than the Web of Science (Mongeon and Paul-Hus 2016). 
Further extensions of the database should also include a broader keywords string. For 
example, although restoration studies may not be explicitly designed to detect impacts, 
they can offer valuable insights into ecological differences between invaded plots before 
and after intervention in removal plots. Our database will have to be updated as new 
field studies on the ecological impacts of invasive species are published.
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unless appropriate regulations are implemented.
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Introduction

Biological invasions are perceived as the second strongest threat to biodiversity on a 
local and global scale, right after habitat degradation (e.g. CBD (2000); Sala et al. 
(2000); Dudgeon et al. (2006); Kettunen et al. (2009); Strayer and Dudgeon (2010); 
Lambertini et al. (2011); Mačić et al. (2018); Lipták et al. (2019); Iqbal et al. (2021); 
Yang et al. (2021); Vantarová et al. (2023)). Many non-indigenous species (NIS) cause 
declines in abundance and diversity of native species, which is particularly apparent 
in Europe and the USA (e.g. Pinkster et al. (1992); Dick and Platvoet (1996, 2000); 
Ricciardi and MacIsaac (2000); Ricciardi (2006); Bellard et al. (2016); Panlasigui et al. 
(2018); Albano et al. (2021); Haubrock et al. (2021); Yang et al. (2021)) and is more 
prominent in freshwater ecosystems than in marine and terrestrial ones (Strayer and 
Dudgeon 2010). Many studies show high economic costs incurred by biological inva-
sions on a global scale (Pyšek and Richardson 2010; Cuthbert et al. 2021a, b; Kouba 
et al. 2022). The average annual costs of preventing biological invasions and reversing 
their effects globally reach $76 billion (Bradshaw et al. 2016); however, the costs of 
prevention of invasion are much lower than post-invasion management (Cuthbert et 
al. 2021a). Globally, the economic costs of aquatic bioinvasions have been estimated at 
$23 billion (Cuthbert et al. 2021b). The costs of amphipod invasions constitute a small 
part of the global costs of aquatic crustacean invasions ($180,000 out of an estimated 
$271 million); however, these costs are underestimated (Kouba et al. 2022).

Even though surface freshwaters represent only 0.01% of the Earth’s water re-
sources and constitute 0.80% of the Earth’s surface, they are inhabited by ca. 6% 
of the world’s species (Dudgeon et al. 2006; Strayer and Dudgeon 2010). Therefore, 
freshwater ecosystems are precious from environmental, economic, sanitary, cultural 
and scientific perspectives and also constitute a valuable spot for tourism (Dudgeon et 
al. 2006; Hall and Härkönen 2006). Unfortunately, these ecosystems are in crisis, as 
indicated by stronger biodiversity loss than in terrestrial ecosystems (Dudgeon et al. 
2006). According to the Water Framework Directive (European Environment Agency 
2000), every waterbody in the EU should have achieved a high or at least good ecologi-
cal and chemical status by 2015. However, the latest reports indicate that only 40% of 
such waters have achieved a satisfactory, healthy status (European Environment Agen-
cy 2018). Land use and agriculture are amongst the most important factors in aquatic 
ecosystems’ declining conditions globally (Foley et al. 2005; Feld et al. 2016). Thus, 
although freshwater ecosystems constitute only a tiny fraction of the Earth’s surface, 
high anthropogenic pressure results in a more pronounced negative impact of invaders 
on native species than in marine ecosystems (Ricciardi and Kipp 2008).

One of the richest European sources of species invading inland waters is the Pon-
to-Caspian Region (Ricciardi and MacIsaac 2000; Bij de Vaate et al. 2002; Galil et 
al. 2008; Panov et al. 2009; Copilaș-Ciocianu et al. 2023a). This region covers the 
coastal area of the Caspian, Black, Aral and Azov Seas, with their brackish limans 
and deltas of rivers discharging into these seas (Jażdżewski 1980). The Ponto-Caspian 
basin constitutes a hotspot of crustacean diversity, particularly in the case of amphi-
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pod crustaceans (Cristescu and Hebert 2005; Väinölä et al. 2008; Copilaș-Ciocianu 
and Sidorov 2022; Copilaș-Ciocianu et al. 2022). Ponto-Caspian amphipods com-
prise around 10% of European freshwater invasive species (Pöckl et al. 2011). One of 
the main significant causes fuelling the bioinvasions of Ponto-Caspian species is the 
construction of canals that connect previously isolated watersheds (e.g. Jażdżewski 
(1980); Bij de Vaate et al. (2002); Nehring (2005); Galil et al. (2008); Arbačiauskas 
et al. (2010); Minchin et al. (2019); Jażdżewska et al. (2020)). Another important 
factor is translocations of species in ballast waters (Jażdżewski 1980; Pinkster et al. 
1992; Bij de Vaate et al. 2002; Zhulidov et al. 2018). However, a more important 
vector of bioinvasions in freshwater ecosystems is transporting on biofouled hulls, 
filters and other submerged parts of vessels (Nehring 2005; Hewitt et al. 2009; Bącela-
Spychalska et al. 2013; Anderson et al. 2014, 2015; De Ventura et al. 2016; Rewicz 
et al. 2017; Rodríguez-Rey et al. 2021). Biofouling of vessels by species resistant to 
desiccation enables their subsequent overland transport and the colonisation of iso-
lated waterbodies (Bącela-Spychalska et al. 2013; Rachalewski et al. 2013; De Ventura 
et al. 2016). Fishing and diving equipment can also be an effective vector of invasions 
(Bącela-Spychalska et al. 2013; Anderson et al. 2014; Smith et al. 2020). Moreover, 
many species are also intentionally introduced into freshwater ecosystems (Grigor-
ovich et al. 2002; Nehring 2005).

Seven species of Ponto-Caspian gammarids (Amphipoda, Gammaroidea) have 
already been recorded from Polish freshwaters: Chaetogammarus ischnus (Stebbing, 
1899), Dikerogammarus haemobaphes (Eichwald, 1841), Dikerogammarus villosus 
(Sowinsky, 1894), Obesogammarus crassus (G.O. Sars, 1894), Pontogammarus robus-
toides (Sars, 1894), Spirogammarus major (Cărăușu, 1943) (former European popula-
tion of Echinogammarus trichiatus) and Chelicorophium curvispinum (G.O. Sars, 1895) 
(Konopacka 1998; Gruszka 1999; Jażdżewski and Konopacka 2000; Konopacka and 
Jażdżewski 2002; Jażdżewski et al. 2005; Grabowski et al. 2007; Rachalewski et al. 
2013; Copilaș-Ciocianu et al. 2023b). These species are already widely distributed in 
European inland waters, where they arrived through well-defined migration corridors: 
northern, central and southern (Bij de Vaate et al. 2002; Panov et al. 2009). Not only 
have they colonised the major rivers and canals constituting the invasions corridors, 
but also spread to the watersheds of these rivers, as well as many European lakes, for 
example, the Alpine Lakes (Rewicz et al. 2017) and the Great Masurian Lakes in Po-
land (Jażdżewski 2003; Jażdżewska and Jażdżewski 2008). An extensive up-to-date 
description of the distribution of alien freshwater amphipods in Europe can be found 
in Copilaș-Ciocianu et al. (2023a). As the dynamics of invasion in terms of species and 
ecosystem vulnerability varies and the impact of NIS depends on their invasion process 
(i.e. propagule pressure, species interactions), there is a constant need for monitoring 
and estimating trends and threats regarding invasions. The impact of invasive species 
on aquatic ecosystems is profound (Kurashov et al. 2012). Their introduction may 
lead to drastic changes in the macroinvertebrate community structure and affect the 
functioning of whole ecosystems (Jones et al. 1994; Jones et al. 1997; Lambertini et 
al. 2011). NIS can modify habitats as well as food chains and contribute to changes in 
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energy flows – benthic communities can be transformed from being energy suppliers 
to upper trophic levels becoming major consumers of ecosystem energy (Nalepa et al. 
2009; Kurashov et al. 2012).

Lakes seem to be particularly susceptible to biological invasions, as many of them 
are under high tourist pressure, resulting in a higher probability of alien species in-
troduction, even if the lakes are not directly connected with the invasion corridor 
(Bącela-Spychalska et al. 2013; Bącela-Spychalska 2016; De Ventura et al. 2016; Re-
wicz et al. 2017). One such region is the Masurian Lakeland. It is the most popular 
area for yachting in Poland and one of central Europe’s main inland yachting regions. 
The region is extensively used for associated recreational activities, particularly angling 
and camping (Kistowski and Śleszyński 2010; Ulikowski et al. 2021). Unfortunately, 
the level of knowledge about the risks of spreading invasive Amphipoda in this region 
is poor and out of date (Jażdżewski 2003; Jażdżewska and Jażdżewski 2008). Previ-
ous studies were based on sampling from only a few lakes, provided mainly presence/
absence data and predated the effect of increased recreational pressure. Knowledge 
about the role of tourism, shipping and other factors in biological invasions in the 
Masurian Lakeland is poor and demands study. Given the significance of these fac-
tors in other regions, it is likely that their influence in the Masurian Lakeland is also 
considerable. The intensity of shipping and, therefore, its effect on biological invasions 
will increase with time (Sardain et al. 2019). Thus, it is crucial to understand these 
mechanisms in the study area. We also do not know how the invasion of amphipods 
affected native amphipods in the region. With regards to the faunistic data about the 
native amphipod species in the Lakeland, Jażdżewski and Konopacka (1995) men-
tion two widely distributed lacustrine species, namely Gammarus lacustris G.O. Sars, 
1863 and Pallasiola quadrispinosa (G.O. Sars, 1867). However, these data are old and 
require updating.

The aims of our study were: i) to update the knowledge on the distribution and 
expansion of the Ponto-Caspian amphipod fauna in the Masurian Lakeland; ii) to 
assess the distribution of native vs. invasive Ponto-Caspian amphipods in the context 
of biotic and abiotic characteristics of the lakes and anthropogenic pressure in this 
region, using both historical and newly-obtained data. Based on observed trends in 
other regions (e.g. Dick and Platvoet (2000); Grabowski et al. (2006); Van der Velde 
et al. (2009); Meßner and Zettler (2021)), we assumed that some invasive amphipods 
are replaced by stronger competitors and that native species are not able to co-exist 
with the invasive species. We hypothesise that high tourist pressure contributes to the 
dispersion of invasive amphipods, while the occurrence of the native species is linked 
to isolated lakes.

We tracked the distribution of invasive Amphipoda in the Masurian Lakeland 
since 2001, based on literature and our data. To explore the relationship between the 
structure of amphipod assemblages and lake characteristics, including human tourist 
pressure in the years 2014 and 2016, we collected data on the relative abundance of 
amphipods, measured basic water parameters, implemented hydromorphological data 
and estimated the tourist pressure.
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Materials and methods

Study area

The Masurian Lakeland (Pojezierze Mazurskie in Polish) is a lake district (macroregion) 
in North-eastern Poland with a surface area of 52,000 km2 including seven mesore-
gions, amongst others, the Land of the Great Masurian Lakes (Kraina Wielkich Jezior 
Mazurskich in Polish) and the Ełckie Lakeland (Pojezierze Ełckie in Polish) (Kondracki 
2002). The landscape was formed between 16,000 and 11,000 BP (at the end of the 
last glaciation) and is characterised by strong latitude differentiation, dominantly with 
moraine hills (Hillbricht-Ilkowska et al. 2000; Ulikowski et al. 2021) and with glacial 
tills as a dominant component of the soil substratum (Hillbricht-Ilkowska et al. 2000). 
The lakes are mainly surrounded by a mosaic of agricultural areas and forests giving 
similar input of allochthonous organic and mineral matter to each lake (Chróst and 
Siuda 2006; Ejsmont-Karabin et al. 2020). Most lakes of this region are dimictic with 
summer thermal stratification (Ulikowski et al. 2021). They are connected with main 
European watersheds via artificial canals and small rivers: the River Pisa (flowing into 
the River Narew and then into the River Vistula) and the River Węgorapa (flowing into 
the River Pregolya and then into the Vistula Lagoon) (Bajkiewicz-Grabowska 2008; 
Jażdżewska and Jażdżewski 2008; Ulikowski et al. 2021). This connectivity increases 
the probability of invasive amphipods spreading in the region. For this study, we se-
lected lakes with historical faunistic data, based on Jażdżewski and Konopacka (1995), 
as well as along a gradient of tourist pressure, including more natural and isolated lakes. 
We also selected sampling points on the rivers, i.e. the River Węgorapa, the River Pisa 
and the River Narew, which connect the Masurian Lakeland with major rivers, for 
example, the River Vistula and the River Neman (Fig. 1; see also Suppl. material 1).

Sampling and data collection

Our dataset consists of two types of data: (i) published, including the years between 
2001 and 2007 (Jażdżewski 2003; Jażdżewska and Jażdżewski 2008) and (ii) new data 
coming from field surveys in 2008, 2009, 2014 and 2016. Additionally, to facilitate 
the monitoring of the amphipod expansion and to model the distribution of native 
Gammarus lacustris, we incorporated records from several lakes and the River Narew, 
which are situated outside of the study area (see Suppl. material 1). The studies that 
were conducted between 2001 and 2009 only have a qualitative character (i.e. pres-
ence/absence of amphipod species), while for 2014 and 2016, the species abundances 
are available. Generally, sampling was done through “kick-sampling” with a benthic 
hand-net with a mesh size of 0.5 mm, used for 45 min at each station, performed by 
two people with equal effort, from all available littoral habitats (sand, mud, gravel, 
stones and submerged macrophytes) at depths from 0.05 to 0.5 m. Such a semi-quan-
titative method gives reliable and comparable results for all sampling points and all 
study years/periods (Jażdżewski et al. 2002; Grabowski et al. 2006). The amphipods 
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were preserved in 96% ethanol and then identified in the laboratory to the species 
level, based on the available literature (Mordukhai-Boltovskoi 1964; Eggers and Mar-
tens 2001). This collection and preservation protocol was used at all studied sites and 
in all study years.

To detect the potential role of biotic and abiotic factors, as well as human pres-
sure on the presence of invasive amphipods in the lakes sampled in 2014 and 2016, 
we used topological and anthropogenic variables, such as the surface-volume ratio or 
the distance from town. As a proxy of the level of anthropogenic pressure, we used 
the water quality status (water QS) from Soszka et al. (2016). This index categorises 
the waterbodies into six water quality categories (ranging from excellent – class I, to 
very poor – class VI), based on species assemblages and chemical and physical param-
eters of water according to the Water Framework Directive (European Environment 
Agency 2000). We presume that lower values of this variable (lower water class), in-
dicating increased species diversity and reduced levels of nutrients and heavy metals 
in the water (better water quality), correspond to lower levels of anthropogenic pres-
sure on the lake (European Environment Agency 2000; Sánchez et al. 2007; Lobato 
et al. 2015). Environmental heterogeneity creates more niches that can be occupied 
by co-occurring species (Chesson 2000). Thus, we used two indices: shoreline de-
velopment (shoreline length to surface area ratio) from mojemazury.pl and surface 

Figure 1. The sites in the Masurian Lakeland. Sites were divided into previously unpublished (records of 
this study) and published (Jażdżewski 2003; Jażdżewska and Jażdżewski 2008). Mesoregions are delimited 
according to Kondracki (2002). The two-letter acronyms for particular lakes were used in further Figures 
and Suppl. material 1.
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area to volume ratio (A/V ratio) from Soszka et al. (2016). The shoreline develop-
ment index is the ratio of the actual shoreline length of a lake to the circumference 
of a perfectly circular lake with the same area (Aronow 1982). High values indicate a 
more complex shoreline, retaining a higher load of nutrients from land (Cole 1975) 
and providing more niches for the biota (Chesson 2000). The surface area to volume 
ratio combines information about the depth and size of the lake and can be positively 
correlated with the productivity of the lake (Fee 1979). Smaller waterbodies (lower 
A/V ratio) may play the role of refugia for native species (Grabowski et al. 2009). 
The density of boats (i.e. the number of boats divided by the lake surface in ha), 
was obtained as the maximum possible number of moored boats in marinas (Johnson 
and Padilla 1996; Vander Zanden and Olden 2008; Ros et al. 2013). We assumed 
that the higher the density of boats in the lakes, the higher the tourist pressure and 
the higher the probability of transport of invasive species by vessels (Johnson and Pa-
dilla 1996; Vander Zanden and Olden 2008; Bącela-Spychalska et al. 2013; Ros et al. 
2013). The maximum capacity of marinas was obtained from websites: mazury24.eu 
and skorupki.mazury.info.pl. Tourist infrastructure is mainly localised in urban areas 
(Kulczyk et al. 2016). Thus, we used the distance between the sampling point and 
towns (i.e. centroid) as an estimation of anthropogenic pressure. Moreover, land use 
in the vicinity of water-bodies can impact the temporal variations in amphipod assem-
blages (Cereghetti 2023). The distance was measured as a linear distance in km from 
the centroid of the closest town to the sampling point using QGIS software. Towns 
were designated according to the ESRI shapefile “UIA World Countries Boundaries”, 
available at: https://hub.arcgis.com/datasets/UIA::uia-world-countries-boundaries. All 
spatial analyses and their visualisation were conducted using QGIS 3.10.13 (QGIS 
Development Team 2020).

Data analysis

Using all unpublished records since 2008 from the lakes and the rivers, including 
sites outside the study area (see Suppl. material 1), we modelled the presence of the 
only native gammarid (i.e. Gammarus lacustris) according to the number of NIS and 
the relative distance of each sampling site from town. We included this variable as a 
proxy of the anthropogenic propagule pressure (i.e. the introduction of NIS by hu-
man activities) of NIS at each site (i.e. inversely correlated). We used generalised linear 
mixed models (GLMMs) to include the random variable of the sampling year. Given 
the presence/absence nature of the data, we used a Bernoulli distribution fitted with 
glmmTMB (link = logit) with the homonymous package (Brooks et al. 2017). The 
possible inclusion of the interaction between NIS richness (i.e. number of species) and 
the distance from the closest town was also tested using the Akaike Information Crite-
rion (AIC; Bozdogan (1987)). After fitting the model, we validated it by simulating its 
residuals using the package DHARMa (Hartig 2022). We also confirmed the absence 
of spatial autocorrelation of the residuals using the Spatial Autocorrelation function of 
the DHARMa package.
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Using samples collected in 2014 and 2016, we first explored the variability of the 
environmental parameters of the sites and lakes, grouping them according to their geo-
graphical position and connectivity (i.e. I: northern, II: southern, III: eastern; Fig. 2B, 
see also Suppl. material 1). We hypothesised that nearby and interconnected lakes 
would exhibit comparable gammarid assemblages. This assumption is supported by 
findings from the Great Lakes in the USA, where the likelihood of species invasion was 
found to be the highest near the mouth of canals connecting the lakes (Grigorovich et 
al. 2005). To explore and visualise the environmental variability of the study area, we 
used a principal component analysis (PCA) with standardised values with prcomp of 
the package vegan (Oksanen et al. 2022). We analysed the gammarid assemblage using 
a permutational multivariate analysis of the covariance (PERMANCOVA) with an or-
thogonal design with two fixed factors (i.e. lake groups with three levels – I, II, III; time 
with two levels – 2014 and 2016) and five covariates: water QS, A/V ratio, shoreline 
development, density of boats and distance from the town. To control the possible sam-
pling differences (i.e. being semi-quantitative), Hellinger distances were used to com-
pare the abundances of the different species. To account for the excess of zero values, a 
dummy variable of 0.0001 was added to the whole dataset. We used first adonis2 of the 
package vegan with 9999 permutations and pairwise.adonis of the package pairwiseA-
donis, with Holm correction and 9999 permutations, for the post hoc analysis between 
levels of the significant factors (Martinez Arbizu 2020). To visualise and corroborate 
the results of the PERMANCOVA, we finally used a constrained ordination using dis-
tance-based redundancy analysis (dbRDA), based on Legendre and An derson (1999), 
with capscale (package vegan) and Hellinger distances, as for Permancova, including 
the covariates of the PERMANCOVA as constraining variables. All the analyses were 
performed in the R environment 4.3.0 version (R Core Team 2023).

Results

Temporal and spatial distribution of invasive species

We recorded four invasive gammarid species from 12 lakes and the Rivers Węgorapa 
and Pisa and one native species (Gammarus lacustris) from 16 lakes (Fig. 2A, Suppl. 
material 1). The first recorded invasive species was Dikerogammarus haemobaphes found 
in 2001 (Jażdżewski 2003) and the second was Pontogammarus robustoides, which was 
first observed in 2007 (Jażdżewska and Jażdżewski 2008). The spread of invasive spe-
cies can be observed over time (Fig. 2B). Between 2014 and 2016, D. haemobaphes 
spread to one more lake and is observed now in nine of them. Pontogammarus robust-
oides did not colonise new lakes in 2016, compared to 2014. In 2014, we noticed the 
first appearance of the other two invaders: C. ischnus and D. villosus (Fig. 2A). The 
previous species was found in two lakes in 2014 and expanded to five further lakes in 
2016, while the latter one was already found in five lakes in 2014 and expanded to two 
further lakes in 2016 (Fig. 2A). Although Chaetogammarus ischnus was recorded in the 
River Pisa in 2014 and 2016, D. villosus was not found in any of the studied rivers 
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Figure 2. A the distribution of invasive and native amphipod species in studied lakes since 2001, based 
on published and new data (locality codes according to Suppl. material 1). Table at each lake showing the 
assemblage (colours in rectangles according to different species, see legend) variation in time (symbols for 
sampling years: 1 – 2001; 2 – 2002; 3 – 2007; 4 – 2008; 5 – 2009; 6 – 2014; 7 – 2016). Only years of 
samplings from each lake and river are shown. Colourless rectangles indicate that no amphipods were re-
corded during the sampling. The dashed black line indicates country borders; the dashed red line indicates 
the Masurian tourist boat route. Black lines delimit mesoregions according to Kondracki (2002) B the 
assemblage composition of the amphipod fauna in studied lakes in the years 2014 and 2016 (locality codes 
according to Suppl. material 1). Pie charts show the relative abundances of each species. An empty circle 
means no amphipods were recorded. Black lines delimit mesoregions according to Kondracki (2002). Col-
oured dotted lines around the pie charts correspond to the lake groups: orange – I, green – II, blue – III.
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Figure 3. The predicted probability of occurrence of G. lacustris dependent on the richness of NIS (A) 
and the distance of the sampling point from town (B). The grey area delimits the 95% confidence intervals.

(Fig. 2A) The relative abundance of new invaders (D. villosus and C. ischnus) increased 
with time, while it decreased for D. haemobaphes and P. robustoides (Fig. 2B). In Lake 
Nidzkie, we did not record any amphipod species (Fig. 2A, B).

The modelled occurrence of native Gammarus lacustris

Generally, the native species – Gammarus lacustris – was not found in lakes inhabited by 
invasive species, apart from Lake Dobskie, where the native and invasive gammarids co-
occurred in 2014 with a low number of G. lacustris (two individuals vs. 194 individuals of 
invasive species) (Fig. 2A, B; Suppl. material 1). The GLMM for the presence of G. lacustris 
showed the significant negative effect of NIS richness (p-value = 0.002) and the positive 
effect of the distance from town (p-value = 0.024), but not their interaction (Fig. 3). The 
inclusion of the year as a random effect barely increased the R2 (Marginal 0.733 – Condi-
tional 0.808), supporting the effectiveness in sampling efforts (Suppl. materials 2, 4).

Environmental factors and amphipod assemblage

The first three components of the PCA explained 85.5% of the variance amongst the 
environmental variables (Fig. 4A, B). According to PC1 and PC3 (~ 57% variance ex-
plained), the lakes further from the tourist route (i.e. group III) are, indeed, character-
ised by a lower number of boats, higher complexity of the shore and a greater distance 
from town. The PC2 was more related to the water quality status (water class) and the 
surface-volume ratio showing a general trend of better water quality (lower class of wa-
ter quality status) and deeper waters for group I (highest class of water status – lowest 
water quality for group II). The PERMANCOVA results showed significant effects (p-
values < 0.05) of shoreline development (F = 22.096, p < 0.001), the number of boats 
(F = 10.788, p < 0.001) and water quality status – water class (F = 3.794, p = 0.035) on 
the assemblage of amphipods (Suppl. material 3). Even though the relative abundance 
of species changed with time, i.e. increased in D. villosus and C. ischnus and decreased 
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Figure 4. Biplots displaying the first three axes of the PCA of the environmental variables of the lakes 
sampled in 2014 and 2016 (A PC1-2 B PC1-3). The colours refer to the different lake groups: orange 
circles (I), green triangles (II) and blue squares (III). The lengths of the arrows are proportional to the load-
ing of each variable, dashed lines = 0. The acronyms of lakes are according to Fig. 1 and Suppl. material 1.
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in D. haemobaphes, P. robustoides and G. lacustris, the time factor was not significant. 
The differences in amphipod assemblages between lake groups (determined, based on 
the geographical position and interconnections between the lakes) were marginally 
significant, i.e. F = 2.680, p = 0.057) and the post hoc analysis showed a significant 
difference (p.adjusted < 0.001) between the group III (i.e. eastern group) and the oth-
ers, but not between the first two (p.adjusted > 0.4).

The first two axes of the dbRDA fitted 90.1% of 52.1% of the total variation ex-
plained (Fig. 5). The presence of the native G. lacustris appeared more correlated to 
lakes with more complex shorelines. The occurrence of D. villosus was mainly explained 
by the increasing number of boats and proximity to town. The other three species (i.e. 
P. robustoides, D. haemobaphes and C. ischnus) seemed to be related to simpler shorelines 
and average values for the other variables, which was generally the opposite to D. villosus.

Figure 5. Canonical analysis of principal coordinates (CAPSCALE) derived from the Bray-Curtis dis-
similarities of the gammarid assemblages and the environmental variables of the studied lakes in the years 
2014 and 2016. The colours of the dots refer to the different lake groups: orange circles (I), green circles 
(II) and blue circles (III).
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Discussion

Our study shows that, between 2001 and 2016, the number of invasive amphipod 
species in the study area increased drastically from one (D. haemobaphes) to four (three 
more species recorded: D. villosus, P. robustoides, C. ischnus). Simultaneously, a contin-
uous decrease in the occurrence of native Gammarus lacustris was recorded. Our study 
reveals that the presence of NIS in lakes is primarily facilitated by three key factors: 
recreational boating activities, proximity to urban areas and simplified lake shorelines.

Distribution of Gammarus lacustris

According to our results, the presence of more than one NIS significantly affects the 
presence of the native G. lacustris, bringing the probability of its presence almost to 
zero already with three NIS (Fig. 3A). The species disappeared several years after the 
expansion of invasive amphipod species in several lakes (Fig. 2A, Suppl. material 1). 
For instance, the species was widely distributed until the last record in 2001 in Lake 
Kisajno (Jażdżewski 2003), in 2007 in Lake Tałty (Jażdżewska and Jażdżewski 2008), 
in 2008 in Lake Niegocin and in 2009 in Lake Śniardwy. Older data mention the 
presence of Gammarus lacustris in Lake Mamry (Jażdżewski 1975). In these lakes, the 
disappearance of G. lacustris coincided with the invasion of alien species. In 2014, 
G. lacustris was co-occurring with invasive species in only one lake (Lake Dobskie). 
One potential explanation could be the limited tourist activity in Lake Dobskie, as 
well as low species introduction probabilities, resulting from the absence of direct con-
nections between this lake and other lakes situated along the Masurian tourist routes. 
Moreover, in 2014, the invasion of C. ischnus and P. robustoides in Lake Dobskie was 
still in its early stage. However, in 2014 the abundance of G. lacustris in this lake was 
very low and we did not record this species in 2016. Additionally, in 2002, we recorded 
the species co-occurring with D. haemobaphes in Lake Mikołajskie, but the presence of 
G. lacustris in this lake in subsequent years is unknown. In general, most of the records 
of G. lacustris in the Masurian Lakeland come from isolated lakes where invasive am-
phipods did not spread. In 2016, we found this species only in four isolated lakes, i.e. 
Dejguny, Ełckie, Łaśmiady and Łaźno (Fig. 2A; Suppl. material 1).

These four lakes (three of them in the eastern group of lakes) are characterised 
by low tourist pressure (low number of boats, long distance from the tourist routes) 
(Fig. 5). The low level of tourist pressure in these lakes and lack of direct connections 
with the Great Masurian Lakes (central part of the Masurian Lakeland), where all the 
invasive amphipods are present, may create a refuge for native species. Furthermore, 
we found that G. lacustris is associated with lakes distanced from towns (Figs 3B, 5). 
The proximity of the lakes to the urban areas results in their pollution and declining 
quality of water (Mishra et al. 2023). Although G. lacustris has a broad tolerance to 
environmental factors (Matafonov and Bazova 2014), its populations decline in pol-
luted water, for example, with high acidity (Okland 1969) and pesticides (Gerhardt et 
al. 2011). Hence, it can be anticipated that G. lacustris will primarily be distributed in 
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lakes with low anthropogenic pressure. Our results of CAPSCALE analysis show that 
higher classes of water quality status (lower water quality) characterise mainly lakes 
inhabited by C. ischnus, D. haemobaphes and P. robustoides (e.g. Lake Śniardwy, Lake 
Roś, Lake Święcajty), where we did not record G. lacustris (apart from Lake Śniardwy 
in 2009) (Fig. 5).

Instead, we recorded G. lacustris in lakes characterised by a high level of shore-
line development. Lakes with higher shoreline complexity may provide higher habitat 
diversity, resulting in lower competition rates between species on environmental re-
sources and, consequently, promoting the possible co-existence of many species, both 
native and invasive amphipods (Chesson 2000; Amarasekare 2003). While in the lakes 
with the lower value of this index, native amphipods may be unable to compete with 
invasive species and could become extinct. However, our results do not confirm this 
assumption. We found G. lacustris in lakes with high shoreline development (e.g. Lake 
Ełckie), but no invasive amphipods were found there. Isolation of these lakes and low 
tourist pressure could result in the lack of conditions for their invasion. Nonetheless, in 
the event of their invasion, we can suppose that the high shoreline complexity of these 
lakes would promote the co-existence of native and invasive amphipods.

The declining populations of G. lacustris in our studies are similar to the general 
tendency observed in Europe. This species seems to be one of the weakest competitors 
amongst European freshwater amphipods giving way to the Ponto-Caspian species 
of genera: Chaetogammarus, Dikerogammarus and Pontogammarus (Meßner and Zet-
tler 2021). Gammarus lacustris occurs in a wide range of habitats; nevertheless, in the 
last few decades, the species has been pushed to the relict range of occurrence (Hes-
selschwerdt et al. 2008; Meßner and Zettler 2021). Nowadays, the species is present 
almost exclusively in isolated waterbodies and continues to decline (Meßner and Zet-
tler 2021). The population decline is also attributed to the hydromorphological and 
hydrochemical changes that occur in aquatic ecosystems (Okland 1969; Matafonov 
and Bazova 2014).

Similarly, we did not record another native amphipod, Pallasiola quadrispinosa, also re-
corded as declining in the freshwater ecosystems due to invasive amphipods (Żmudziński 
1995; Jażdżewski et al. 2004). According to Jażdżewski and Konopacka (1995), this spe-
cies was found in several lakes of the Masurian Lakeland, i.e. Dargin, Dobskie, Ełckie, 
Kisajno, Łaśmiady, Mamry, Mikołajskie, Mokre, Niegocin, Śniardwy and Tałty. In some 
of these lakes, we collected G. lacustris without invasive species which suggests also the 
possible presence of P. quadrispinosa in these lakes. Pallasiola quadrispinosa thrives in 
colder temperatures and typically resides in deeper waters during the summer months, 
which may explain why the species was not recorded during our summer samplings.

Our findings report the set of lake features promoting the distribution of native 
amphipod species in the studied lakes. As the study area is highly impacted by tourist 
activities, our results can be useful for better comprehension of the threats to native 
amphipods in other regions with similar levels of anthropogenic pressure and biologi-
cal invasions. Our conclusions may highlight the need to protect isolated lakes from 
tourism and urban area development.
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Distribution of invasive amphipods

Freshwater NIS can easily spread with tourist activities, including yachting and angling 
in particular. Our results show that the number of boats is one of the factors which 
best explains the distribution of D. villosus (Fig. 5). The main part of the Masurian 
Lakeland with a high abundance of this species covers the area of high tourist activi-
ties, i.e. lakes from group I in the northern part of the Lakeland (Figs 2, 4). Yachting 
is a very significant component of tourism in the Masurian Lakeland, reaching 37% 
of total tourist activities in the region (Kulczyk et al. 2016). Masurian tourist routes 
run through these lakes, thus, tourist boat activity supplements yachting. In 2016, we 
recorded D. villosus in all these lakes. A good example is Lake Niegocin, which has a 
high level of tourist pressure and a rapid invasion of D. villosus was observed in 2016. 
In 2014, the species was absent in this Lake, while in 2016, it constituted 81% of all 
sampled amphipods. Lake Niegocin is located between the other lakes with high tour-
ist pressure and the Masurian tourist route runs through this lake. The evidence of high 
tourist activity in this lake can be the high number of car parks per km of shoreline and 
one of the highest, amongst the Masurian lakes, number of beds in accommodation 
establishments in 2014 (Kulczyk et al. 2016).

Similar findings were done in other tourist lakes. In Alpine lakes, with higher yacht-
ing activity than in the Masurian Lakeland, the expansion of D. villosus was caused by 
yachting and using diving equipment (Bącela-Spychalska et al. 2013; Rewicz et al. 2017). 
Many species using boat biofouling to invade new waterbodies have broad tolerance to 
desiccation (Bącela-Spychalska et al. 2013; Glisson et al. 2020). Likewise, D. villosus has 
a high tolerance to air exposure (Rewicz et al. 2014). Moreover, the species is usually 
associated with another invasive species – zebra mussel (Dreissena polymorpha) and can 
survive up to six days out of the water between mussels fouling the boats (Martens and 
Grabow 2008). Similarly, the species can be transported with algae and macrophytes 
(Minchin et al. 2019). It enables them to expand rapidly in new waterbodies, including 
those isolated from others, by overland transport of boats and yachting equipment.

Overland transport of boats may explain the invasion of D. villosus in our study 
area. Although D. villosus was found in most of the recently studied lakes, the species 
was not found in the River Pisa and the River Węgorapa. These rivers connect the Mas-
urian Lakeland with large rivers, where D. villosus is present. It suggests the possible 
expansion of this species in the Masurian Lakeland by overland transport apart from 
these rivers. In certain lakes, we did not record D. villosus. These lakes have no direct 
contact with the invaded lakes and low tourist activity almost excludes the possibility 
of overland boat transport. In contrast to the Alpine lakes, we did not expect diving 
and angling (using waders) equipment to play a significant role in invading isolated 
waterbodies by D. villosus in the studied area.

Another strong factor explaining the distribution of D. villosus is the distance from 
town. Our results show that this species occurs mainly in the lakes with towns nearby. 
Proximity to the town and tourist activities are correlated with each other. Most of 
the marinas are located in towns with well-developed tourist facilities. Indeed, the 
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proximity to the ports and marinas is an important factor in promoting the expansion 
of D. villosus (Minchin et al. 2019). Higher tourist activities in proximity to urban 
areas may explain the distribution of D. villosus in the study area.

Distribution of other invasive species in the Masurian Lakeland, i.e. P. robustoides, 
D. haemobaphes and C. ischnus, concerns mainly the lakes with less developed shoreline 
and rather low water quality (higher class of water status). Predominantly, they are pre-
sent in lakes with different conditions compared to those where D. villosus was found 
(Figs 4, 5). Dikerogammarus haemobaphes is the first Ponto-Caspian invasive amphipod 
recorded in the Masurian Lakeland (Jażdżewski 2003). This species was recorded in 
most of the studied lakes, as well as in the Rivers Węgorapa and Pisa. The presence of 
this species in the Rivers Bug and Narew suggests its invasion in the Masurian Lakeland 
from the east – from the River Dnieper. Despite the broad distribution of D. hae-
mobaphes in the lakeland, this species was quickly over-dominated by P. robustoides. The 
latter species was first recorded in the study area in 2007 (Jażdżewska and Jażdżewski 
2008). Three hypothetical routes of P. robustoides invasion to this region were proposed 
– from Kaliningrad (Russia) via the Pregel and the Węgorapa Rivers; from Lithuania 
via the Augustów Canal; from the Baltic Sea via the River Vistula and its tributaries 
(Jażdżewska and Jażdżewski 2008). However, since the first record of D. villosus in the 
region in 2014, the abundance of both species – D. haemobaphes and P. robustoides – 
drastically decreased until 2016. In 2016, D. villosus became the most abundant spe-
cies in the lakes studied. These results are not surprising as the latter species is a strong 
competitor and successfully eliminates other invasive and native amphipods (Dick and 
Platvoet 2000; Platvoet et al. 2007; Bącela-Spychalska et al. 2012; Rewicz et al. 2014; 
Mathers et al. 2023). Especially, two of them – D. haemobaphes and P. robustoides – are 
weaker competitors than D. villosus, occurring in different habitats and occupying dif-
ferent niches (Bącela-Spychalska et al. 2012; Kobak et al. 2016; Poznańska-Kakareko 
et al. 2021; Copilaș-Ciocianu and Sidorov 2022). PCA and CAPSCALE results did 
not show a strong pattern in the distribution of these species, contrary to D. villosus, 
which suggests that D. haemobaphes and P. robustoides avoid niches occupied by D. vil-
losus (Figs 4, 5). Dikerogammarus haemobaphes and Pontogammarus robustoides have 
high desiccation resistance, enabling their overland transport with vessels (Poznańska 
et al. 2013). Although sailing and angling activities may play an important role in their 
spreading (Bącela-Spychalska 2016; Csabai et al. 2020), tourist activities probably play 
a minor role in their distribution in the Masurian Lakeland (Fig. 5).

Another species rapidly spreading in the Masurian Lakeland is Chaetogammarus 
ischnus. In the study area, this species was recorded for the first time in 2014 (Fig. 2A; 
Suppl. material 1). In two years, its increasing abundance coincided with the decline 
of the abundance of D. haemobaphes and P. robustoides (Fig. 2B). In 2016, C. ischnus 
constituted more than half of the collected individuals in Lake Śniardwy. An especially 
high abundance of this species was observed in the southern group of lakes (group II), 
contrary to D. villosus occurring mainly in the northern group (group I). Moreover, we 
recorded Chaetogammarus ischnus in the River Pisa and did not record this species in 
the River Węgorapa. These results may suggest that C. ischnus invaded the Masurian 
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Lakeland from the southern direction, i.e. from the River Narew and then via the River 
Pisa. However, in the lakes where we recorded D. villosus and C. ischnus co-occurring, 
the abundance of both species increased. Chaetogammarus ischnus usually occupies sim-
ilar habitats to D. villosus, i.e. sites with hard substrate, particularly covered by D. poly-
morpha (Żytkowicz and Kobak 2008; Copilaș-Ciocianu and Sidorov 2022). The co-
existence of both species may be attributed to the small body size of C. ischnus, which 
enables this species to occupy microhabitats without interfering with D. villosus (Borza 
et al. 2018). This microhabitat-scale differentiation allows for both species to exist with-
in the same habitat. Between C. ischnus and P. robustoides, the habitats also overlap, but 
usually P. robustoides limits the occurrence of C. ischnus because of its larger body size 
and more predatory diet (Żytkowicz and Kobak 2008). Therefore, we can hypothesise 
that D. villosus eliminates P. robustoides in the lakes studied and then C. ischnus refills 
the empty niche. In several lakes, for example, Dargin and Kisajno, we observed that 
C. ischnus reached a similar abundance in 2016 as P. robustoides had in 2014 (Fig. 2B; 
Suppl. material 1). Similar rapid invasion of C. ischnus and elimination of native species 
was observed in the Great Lakes in the USA (Dermott et al. 1998) and River Rhine 
in Europe (Van der Velde et al. 2000), where rapid range extension of D. villosus was 
observed as well (Bollache et al. 2004). Chaetogammarus ischnus can disperse over great 
distances (Witt et al. 1997). This species is capable of utilising natural water connec-
tions between different water-bodies, but it can also be transported through shipping 
(Nalepa et al. 2001). Witt et al. (1997) noted that the euryhaline nature of the species 
enables it to be transported even via ballast waters. However, the understanding of the 
invasion process of C. ischnus is limited and demands further studies.

Our results constitute an important contribution to the long-term observation of 
expansion dynamics of Ponto-Caspian amphipods and can be part of global databases 
monitoring invasive species. Rapid expansions underline the importance of regular, 
annual samplings in lakes and watersheds connecting them with invasion corridors. 
We show the very important role of tourist activities in lakes in the expansion of alien 
amphipods, in particular of D. villosus. These findings underline the important role of 
permanent monitoring of yachting and shipping vessels. Our predictions can be ap-
plicable in other tourist freshwater areas and help designate protection zones limiting 
boating. Our results can be also valuable to studies on other biofouling taxa. The sig-
nificance of the town’s proximity for the amphipod invasion is due to well-developed 
tourist facilities in urban areas and possibly water pollution; thus, lakes shorelines and 
marinas should be controlled as well. Water connections between lakes also should be 
regularly monitored. Our records of Chelicorophium curvispinum in the River Narew in 
2014 and 2016 suggest that this species may be the next recorded invasive amphipod 
in the Masurian Lakeland (see Suppl. material 1). Some studies show a rapid expansion 
of C. curvispinum in freshwater ecosystems with the presence of Dreissena polymorpha 
and shipping (Van den Brink et al. 1993; Jażdżewski and Konopacka 2002). The cur-
rent distribution of other invasive amphipods, for example, Obesogammarus crassus and 
Gammarus tigrinus, suggest no direct risk of their expansion in the Masurian Lakeland 
soon, but permanent monitoring of their expansion is necessary.
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Limitations of our study

Although our data come from several years, it is important to indicate that the most 
recent data come from 2016; thus, the current invasion status in the study area can be 
worse than what we present here. The lack of lakes where native and invasive amphipods 
co-occur makes some of our findings difficult to interpret and partially speculative.

One of the crucial findings of our study is the impact of boating on the invasions. 
However, we need to remember that the methods we used have some limitations. We 
used the maximum capacity of marinas as the number of boats in use. Although on 
busy days the percentage of used boats in the total number of moored boats is high, 
as shown in Ros et al. (2013), these data are not precise and might be an under-repre-
sentation of reality. We need to remember that, the association between boat density 
and the propagation of invasive amphipods has not been established through direct 
observation of vessel biofouling communities.

Lakes, especially those with high shoreline complexity, provide many habitats 
which various species can occupy. Therefore, analysing the data based on one sampling 
per lake may not depict the real diversity of the amphipod communities. Especially, 
the lack of records of amphipods in Lake Nidzkie, which has a connection with other 
lakes and Masurian tourist routes, suggests not enough efficient sampling. We need to 
be aware that the absence of a species in one sample does not exclude the possible oc-
currence of this species in other habitats of the same lake. Thus, our results, showing 
the replacement of native species by invasive species, present interesting trends, but 
are insufficient to conclude the extinction of certain species. Therefore, our findings 
should be perceived as predictions, not postulates.

Future directions

Future studies would benefit from utilising a more thorough and systematic sampling 
to provide a more accurate and reliable picture of the invasion process.

Our results show the importance of the proximity of sampling points to towns for 
invasions. Although we assume that this correlation is connected with tourist facili-
ties and pollution, implementation of more data is needed in the future. Particularly, 
the distance between sampling points or lake centroid and marinas should be imple-
mented in the analyses (Cole et al. 2019; Minchin et al. 2019). A significant effect 
of distance to marinas on invasions was noted by Minchin et al. (2019). Marinas are 
critical entry points for many invasive species and may play the role of reservoirs for 
newly-introduced invaders (Glasby et al. 2007; Ros et al. 2013; Fernández-Rodríguez 
et al. 2022).

Additionally, using the actual number of boats in use in the area would be advis-
able as was done in studies by Bącela-Spychalska et al. (2013) and Keramidas et al. 
(2018). Moreover, our knowledge about what part of the vessels are fouled by am-
phipods, which particular species can be transported and on what maximum distance 
is still scarce. Future studies would also benefit from including inspections of boats 
and ropes to identify potential vectors for amphipods, such as algae and mussels. 
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Dikerogammarus villosus, Chaetogammarus ischnus and Chelicorophium curvispinum 
can be transported with zebra mussels. Therefore, it is advisable to incorporate data on 
the occurrence of D. polymorpha in lakes and on vessels for future research. The type 
of vessel can also be an important factor. For instance, motorboats can be vectors of 
invasions, while canoeing does not play this role (Venohr et al. 2018). In this context, 
the presence/absence of silent zones, i.e. lakes or their parts where using boats with 
motors is forbidden, should complete the analyses. Knowledge about the success of 
the “check, clean and dry” strategy in the study area is missing. We expect that none of 
these methods is implemented as the local law does not demand their respecting. The 
method to prevent transporting invasive species on boats, as described in Mohit et al. 
(2021), should be tested in the Masurian Lakeland. Surveys amongst fishermen and 
tourists are worth collecting and analysing (Cole et al. 2019). To gain deeper insights 
into these dynamics, we recommend the establishment of an inter-lakes traffic registry. 
This registry would provide crucial data regarding boat traffic and potential pathways 
for the introduction of invasive species. Prevention measures and facilities for anglers 
should also be studied (Smith et al. 2023). To better understand which species can be 
transported by vessels, it is important to experimentally test the resistance of different 
invasive species like C. ischnus and C. curvispinum to desiccation.

As far as the financial and technical situation allows, samples should be collected 
from a large number of points on each lake. Additionally, studying a greater set-up of 
lakes would allow better tracking of invasions and more accurate detection of all am-
phipod species in the lakes. Finally, tracking of the invasion process can be supported 
by molecular studies (e.g. Mamos et al. (2021)).

Conclusions

The rapid expansion of the invasive Ponto-Caspian amphipods observed in this study 
aligns with a general trend along European freshwater basins. The contraction of the 
range and niche of native species when faced with more aggressive (e.g. D. villosus) and/
or generalist (e.g. C. ischnus) species is something expected and confirmed by our find-
ings. Even though many lakes seem to be still free from amphipod invaders, this may 
be for a short time considering the abrupt increase we have registered in just two years.

Our study emphasises the need for a comprehensive approach to understanding 
and addressing the dispersal of alien species through human activity. Our findings 
highlight the important role of boats in the spread of invasive amphipods within lake 
systems. The invasion process of Dikerogammarus villosus especially suggests the pos-
sible impact of overland boat transport in spreading this species in new lakes.

Furthermore, it is essential to raise awareness amongst lake users about the negative 
consequences of biological invasions and the necessity of implementing a “check, clean 
and dry” policy. By educating and engaging lake users, we can foster a sense of respon-
sibility and cooperation in preventing the spread of invasive species. Implementing 
these measures collectively will contribute to better biosecurity practices and safeguard 
the ecological integrity of lakes against invasive species.
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Abstract
The spread of non-native species is one of the outcomes of global change, threatening many native com-
munities through predation and competition. Freshwater ecosystems are particularly affected by species 
turnover with non-native species. One species that has been established in Central Europe for many decades 
– or even a few centuries – is the amphipod crustacean Gammarus roeselii. Although G. roeselii is nowadays 
widespread in major river systems, there have been recent reports of its spread into smaller streams that are 
typically inhabited by the native species Gammarus fossarum. Due to their leaf shredding ability, G. fossarum 
takes up a key position in headwater streams. This raises the important question, to what extent G. roeselii 
can equivalently take over this function. To answer this question, we collected both species from nine differ-
ent sites in a mid-mountain river system (Kinzig catchment, Hesse, Germany) and investigated their func-
tional similarity using a combination of stable isotope analysis, gut content and functional morphology. The 
species hardly differed in morphological characteristics, only females showed differences in some traits. Gut 
content analysis indicated a broad dietary overlap, while stable isotopes showed a higher trophic position 
of G. roeselii. The observed functional overlap could intensify interspecific competition and allow the larger 
and more predaceous G. roeselii to replace G. fossarum in the future as a headwater keystone species. How-
ever, the differentiation in the stable isotopes also shows that co-existence can occur by occupying different 
trophic niches. Moreover, the wide range of inhabited sites and exploited resources demonstrate the om-
nivorous lifestyle of G. roeselii, which is likely to help the species succeed in rapidly changing environments.
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Introduction

The introduction and spread of non-native species pose a threat to native communities 
globally (Gallardo et al. 2016). Due to their interconnection, streams are particularly 
affected by invasive species (Bij de Vaate et al. 2002; Leuven et al. 2009), which can 
cause a decrease of native species through predation and competition (Van der Velde 
et al. 2000). This change is not only expressed on a taxonomic level (Van der Velde et 
al. 2009), but probably also leads to changes in functional characteristics of ecosystems 
(Rosenfeld 2002). Non-native species might possess traits and behaviour that enable 
them to fulfil similar ecological functions as the native species they displace. However, 
the non-native species did not evolve within the recipient ecosystem and might lack 
natural predators, competitors or parasites that would otherwise regulate their popula-
tions in their native range (Torchin et al. 2003; Sih et al. 2010). Consequently, this un-
regulated population growth can lead to changes in resource availability and disrupting 
ecological interactions. However, post-invasion transformations of community struc-
ture and ecosystem function can differ immensely, are context-dependent and, often, 
poorly understood (Parker et al. 1999; Strayer et al. 2006; Kenis et al. 2009; Jeschke et 
al. 2014; Kumschick et al. 2015; Bellard et al. 2016).

A key group that is currently enormously affected by species-turnover is the taxo-
nomic group of amphipods (Jażdżewski 1980; Leuven et al. 2009). Native Gammarus 
spp. are key species in freshwater ecosystems, due to their role in the decomposition 
of organic matter – an essential process in the headwaters of stream ecosystems (Cum-
mins and Klug 1979; Vannote et al. 1980; Gessner et al. 1999; Graça 2001). However, 
the species turnover that is currently attracting attention is taking place in larger rivers 
(Leuven et al. 2009; Jourdan et al. 2016), while small headwaters – which are often not 
monitored within the Water Framework Directive – receive far less attention. While 
Gammarus fossarum Koch, 1836, is a typical headwater species, Gammarus roeselii Ger-
vais, 1835, mainly inhabits the downstream parts of the rivers (Pöckl and Humpesch 
1990; Pöckl et al. 2003). The exact origin and classification (native or non-native) of 
G. roeselii is still under debate, but the reduced genetic diversity (Csapó et al. 2020) 
and the main distribution on the Balkan Peninsula (Grabowski et al. 2017; Kabus et al. 
2023) suggest that G. roeselii is probably an older invader in northern and western river 
systems outside the Danube system (Jażdżewski and Roux 1988). The species has been 
described near Paris in 1835 (Jażdżewski and Roux 1988), probably from a non-native 
population and has been spreading in Western Europe in the past centuries (Jażdżewski 
1980; Jażdżewski and Roux 1988; Csapó et al. 2020). Nowadays, we observe an in-
creasing spread of G. roeselii into smaller tributaries and upstream regions (Jourdan 
et al. 2019). In the Kinzig catchment (Hesse, Germany), some first order streams are 
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already colonised by G. roeselii, while others are still inhabited by G. fossarum. Interest-
ingly, there are also streams where both occur syntopically. The similar phenotypic ad-
aptation along environmental gradients in both species (Jourdan et al. 2019; Grethlein 
et al. 2022) now raises the question to which extent they share a similar trophic niche.

Investigating the trophic ecology of invasive species is necessary to gain a bet-
ter understanding of the community-wide effects of invasions (Tillberg et al. 2007). 
Studies have shown that invaders across the animal kingdom often have a flexible and 
generalist diet (Garton et al. 2005; Tillberg et al. 2007; Caut et al. 2008; Zhang et al. 
2010; Grey and Jackson 2012; Jackson et al. 2017; Mothapo and Wossler 2017). Es-
pecially in changing environments, omnivorous species or species with a broad trophic 
niche are more successful than those with a more specialised diet, so that omnivorous 
invasive species may prey on or compete with native species (Barbosa and Castellanos 
2005; Simberloff 2010; Jackson et al. 2017).

The ecological niche of an organism is connected with its functional morphology 
(Bock and von Wahlert 1965). Therefore, morphological traits can provide additional 
important ecological insights (Premate et al. 2021). Characterising such traits – like 
body size and mouthparts – is suitable to evaluate the relationship between morphol-
ogy and trophic ecology, which, in turn, can be tested against further results of sta-
ble isotope and gut content analyses (Premate et al. 2021). Morphological analysis 
combined with stable isotope analysis can be used to elucidate potential relationships 
between morphology and function (Hutchins et al. 2014), since trophic levels char-
acterise the functional role of organisms (Hairston and Hairston 1993). So far, the 
relationship between morphology and ecology is not yet fully understood in many 
invertebrate groups and only now starting to become clearer in amphipods (Copilaș‐
Ciocianu et al. 2021).

Stable isotope analyses are useful for answering general questions about trophic 
structure (Vander Zanden et al. 1999; Post et al. 2000). However, this analysis is not 
able to distinguish very well between closely-related food sources with a similar isotop-
ic value (McCutchan et al. 2003; Hood-Nowotny and Knols 2007; Bowes and Thorp 
2015). Therefore, to gain qualitative information necessary to interpret the isotopic 
results, stable isotopes should be used together with other information, such as the 
analysis of the gut content (Inger and Bearhop 2008). This analysis has, in previous 
studies, been demonstrated to have a strong correlation with stable isotope data and, 
thus, can be considered a reliable reflection of diet in amphipods (Bacela-Spychalska 
and Van Der Velde 2013; Aumack et al. 2017). Copilaș‐Ciocianu et al. (2021) identi-
fied a strong relationship between morphological traits and the proportion of food 
items found in the gut. These correlations can provide an important understanding of 
the functional morphology of freshwater amphipods (Copilaș‐Ciocianu et al. 2021).

Stable isotope analysis is a common method used to reveal the trophic position 
of organisms in the field (Peterson et al. 1986; Cabana and Rasmussen 1996; Vander 
Zanden and Rasmussen 1999; Vander Zanden et al. 1999; Post et al. 2000; Post 2002; 
Layman et al. 2007). This analysis is an important tool to study food webs and has 
already been successfully used to detect the impact of biological invasions on trophic 
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structures (Vander Zanden et al. 1999; Van Riel et al. 2006; Mancinelli and Vizzini 
2015; McCue et al. 2020). For nitrogen, isotope ratios (15N/14N; δ15N) of a consumer 
are on average 3 to 5‰ higher than of dietary items and increase with successive 
trophic levels (DeNiro and Epstein 1981; Minagawa and Wada 1984; Peterson and Fry 
1987; Vander Zanden and Rasmussen 1999; Layman et al. 2007). On the contrary, the 
ratios of carbon isotopes (13C/12C; δ13C) show only minor changes since carbon moves 
through the food web with little alteration (DeNiro and Epstein 1978; Rounick and 
Winterbourn 1986; Peterson and Fry 1987; Layman et al. 2007).

We hypothesise that, in the focal study area, G. fossarum and G. roeselii share a 
similar trophic niche. This equivalence is suggested by a laboratory experiment where 
G. roeselii showed the same leaf consumption rate as G. fossarum (Jourdan et al. 2016). 
Moreover, we expect a high level of competition amongst ecologically similar spe-
cies, which should lead to a niche shift in co-occurrence scenarios. Finally, G. roeselii 
is found both in large lowland rivers, but also occasionally in upper stretches, while 
G. fossarum is restricted to upper stretches (Pöckl and Humpesch 1990; Pöckl et al. 
2003). Given that headwaters mainly receive energy input through terrestrial organic 
material, resulting in simpler food webs, while lower stretches exhibit more complexity 
due to increased nutrient availability and primary production (Vannote et al. 1980), 
we hypothesise that G. roeselii has a broader trophic niche compared to G. fossarum.

Materials and methods

Fieldwork

Gammarus fossarum and G. roeselii were collected with the kick-sampling method on 10 
and 11 August 2021 at nine sampling sites in the Kinzig catchment in Hesse, Germany 
(Table 1; Fig. 1). The sampling sites and their site IDs correspond with the sites from 
Weigand et al. (2020). Adult and juvenile individuals, as well as submerged leaves of 
Alnus sp. or Corylus sp. (depending on availability), were collected at each sampling site. 
Gammarids displaying visible parasitism, such as acanthocephalans (Médoc et al. 2011; 

Table 1. The nine sampling sites within the Kinzig catchment. The site ID (according to Weigand et al. 
(2020), name of the stream, the collected species and the GPS coordinates are given for each sampling site.

Site ID Stream Species GPS
1 Gründau G. fossarum + G. roeselii 50°14.93'N, 9°9.33'E
5 Bracht G. fossarum + G. roeselii 50°22.62'N, 9°16.22'E
6 Bracht G. fossarum + G. roeselii 50°26.22'N, 9°16.43'E
7 Salz G. roeselii 50°25.00'N, 9°21.80'E
10 Ulmbach G. fossarum + G. roeselii 50°20.18'N, 9°25.70'E
20 Schwarzbach G. fossarum + G. roeselii 50°21.53'N, 9°33.11'E
33 Kinzig headwater G. fossarum + G. roeselii 50°18.87'N, 9°36.98'E
37 Haselsbach G. fossarum 50°13.87'N, 9°22.21'E
105 Riedbach, Kinzig G. fossarum 50°22.62'N, 9°31.58'E
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Kochmann et al. 2023), were omitted from the analysis due to their potential to impact 
the feeding behaviour and metabolic processes of the organisms.

Morphological and gut content analysis

The methodology largely followed Copilaș‐Ciocianu et al. (2021). The animals were 
first soaked overnight in a 2% lactic acid solution and transferred to a 1:1 solution of 
70% ethanol and glycerine. Dissections we performed in glycerine with the help of 
fine needles and microsurgical scissors. Appendages were glycerine-mounted on mi-
croscope slides. Photographs were taken using a Nikon DS-Fi2 camera attached to a 
Nikon Eclipse Ci-L microscope or a Nikon SMZ1000 stereomicroscope. Measure-
ments were taken with Digimizer software (https//www.digimizer.com/), based on the 
photographs. A total of 15 female G. fossarum, 12 male G. fossarum, 14 female G. ro-
eselii and 12 male G. roeselii were used for this analysis. We measured 35 functional 
morphological traits that mainly reflect the diet (body length, mouthparts, stomach 
and shape of gnathopods). Additionally, traits, indirectly related to diet that reflect 
sensory function (antennae) and locomotion (pereiopods), were measured as well. For 
an overview of landmarks and function of these traits, see Copilaș‐Ciocianu et al. 
(2021). The same individuals used for the morphological analysis were used for the gut 
content analysis. The gut content analysis followed the protocol of Copilaș‐Ciocianu et 
al. (2021), using a Nikon Eclipse Ci-L microscope. In short, the gut was emptied out 
and evenly spread on a glass slide with a square grid (24 × 24 mm) containing 10 × 10 

G. roeselii
G. fossarum
G. roeselii & G. fossarum

Figure 1. The nine sampling sites within the Kinzig catchment.
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smaller squares. The gut content was classified into six categories (alga, arthropod, de-
tritus, fungus, plant, sand) and the number of squares on which a particular food item 
occurred were counted to calculate proportions.

Stable isotope analysis

Two gammarids within each 2 mm size class were used for the analysis. Amphipods 
with a body size lower than 7 mm were considered juvenile. In total, 26 juveniles, 
18 females and 24 males of G. fossarum and 19 juveniles, 36 females and 28 males 
of G. roeselii were used. Three leaf replicates per site were used as baseline for trophic 
position estimates. All samples were sorted, washed with distilled water and dried for 
48 h at 60 °C. Afterwards, they were ground to a fine powder with a pestle and mortar. 
The powder for each amphipod sample was aimed to be 1 mg. In case juveniles did 
not have a high enough body mass, a composite sample of more individuals of the 
same species, sex and size class was used. The aimed weight for the leaves was between 
3 mg and 4 mg powder for each sample. Carbon and nitrogen stable isotope ratios 
were measured at the Isotopic Research Laboratory of the Centre for Physical Sciences 
and Technology in Vilnius, Lithuania. Here, an elemental analyser coupled to the iso-
tope ratio mass spectrometer (EA-IRMS, Flash EA1112–Thermo V Advantage) via the 
ConFlo III interface was used for the measurement.

In our amphipod samples, the C:N mass ratio varied over 3.5 and in our leaf 
samples the C exceeded 40%; thus, we corrected the δ13C values for lipid content us-
ing the relevant formulae for aquatic animals and plants from Post et al. (2007). We 
referenced the trophic position of amphipods to ΔC and ΔN in each site by subtract-
ing the corresponding mean values of the leaves. We further divided the ΔN by the 
conventional trophic fractionation factor value of 3.4‰ (Post 2002) and added one 
(baseline trophic level) to obtain the amphipod trophic level (TL) estimates.

Statistical analysis

To correct for body size, the morphological measurements were first regressed against 
the body length and the residuals across all sampling sites were pooled into four species 
by sex groups (female G. roeselii, male G. roeselii, female G. fossarum, and male G. fos-
sarum). The mean value of residuals was used in case of missing values. The gut content 
data of all sampling sites were grouped in the same manner. Subsequently, principal 
component analyses (PCA) were conducted in PAST 4 (version 4.08; Hammer et 
al. 2001). They were computed with a correlation matrix. To test for dietary or mor-
phological differences amongst groups, a one-way permutational multivariate analysis 
of variance (PERMANOVA) with 9999 permutations and Euclidean similarity index 
was conducted in PAST. The PERMANOVA was performed either on the gut content 
data or all morphological traits combined or separately on four trait-complexes reflect-
ing sensorial function (antennae, six measurements), food grasping and manipulation 
(gnathopods, eight measurements), food processing and digestion (mouthparts and 
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stomach, four measurements) and locomotion (pereiopods along with their accompa-
nying bases and coxae, 15 measurements). To test for differences between gammarids 
occurring alone compared to co-occurrence, PERMANOVA was performed on gut 
content and all morphological traits between those sites. Bonferroni correction was 
applied for further multiple comparisons between group pairs.

We analysed the difference in trophic position between species by building lin-
ear mixed-effects models (LMEMs) for each of the referenced metrics (ΔC and TL). 
In these models, we considered the interacting fixed effects of size, species and the 
syntopy (or co-occurrence) factor, while site was included as a random factor. The 
continuous size variable was centred around the global mean of 8.25 mm for more 
proper effect testing (but back-transformations were applied for the provided visu-
als). The effects were tested using type III analysis of variance with Satterthwaite’s 
approximation for denominator degrees of freedom. These analyses were conducted 
by employing the R packages lme4 v. 1.1-32 and lmerTest v. 3.1-3 (Kuznetsova et al. 
2017) and visualised using the package visreg v. 2.7.0 (Breheny and Burchett 2017). 
We further conducted the post hoc group comparisons at minimum and maximum 
amphipod sizes with the Šidak p-value adjustment for eight tests using the package 
emmeans v. 1.8.8 (Lenth 2023). To test for the differences in ΔC and TL between 
sexes, we extracted the residuals from the LMEMs for the adult observations only 
and applied simple linear models with backward stepwise removal of terms (based on 
Akaike Information Criterion), starting with fully interacting effects of species, sex 
and syntopy.

In the bivariate stable isotope space, we approximated the population isotopic 
niches as ellipses containing 95% of the data with their area estimates (BEA95%). We 
also estimated the overlaps between the species in the six syntopic sites and stand-
ardised them as proportions of the sum of the non-overlapping ellipse areas (0 – no 
overlap, 1 – complete overlap). For this, we used the Bayesian estimation available in R 
package SIBER v. 1.2.7 (Jackson et al. 2011) and provided the estimates as modes with 
95% credible intervals of the posterior distributions (400 draws). Using these draws, 
within each of the six syntopic sites, we tested if: (1) the BEA95% of G. roeselii is wider 
than the ellipse of G. fossarum, (2) if the overlap is larger than 0 and (3) if the overlap 
is larger than 60% which is the commonly considered threshold for an ecologically 
significant overlap (Jackson et al. 2011). Provided probabilities were translated to be 
treated conventionally – significant effects when p < 0.05.

Results

Morphological analysis

Results from omnibus PERMANOVA testing for all traits (F = 12.7, p = 0.001) revealed 
a significant morphological differentiation between sexes within G. roeselii and within 
G. fossarum and between females of both species, but not males (see Suppl. material 
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1: table S1 for pairwise comparisons). This could be confirmed by the PCA, since the 
convex hulls of the males of both species are mainly overlapping, whereas the females 
are more separated from each other (Fig. 2a). Pairwise comparisons (Suppl. material 
1: table S1, Fig. 2b–e) further showed that females differed significantly between spe-
cies only with regard to gnathopods and pereiopod+coxae trait complex (Fig. 2c, d). 
The pairwise comparisons also indicated that the sexual dimorphism within both spe-
cies was reflected by significant differences in all tested trait complexes. Regarding the 
comparison between gammarids occurring alone compared to co-occurring, the om-
nibus PERMANOVA testing for all traits (G. fossarum alone/co-occurring: F = 0.54, 
p = 0.64; G. roeselii alone/co-occurring: F = 0.96, p = 0.38) revealed no significant 
morphological differentiation.

Figure 2. Morphological differentiation between studied male and female gammarid species according 
to principal component analyses (PCAs) of all traits (a), antennae (b), gnathopods (c), pereiopods+coxae 
(d) and mouthparts (e).
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Gut content analysis

The PCA of the gut content indicated that the most important differentiation between 
specimens was amongst the detritus, sand vs. plant axis, explaining 29.9% of varia-
tion (Fig. 3). The second axis of differentiation was between detritus and sand and it 
explained 21.4% of the variance (Fig. 3). The PERMANOVA revealed no significant 
differentiation between species or sexes when only considering co-occurrences (F = 1.3, 
p = 0.24). All groups overlapped to a great extent (Fig. 3). Results from PERMANO-
VA testing for gut content between syntopic and non-syntopic populations did reveal 
a significant differentiation between G. fossarum alone/co-occurring with G. roeselii 
(F = 3.6, p = 0.032), but not between G. roeselii alone/co-occurring with G. fossarum 
(F = 2.6, p = 0.065, Fig. 3b).

Figure 3. A principal component analysis (PCA) scatterplot depicting dietary differentiation with respect 
to the proportion of various food items of species by a sex and b by non-syntopic and syntopic occurrence 
(sexes combined).

Gut content

Stable isotope analysis

Isotopic position

The results of stable isotope analysis revealed pronounced niche differentiation be-
tween G. fossarum and G. roeselii, with G. roeselii generally occupying a higher trophic 
level (Fig. 4). At most sites, ΔC values varied indicating 13C-enrichment of amphipods 
relative to the tree-leaf detritus. However, we observed a notable separation of site 7, 
where G. roeselii was exceptionally 13C-depleted relative to the leaves (coincidentally, 
Alnus sp. leaves were missing at the site, thus Corylus sp. were used). Trophic level 
of amphipods mostly fell within the normal range between herbivory (TL = 2) and 
complete carnivory (TL = 3), with the extremes of 1.8 in G. fossarum juveniles from 
site 37 and slightly above 3.0 in the largest adults of G. roeselii from site 6 and site 10. 
The trend of increasing TL with size was also reflected in the data. Estimates of trophic 
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position for different amphipod size groups derived from stable isotope analysis are 
provided in Suppl. material 1: table S2.

Both LMEMs of ΔC and TL (Table 2) returned a significant second order interac-
tion of amphipod size, species and the syntopy factor, indicating variable steepness of 
the ontogenetic slopes of gammarids. Judging by the various modelled cases (Fig. 5), 
there was always an increasing ΔC and TL trend with amphipod size and G. roeselii 
generally tended to exhibit lower ΔC and higher TL values than G. fossarum. Regard-
ing both metrics, the interspecific differences in the overall position, as well as the 
slopes, were more evident across the non-syntopic sites, while, when co-occurring, 
the two species tended to overlap more and to exhibit very similar ontogenetic slopes. 
Across the syntopic sites, both amphipods appeared to have high ΔC values, similar as 
in G. fossarum-only sites and their juveniles converged more to intermediate TL values. 
The ΔC slope of G. roeselii and TL slope of G. fossarum were visibly steeper across the 
non-syntopic sites in comparison to the syntopic ones, suggesting wider ontogenetic 
niches in respective metrics when a single species is found. (It is important to note that, 
to some extent, the observed patterns may have been biased by the single G. roeselii-
only site coinciding with a more degraded habitat.)

Figure 4. Referenced stable isotope biplot of studied amphipods showing trophic niches by site (means 
± SD). Point size reflects animal body size. Green labels at the means correspond to site IDs from Table 1.
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Figure 5. Effects of amphipod size, species and their syntopic occurrence on isotopic metrics of trophic 
position within the linear mixed-effects models of a, b referenced δ13C (ΔC) and c, d of trophic level (TL) 
by a, c non-syntopic vs. b, d syntopic sites. See Table 2 for effect tests. Grey asterisks between species’ lines 
indicate significant (p < 0.05) interspecific differences at corresponding size extremes according to post hoc 
analysis. Not shown here, but this analysis also indicated significant ΔC differences within the smallest 
and largest specimens of G. roeselii occurring in non-syntopic vs. syntopic sites.

Table 2. Results of analysis of variance (type III decomposition) from the linear mixed-effects models of 
isotopic metrics of trophic position – referenced δ13C (ΔC) and trophic level (TL) – testing for the inter-
acting effects of amphipod size, species (Gammarus fossarum vs. G. roeselii) and their syntopic occurrence. 
See Fig. 5 for effect plots.

Tested term df ΔC model TL model
dfdenominator F p dfdenominator F p

Size 1 142.6 35.2 < 0.001 142.1 43.4 < 0.001
Species 1 10.6 125.1 < 0.001 9.4 7.0 0.026
Syntopy 1 9.7 114.8 < 0.001 9.1 0.6 0.459
Size : Species 1 142.7 6.3 0.013 142.1 5.0 0.027
Size : Syntopy 1 142.6 14.7 < 0.001 142.1 0.6 0.444
Species : Syntopy 1 10.6 87.8 < 0.001 9.4 1.9 0.202
Size : Species : Syntopy 1 142.7 7.1 0.008 142.1 4.3 0.039



Lars Pelikan et al.  /  NeoBiota 90: 193–216 (2024)204

Regarding the effect of sex across the adult dataset, the stepwise procedure removed 
all the effects apart from sex from the linear model of ΔC and indicated a model with-
out predictors for TL (although sex was removed last). Thus, we ended up applying 
simple t-tests using only the sex factor. These indicated a marginally higher female ΔC 
(t104 = 1.9, p = 0.061), but no effect of sex on TL (t104 = 0.4, p = 0.69).

Isotopic niche width and overlaps

Isotopic niche widths of the populations and the overlaps between species are provided 
in Table 3. Although the mode estimates of BEA95% were often larger in G. roeselii than 
in G. fossarum, the Bayesian testing indicated such a pattern significantly only in site 
10 (p = 0.030 as opposed to p ≥ 0.84 in other cases). All the six overlaps were larger 
than 0 (p ≤ 0.037), but none of them exceeded 60% (p ≥ 0.96), indicating a relatively 
low trophic niche overlap.

Table 3. Population isotopic niche widths as ellipse areas (BEA95%) and their absolute and relative over-
laps by study site. The Bayesian estimates are provided as modes and 95% credible intervals.

Site ID G. fossarum BEA95% G. roeselii BEA95% Overlap %Overlap

37 3.47 (1.56–6.59) - - -
105 5.20 (3.01–9.21) - - -
6 3.51 (2.10–6.79) 3.05 (1.96–5.37) 0.02 (0.00–1.44) 0.00 (0.00–0.20)
10 2.10 (0.99–4.07) 4.76 (3.09–9.63) 1.61 (0.46–2.88) 0.26 (0.08–0.49)
20 1.31 (0.66–2.94) 1.93 (1.34–3.67) 0.70 (0.00–1.47) 0.27 (0.00–0.55)
33 3.53 (2.09–8.38) 4.85 (3.10–8.40) 1.73 (0.15–3.17) 0.24 (0.05–0.39)
1 3.63 (1.56–9.25) 4.78 (1.79–11.19) 0.04 (0.00–3.30) 0.00 (0.00–0.32)
5 3.84 (1.94–10.98) 2.39 (1.42–4.85) 1.19 (0.00–2.50) 0.02 (0.00–0.40)
7 - 6.75 (3.66–12.41) - -

Discussion

Our study revealed a strong overlap in morphology and gut content between the native 
G. fossarum and non-native G. roeselii in headwater streams. However, stable isotopes 
indicated a stronger dietary differentiation between the two species when occurring alone 
and a more similar trophic niche when occurring together, with G. roeselii, however, gen-
erally occupying a higher trophic level. In addition, the gut content analysis confirmed 
that G. fossarum appears to have a different diet when occurring alone. This indicates 
that, despite their apparent functional morphological equivalence, the two species exploit 
different food resources. Below, we expand on the significance of these findings.

Overall, morphological differentiation occurs between the sexes rather than be-
tween species when looking at the combined data, pooled over all sampling sites. Only 
in some traits of the females (gnathopods, pereiopods and coxae) could we see differ-
ences between the species. This differentiation between females of both species could 
be explained by different reproduction characteristics of the species, such as different 
thermal optima for maximum fecundity (Pöckl 1993). As reproduction involves a met-
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abolic cost (Sutcliffe 1992), a different reproduction effort could mean that different 
energy levels are available for growth and, thus, translating into different sizes of mor-
phological features. Besides, the size of males is significantly affected by sexual selec-
tion, while females are significantly affected by natural selection (Ward 1988). Sexual 
selection of a trait is induced by competition over mates (Andersson 1994), while 
natural selection is induced by trait variation amongst individuals (Endler 1986). The 
competition between males of both species might be similar throughout the sampling 
sites and, therefore, the males show similar morphological traits. On the other hand, 
females of both species experiencing natural selection might lead to morphological 
trait differentiation. Similar morphological features of males of both species point to 
an absence of morpho-functional differentiation, the occupation of a similar trophic 
niche and ecological similarity (Cothran et al. 2013; Fišer et al. 2015; Copilaș‐Cioc-
ianu et al. 2021). However, morphological similarity does not always mean ecological 
equivalence. Fišer et al. (2015) found ecological differentiation between four morpho-
logically similar Niphargus species, which could potentially lead to different ecological 
roles in the ecosystem. Moreover, Premate et al. (2023) discovered that morphological 
traits are influenced not only by trophic position, but also by the specific habitat type. 
This observation could also explain the similar morphology of our study species occur-
ring in the same headwater habitat.

The gut content analysis showed a strong dietary overlap between the species when 
pooled over all sampling sites. Our results thus indicate that the foraging on the same 
food sources might lead to competition between the two species. In principle, a strat-
egy adopted by different amphipods to reduce competition for limited resources could 
be to utilise resources in different ways, in different microhabitats or at different times 
(Piscart et al. 2010, 2011; Mauchart et al. 2017; Premate et al. 2021). Apart from that, 
our species differed significantly regarding the δ13C level, which has also been observed 
in other co-occurring freshwater amphipods (Premate et al. 2021). Such partitioning 
of food resources is expected amongst co-occurring species (Schoener 1974; Chesson 
2000), facilitating a stable co-existence (Chesson 2000). Our analysis showed a signifi-
cant differentiation in gut content for G. fossarum when occurring alone compared to 
co-occurring with G. roeselii and close to significance for G. roeselii when occurring 
alone compared to co-occurring with G. fossarum. This could be explained by their, in 
general, separated occurrence in different river sections (Pöckl and Humpesch 1990; 
Pöckl et al. 2003) and the different availability of resources in these sections (Vannote 
et al. 1980). On the other hand, the absence of dietary separation for co-occurring 
populations might be a consequence of high abundance of food during the study pe-
riod and could indicate potential for interspecific competition (Piscart et al. 2011; 
Rothhaupt et al. 2014). Interspecific competition, in turn, can reduce intraspecific 
specialisation, therefore, reducing the niche breadth of individuals (Araújo et al. 2011), 
leading to a dietary overlap. In addition, dietary separations or overlaps can change 
frequently in populations depending on spatio-temporal availability of food items and 
on the abundance of competing species (Rothhaupt et al. 2014). Thus, stable isotope 
analysis is useful for studying the diet on a longer time-scale.
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The stable isotope analysis revealed that both species had more similar trophic 
niches when they co-occurred. Specifically, G. fossarum underwent a trophic level in-
crease while G. roeselii a decrease which was also accompanied by a shift in the carbon 
source. Although this result was unexpected and non-intuitive at a first glance, it could 
be explained by reciprocal predation on juveniles or recently moulted individuals of 
the other species, as observed in another native and non-native amphipod species pair 
(Dick et al. 1993; Dick 1996; Dick and Platvoet 1996). Moreover, other researchers 
have discovered niche segregation in co-occurring amphipods in order to facilitate co-
existence and avoid competition (Piscart et al. 2011; Premate et al. 2021).

Nevertheless, our stable isotope analysis revealed that, even though both species ex-
perience a niche shift, G. roeselii still has generally a higher trophic position compared 
to G. fossarum when both species occur together, contradicting our first hypothesis 
of a shared trophic niche. One reason why we have not found this more carnivorous 
lifestyle in the gut content could be that animal material can be digested more quickly 
(Guerra-García et al. 2014), but the stable isotopes of animal prey are incorporated in 
the tissues of the amphipod and, thus, influence the stable isotope analysis. The higher 
trophic position of the non-native G. roeselii observed in our stable isotope analysis 
could be an advantage compared to the native G. fossarum. Animal material, a high 
quality and easily-assimilated food item, can improve the growth of Gammarus sp. 
(Anderson and Cummins 1979; Crenier et al. 2017). The acceleration of growth, mat-
uration and reproduction progress when being fed animal matter has been observed for 
several Gammarus species (Vassallo and Steele 1980; Smith 1988; Delong et al. 1993). 
In addition, it has been observed for G. fasciatus that, with increasing size, the amount 
of animal matter found in the gut increased proportionally (Summers et al. 1997). The 
present study showed that larger individuals occupy a higher trophic niche, confirming 
an ontogenetic niche shift. Thus, since G. roeselii usually has a larger body length, it 
will presumably consume more animal material than the smaller G. fossarum (Delong 
et al. 1993). In return, individuals of G. fossarum have a lower trophic position than 
G. roeselii. Since G. fossarum also has a smaller body size and smaller gnathopods than 
G. roeselii, it may be mainly limited to detritus because their smaller gnathopods may 
not be large enough to handle larger food items, such as animal matter (Summers et 
al. 1997). This is supported by a laboratory experiment of Delong et al. (1993), which 
showed that small individuals of G. fasciatus showed a delayed growth response when 
fed animal matter, but a normal growth when fed only leaf litter. However, G. fossarum 
is generally also known to be predatory and able to exploit animal food resources (Stof-
fels et al. 2011; Georgievová et al. 2020; Syrovátka et al. 2020) resulting in gammarids 
generally being classified as rather omnivorous (MacNeil et al. 1997).

Overall, our results indicate that G. roeselii exhibits a broader trophic niche than 
G. fossarum confirming our second hypothesis. It has been shown that, when G. roeselii 
co-occurs with G. fossarum, it significantly affects their micro-distribution (Mauchart 
et al. 2017). G. roeselii chooses habitats with macrophytes, (dead) wood or deposits of 
CPOM (coarse particulate organic matter), whereas G. fossarum prefers coarse gravel 
and cobbles (Mauchart et al. 2017). This suggest different sources of algal or terrestrial 
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δ13C (Finlay 2001, 2004) for the diet of G. roeselii and could be an explanation for its 
broader trophic niche. Moreover, in our stable isotope analysis, population from site 
7 appears to be an outlier with lower δ13C values. Site 7, unlike the other sites, was 
highly morphologically degraded, canalised and without significant riparian vegeta-
tion. Unlike G. fossarum, G. roeselii is able to occur in many anthropogenically shaped 
habitats (Mauchart et al. 2014; Enns et al. 2023; Kochmann et al. 2023). Apparently, 
in such habitats, G. roeselii is able to exploit resources from different food chains, 
such as algae. On the other hand, the larger size of G. roeselii could be an explanation 
for its broader trophic niche, because the larger size can offer competitive advantage 
(Young 2004). This advantage arises from the potential for a wider dietary range as 
size increases, potentially resulting in accelerated growth rates and shorter reproduc-
tion times (Summers et al. 1997). Moreover, it enables the exploitation of seasonal 
changes of food items (Delong et al. 1993). High trophic diversity is one of the most 
important factors responsible for the dispersal success of amphipods (Legeżyńska et 
al. 2012), because invasive species must be able to gain food material in heterogene-
ous habitats (Rothhaupt et al. 2014). Nevertheless, in a future study, it needs to be 
elucidated whether G. roeselii has a similar or different niche in their native range on 
the Balkan Peninsula. Presumably, G. roeselii could become even more competitive 
through depending on leaf litter as constant adaptation, effectively exploiting leaf lit-
ter, and also higher quality food sources and continuing to colonise tributaries and 
headwaters (Jourdan et al. 2016).

The omnivorous diet of both amphipods, the higher trophic niche of G. roeselii 
seen in our stable isotope analysis and the observed microhabitat partitioning in the 
field (Mauchart et al. 2017) can facilitate and explain the co-existence of both spe-
cies. However, unlike G. fossarum, G. roeselii possesses dorsal pleosomal spines. An 
experimental study identified these as an effective defence mechanism against preda-
tory fish (Bollache et al. 2006). The protection through spines can probably not only 
facilitate its spatial distribution, but may also favour the colonisation of new niches, 
hence increasing its invasion potential (Copilaş-Ciocianu et al. 2020). The low preda-
tion of G. roeselii may promote its establishment in communities with native species, 
such as G. fossarum (Bollache et al. 2006). Moreover, headwater sections of streams are 
particularly impacted by anthropogenic pollution and a subsequent species turnover 
(Betz-Koch et al. 2023; Enns et al. 2023). This ongoing pollution can facilitate the 
spread and establishment of G. roeselii into headwaters (Mauchart et al. 2014; Jourdan 
et al. 2024) and can lead to the decline of the more sensitive G. fossarum (Enns et al. 
2023). In addition, temperature records for the herein studied sites show water tem-
peratures between 14.4 °C and 21.5 °C, which are congruent with an earlier study of 
some of the sites (Grethlein et al. 2022). G. roeselii reaches sexual maturity faster, has 
a shorter brood development and a higher reproductive success than G. fossarum at 
temperatures above 12 °C (Pöckl et al. 2003). Furthermore, these characteristics of 
G. roeselii are enhancing with increasing temperature (Pöckl 1992). These life-history 
traits could facilitate invasion success and alter the community structure of invaded 
habitats (Grabowski et al. 2007; Rothhaupt et al. 2014). Thus, due to increasing water 



Lars Pelikan et al.  /  NeoBiota 90: 193–216 (2024)208

temperatures associated with climate change and ongoing pollution through anthro-
pogenic impact, G. roeselii might outcompete G. fossarum in headwaters in the future 
(Pöckl et al. 2003; Enns et al. 2023; Jourdan et al. 2024).

Conclusions

Our study revealed that the non-native G. roeselii is morphologically similar to the native G. 
fossarum in headwater streams. We also found similar food items in the gut content, which 
showed the generally omnivorous lifestyle of both species. However, stable isotopes indi-
cated that the trophic niches of both species differ substantially, with G. roeselii being more 
predaceous and generally having a broader niche. This indicates that, despite their shared 
morphological characteristics and omnivorous tendencies, there is a noticeable niche dif-
ferentiation in G. roeselii, consequently influencing the headwater food web. In situations 
of ample resource availability, co-existence between both species may be possible. However, 
in cases of resource scarcity, we expect G. roeselii to be competitively superior, particularly 
given its ability to exploit a broader range of food resources, regardless of their quality.
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