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Economic globalization depends on the movement of people and goods between coun-
tries. As these exchanges increase, so does the potential for translocation of harmful 
pests, weeds, and pathogens capable of impacting our crops, livestock and natural 
resources (Hulme 2009), with concomitant impacts on global food security (Cook et 
al. 2011).

Potential invasions by alien species create a dilemma for nations that engage in 
international trade. On one hand, free trade may provide new markets for produc-
ers, cheaper and more diverse goods for consumers, and increase overall gross domes-
tic product. On the other hand, unfettered trade may allow new pests to arrive and 
jeopardize domestic agricultural industries. Pests may lower agricultural production, 
reduce the marketability of a crop, or trigger quarantine restrictions from other coun-
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tries to prevent the continued spread of the pest. The challenge, then, is to identify 
the risks associated with particular organisms, commodities, or pathways and mitigate 
those risks to desirable levels. Pest risk assessment, the process by which scientific evi-
dence is used to assess the likelihood that a pest might invade and the extent of harm 
should the invasion be successful, is commonly applied to decide whether to engage in 
agricultural trade with another nation and whether phytosanitary precautions might 
be required in order to manage the risks (Magarey et al. 2009, Schrader et al. 2010). 
When conducted properly, risk assessments can avert economic losses and preserve 
economic activity (Keller et al. 2007).

Pest risk maps illustrate where invasive alien arthropods, molluscs, pathogens, and 
weeds might become established, spread, and cause harm to natural and agricultural 
resources within a pest risk area. Such maps can be powerful tools to assist policymak-
ers in matters of international trade, domestic quarantines, biosecurity surveillance, or 
pest-incursion responses. The International Pest Risk Mapping Workgroup (IPRMW) 
is a group of ecologists, economists, modellers, and practising risk analysts who are 
committed to improving the methods used to estimate risks posed by invasive alien 
species to agricultural and natural resources. The group also strives to improve com-
munication about pest risks to biosecurity, production, and natural-resource-sector 
stakeholders so that risks can be better managed. The IPRMW previously identified 
ten activities to improve pest risk assessment procedures, among these were: “improve 
representations of uncertainty, … expand communications with decision-makers on 
the interpretation and use of risk maps, … increase international collaboration, … 
incorporate climate change, … [and] study how human and biological dimensions 
interact” (Venette et al. 2010).

The IPRMW met in Tromsø, Norway from 23–26 July, 2012 to address the specif-
ic challenges of incorporating climate change into long-term risk projections for inva-
sive alien species, estimating the economic effects of species invasions, and incorporat-
ing uncertainty in risk models. A special symposium focused on the interface between 
pest risk science and policy. The meeting was attended by 30 ecologists, economists, 
risk analysts and policy advisors from Australia, New Zealand, Canada, the United 
Kingdom, Finland, Norway, the Netherlands, Hungary, France, Italy, and the United 
States. The conference succeeded in stimulating new ideas about how to incorporate 
climate change, invasion dynamics, economics, and uncertainty into pest risk models 
and maps for invasive alien species, and how to communicate these improved results to 
biosecurity policy advisors. This special issue of NeoBiota documents the proceedings 
of the meeting, and this overview summarizes major findings.

Pest risk science and policy. Effective management of biosecurity risks requires close 
interactions between pest risk assessors and risk managers. Risk assessors evaluate the 
probability and magnitude of harm from new species incursions and may evaluate 
options to mitigate those risks. Risk managers within national biosecurity agencies 
and regional plant protection organizations may draw upon scientific and modelling 
inputs as they develop standards and implementation plans for phytosanitary meas-
ures and other biosecurity procedures. Pest risk assessment methods being developed 
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or enhanced by this workgroup frequently underpin decisions about which species to 
survey and regulate. For example, the European and Mediterranean Plant Protection 
Organisation (EPPO) has adopted the risk assessment framework developed under the 
IPRMW-affiliated PRATIQUE project (Brunel et al. 2013). Economics offers policy 
analysis tools that estimate the likely impacts an invasive species might have on an 
economy under a range of policy scenarios. They can analyse these threats from a range 
of social, environmental and economic perspectives to help guide policymakers to as-
sess what, if anything, should be done to mitigate or ameliorate these threats. Practical 
constraints (e.g., information quality and quantity) and procedural constraints (e.g., 
public comment periods) can affect risk assessors’ choices about which methods to use 
to develop pest risk maps. The challenge for pest risk modellers is to try to balance 
rigor and timeliness in their work to obtain degrees of accuracy and precision that are 
acceptable to policy advisors and to help policy advisors understand the meaning of 
their work. For policy advisors, the challenge is to articulate clearly what information 
is needed to support time-critical decision-making.

Pest risk and climate change. Climate change is expected to affect the distribution 
and phenology of pests and crops. Some invasive alien species may pose threats to more 
poleward and higher-altitude regions as cold-related range limits are relaxed. For exam-
ple, the citrus longhorn beetle, Anoplophora chinensis (Forster), is present in southern 
Europe (Caremi and Ciampitti 2006), but is only reported as transient under eradica-
tion in Denmark and the United Kingdom (EPPO 2013). It appears that A. chinensis 
could cause significant damage in parks, gardens, and forests in some coastal areas of 
northern Europe if it is able to overwinter there in the future. Models have identified 
other, currently-damaging species situations that may become less problematic as fu-
ture heat-stress increases. For migratory pests such as aphids, climate change may alter 
the spatio-temporal synchronization of the pest and crop, affecting the extent of dam-
age such pests may cause. Furthermore, elevated levels of atmospheric carbon dioxide 
are likely to stimulate plant growth in many crops, perhaps offsetting some damage 
from invasive alien species. Studies are being conducted to quantify the rate at which 
natural selection drives adaptation to local conditions in an invading species (Morey 
et al. 2013). The outcomes of this work will provide a better understanding of the reli-
ability of niche models for describing species’ potential ranges in novel environments. 
The effects of projected climate changes on pest risk models are being investigated 
by applying global climate scenarios to species niche models (Venette 2013). Given 
significant uncertainties about climate change and subsequent biological responses, 
adaptive management methods, guided by models, seem prudent to address future 
risks from invasive alien species. An adaptive management method balances the desire 
to avoid unwarranted expenditure on preventing or ameliorating risks that may not 
arise, whilst identifying adaptive measures that may be necessary if evidence indicates 
that the risks are likely to emerge in the near future.

Pest risk and economics. Economic analysis tools such as benefit-cost analysis and 
break-even analysis are effective in condensing complex information into relatively 
simple metrics about the potential impacts from invasive alien species and the poten-
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tial benefits of preventative or ameliorative actions. These tools are particularly useful 
when the impacts of invasive species are limited to agricultural commodities because 
of the relative ease with which impacts can be quantified. Economic pest impact mod-
els are increasingly taking discounting effects into account by considering the rate of 
spread of pests. Whilst spread models can inform where invasive species might occur 
(at least in the short-term) (Robinet et al. 2012; Parry et al. 2013), their most impor-
tant contribution to economics may be to simply estimate the rate of spread of pests 
through time. Methods that integrate simple pest spread and climate suitability models 
with crop productivity models have been developed to estimate economic aspects of 
pest risk in terms that are compatible with the International Standards for Phytosani-
tary Measures (Cook et al. 2013; Kriticos et al. 2013).

Pest invasions, spread, and surveillance. Biosecurity policies and procedures are fre-
quently intended to prevent the introduction, or slow the spread, of invasive alien 
species. A significant gap remains between what we know and what we need to know 
about invasion pathways, especially those related to human activities. Probabilistic 
pathway models that link the arrival of invasive organisms to existing international 
and domestic trade flows and transportation corridors are being developed to estimate 
rates of pest arrivals at specific locations (Colunga-Garcia et al. 2013).

Risk-scoring methods exist to help prioritize species, often only requiring coarse 
characterizations of species traits. These methods are popular amongst biosecurity 
agencies, although doubts remain about their subjectivity and accuracy (Caley et al. 
2008). A new method analyses the geographical distribution of species assemblages ob-
jectively to estimate the relative potential of new species to become established should 
they be introduced to an area of concern (Worner et al. 2013). New geospatial data 
standards allow synthesis of diverse geographical data to improve pest detections in the 
field (Rafoss et al. 2013). New statistical treatments of survey data evaluate biosecurity 
strategies more rigorously, particularly when detection surveys fail to find a targeted 
pest.

Even under the best of circumstances, pest risk maps are often challenging to de-
velop and difficult to interpret correctly. Decision support systems are being developed 
to address these issues, ensuring that pest risk maps are fit for purpose and contribute 
fully to plant health biosecurity (Baker et al. 2012; Baker et al. 2013).

Pest risk and uncertainty. Uncertainty in risk estimates arises from a number of 
sources. If policymakers fail to consider uncertainty, they may make unwise decisions. 
Uncertainty can arise from a fundamental lack of knowledge of risk elements. This 
epistemic uncertainty can impact decisions such as which species to target during bi-
osecurity surveillance, or whether it is better to apply resources to preventative meas-
ures at the expense of surveillance. Another source of uncertainty is inherent variation 
in risk components. New analytical methods are being developed to provide formal 
quantitative treatments of parametric uncertainty (Makowski 2013) and to address the 
perceived risk aversion of some biosecurity decision-makers (Yemshanov et al. 2013). 
Initial investigations suggest that the incorporation of a policy maker’s risk perceptions 
adds credibility to pest risk maps, and narrows the set of geographical locations that 
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would need to be targeted by costly inspections and public outreach activities. Meth-
ods for representing the uncertainty in spatial invasion models were demonstrated us-
ing a case study involving human-mediated dispersal of invasive forest pests in camper-
transported firewood (Koch et al. 2013). This analysis was then extended to include 
consideration of the relative risk-aversion of decision makers who rely on risk model 
outputs for guidance.

Since its first meeting in 2007, the IPRMW has made significant advances in pest 
risk modelling and mapping methods. The meeting in Tromsø continued this tradi-
tion, with significant advances in economic model integration, a new understanding 
of the irreducible uncertainties in climate change forecasts and the desirability of an 
adaptive management framework for dealing with these uncertainties, as well as new 
methods for dealing with other forms of uncertainty. Clearly, more work needs to be 
done in the area of risk communication and the improvement of niche modelling 
methods to produce timely and reliable models.
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Abstract
The European and Mediterranean Plant Protection Organisation (EPPO) is an intergovernmental or-
ganization responsible for cooperation in plant protection in the European and Mediterranean region. It 
provides global distribution maps of pests, and intends to identify the areas at risk from new and emerging 
pests, in the framework of Pest Risk Analyses. EPPO has developed a decision-support scheme for Pest 
Risk Analysis (DSS) and a computer program (CAPRA) to assist pest risk analysts in running the decision-
support scheme. Dedicated rating guidance and a Climatic Suitability Risk Mapping Decision-Support 
Scheme have recently been developed to guide assessors in identifying the potential area of establishment 
of a pest. All these tools have been developed taking into account both pest risk science available and needs 
of policy makers. The use of these tools and of mapping software are undertaken within the framework of 
EPPO Pest Risk Analyses, as illustrated through the examples of Thaumatotibia leucotreta (Lepidoptera) 
and Apriona germari (Coleoptera).
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Introduction

What is EPPO and what are EPPO pest risk mapping needs?

The European and Mediterranean Plant Protection Organization (EPPO) is the regional 
plant protection organization (RPPO) for Europe under the International Plant Protection 
Convention (IPPC). EPPO works with National Plant Protection Organizations (NPPOs) 
which are national bodies responsible for plant health policy. EPPO recommendations and 
Pest Risk Analyses (PRAs) may be used as basis for European Union or national regulations.

Founded in 1951, EPPO has grown from 15 original members to today’s 50 mem-
ber countries, including nearly every country in the European and Mediterranean region.

EPPO’s objectives are to develop an international strategy against the introduction 
and spread of pests that damage cultivated and wild plants, in natural and agricultural 
ecosystems (including invasive alien plants); to encourage harmonization of phytosani-
tary regulations and all other areas of official plant protection action; to promote the 
use of modern, safe, and effective pest control methods; and to provide a documenta-
tion service on plant protection.

Such objectives are dealt with in part by providing regional maps on the distribu-
tion of pests, as well as by performing modelling to identify the probability of estab-
lishment of emerging pests in the EPPO region.

EPPO mapping: providing maps

EPPO maintains the Plant Quarantine data Retrieval system (PQR), which provides 
detailed information on the geographical distribution and host plants of quarantine 
pests and of pests of phytosanitary concern. For each pest, it is possible to obtain lists 
of host plants, commodities able to act as pathways in international trade, details of 
geographical distribution with maps, and pictures of the pest at different stages as 
well as of symptoms of the pest. Conversely, it is also possible to query the database 
to obtain specific lists of pests, by stipulating the host species, the commodity, and 
the countries of interest. PQR contains general nomenclatural and taxonomic details 
on pests and hosts. In recent years, the database has been extended to cover invasive 
alien plants, including those having environmental impacts. All EPPO activities and 
recommendations on invasive alien plants can be consulted on its dedicated webpages 
(see http://www.eppo.int/INVASIVE_PLANTS/ias_plants.htm). PQR is used by risk 
assessors to obtain accurate information on the distribution of pests. Inspectors also 
make use of PQR to select pests to look for in different consignments according to 
their origins. The new PQR version can be downloaded free of charge from the EPPO 
website and includes world maps (see http://www.eppo.int/DATABASES/pqr/pqr.
htm?utm_source=www.eppo.org&utm_medium=int_redirect).

These world maps display the known distribution of pests covered by the EPPO 
framework (pests recommended for regulation, quarantine pests and pests in the EPPO 
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alert list). Representing such information at such a large scale is not a trivial task as 
national records, sub-national records and the fact that a species is transient need to be 
shown on the map. The distribution records are represented as in the map displayed 
in Figure 1 for Phytophthora ramorum. Countries where the species is recorded are 
represented in yellow, to which is added a red circle when the record is provided at the 
national scale, a red cross when the record is provided at the sub-national level, and a 
red triangle when the species is transient. Maps are dynamic and updated when new 
data are available. References are provided to support distribution records.

In addition to mapping the global distribution of pests, EPPO models the poten-
tial distribution of pests when performing pest risk analyses.

EPPO modelling: performing pest risk analyses

EPPO Expert Working Groups on PRA

One of EPPO’s main priorities is to prevent the introduction of dangerous pests (bac-
teria, fungi, insects, plants, viruses, etc.) from other parts of the world, and to limit 
their spread within the region should they be introduced. In recent years, trade net-
works have expanded and diversified, increasing the risks of introducing pests to new 

Figure 1. Global distribution of Phytophthora ramorum as shown by the EPPO Plant Quarantine Data 
Retrieval System.
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geographical areas. Measures adopted by countries to protect their territories from 
these introductions should be technically justified and an International Standard for 
Phytosanitary Measures (ISPM) on Pest Risk Analysis (PRA) (ISPM 11) has been de-
veloped by the IPPC. Since the 1990s, developments have taken place within EPPO. A 
Panel on PRA development has been created. EPPO has developed a decision-support 
scheme for Pest Risk Analysis (EPPO 2011) and a computer program (CAPRA) to as-
sist pest risk analysts in running the decision-support scheme. Expert Working Groups 
(EWGs) are now being convened to conduct PRAs on specific pests.

In order to share costs and workload and to provide technical justification for the 
regulation of certain pests, EPPO conducts PRAs for the region. Since September 
2005, the EPPO PRAs have been produced by dedicated Expert Working Groups for 
PRA. Approximately five pests (including one invasive alien plant) are evaluated by 
expert working groups every year. The composition of the Expert Working Groups 
includes experts on the pest, on the crop/habitat of concern, in socio-economics, on 
running the EPPO PRA scheme and on tools to help assess the potential distribution 
of the pest (e.g. geographical information systems (GIS) and CLIMEX (Sutherst et al. 
2007)) and perform risk mapping. Experts are invited by EPPO to the EPPO Head-
quarters in Paris for four days to conduct the Pest Risk Analysis. The PRA is based 
on the relevant bibliography and a draft PRA which is prepared and circulated to the 
experts beforehand by the EPPO Secretariat.

EPPO as an interface between pest risk science and policy

EPPO stands at the interface between pest risk science and policy. EPPO’s procedures 
for the development and approval of standards and recommendations involve both 
risk assessors and risk managers at various steps of the process. This process facilitates 
communication between the two groups. This is illustrated in the way EPPO PRAs 
are performed and approved. After the scientists in the Expert Working Group have 
drafted the PRA, the document is reviewed by core members (experts nominated by 
EPPO countries’ plant protection organizations to review the PRA produced) to en-
sure the consistency in the use of the EPPO decision-support scheme for PRA. Once 
this review is done, the PRA is presented to the EPPO Panel on Phytosanitary Meas-
ures (composed of experts with a management background). This Panel reviews the 
PRA focusing on risk management options. During both reviews, the Expert Working 
Group is consulted to answer questions arising from the PRA. A report of the PRA 
is then produced and presented to the Working Party on Phytosanitary Regulation 
(composed of representatives of NPPOs, but not heads, see below) which makes pro-
posals to the EPPO Council (composed of heads of NPPOs) that the pest should be 
recommended for regulation (or not) and subsequently added to the lists of species 
recommended for regulation as quarantine pests.

EPPO also collects information from experts during its workshops and confer-
ences. Such data are then used within EPPO Panels to develop standards (e.g. national 
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regulatory control systems), which are then reviewed and validated by risk managers 
and decision makers with the same groups as already mentioned above, i.e. the Panel 
on Phytosanitary Measures, Working Party and Council. EPPO’s role as an interface 
between science and policy was particularly clear when taking part in the PRATIQUE 
EU Research project to improve the EPPO Decision-Support Scheme. EPPO also 
ensures that the exchange of information is bidirectional. Thus, in the framework of 
PRATIQUE, a survey was conducted to seek the feedback of decision makers on Pest 
Risk Analysis in the EU Plant Health Standing Committee (e.g. on the usefulness of 
ratings, the decision makers’ perceptions of impacts, how to take time into account, 
how they would like climate change to be integrated in PRA, etc.). The outcomes of 
this survey were communicated to researchers so these could be taken into account 
when proposing new pest risk analysis methods.

The Decision-Support Scheme for climatic suitability risk mapping

Since 2011, the EPPO PRA scheme has been improved by integrating the outcomes 
of the European Research Project PRATIQUE (Enhancements of Pest Risk Analysis 
Techniques) which ran from 2008 to 2011 (Baker 2012). The improved methods in-
cluded the assessment of economic, environmental and social impacts; summarizing 
risk using effective, harmonized and consistent techniques that take account of uncer-
tainty; mapping endangered areas, pathway risk analysis and systems approaches; and 
guiding actions during emergencies caused by outbreaks of harmful pests.

The new version of the EPPO Decision-Support Scheme (DSS) is freely available, 
including its computerized version named CAPRA (see Griessinger et al. 2012 for a 
full description) that can be downloaded from the EPPO website (http://capra.eppo.
org/). Questions and guidance related to mapping the area at highest risk and the en-
dangered area have been included in the EPPO DSS as outlined by Eyre et al. (2012) 
and Baker et al. (2012a).

When assessing the probability of establishment of a pest, the assessor is requested 
to consider whether factors such as (i) host plants and suitable habitats, (ii) alternate 
hosts and suitable species, (iii) climatic suitability, (iv) competition and natural en-
emies, (v) the managed environment and (vi) protected cultivation are likely to have an 
influence on the limits of the area of potential establishment. Only the relevant factors 
are then considered to assess the limits and suitability of the endangered area.

For all these factors, guidance has been developed, and the relevant databases are 
listed in the CAPRA Datasets.

Emphasis has been given to assessing the climatic suitability of the environment 
in the PRA area. Rating guidance for climatic suitability is provided and links to maps 
useful in identifying the climates where the pest is present for comparison with the area 
under assessment are given. These include the CABI Crop Protection Compendium 
Pest Distribution and Climate Maps (http://www.cabi.org/cpc/), the Köppen-Geiger 
climate classification (Kottek et al. 2006) updated by Kriticos et al. (2012), the World 
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Hardiness Zones updated by Magarey et al. (2008) and the Global Maps of Tempera-
ture Accumulation (Degree Days) based on 10°C (Baker 2002).

In addition, a Climatic Suitability Risk Mapping Decision-Support Scheme (Eyre 
et al. 2012) has also been developed. It is intended for use by risk assessors who have 
already undertaken a qualitative assessment of the suitability of the climate for pest 
establishment. This DSS consists of a series of questions in five stages for which guid-
ance and examples are provided.

Stage 1: ‘Is it appropriate to map climatic suitability?’
Stage 1 is designed to ensure that risk assessors carefully consider whether it is appro-
priate to devote time and resources to mapping climatic suitability when the assess-
ment is already clear-cut or the information available is likely to produce results that 
are difficult to interpret and are therefore unhelpful to the assessment of pest risk.

Stage 2: ‘What type of organism is being assessed and what are the key climatic factors 
affecting distribution?’

Stage 3: ‘How much reliable information is available on the key climatic factors affect-
ing distribution?’

Stage 4: ‘What category of location data is available?’
Stages 2–4 are used to review the information available on a pest’s climatic re-
sponses and its distribution.

Stage 5: ‘Based on the type of organism, the information available on its climatic 
responses and the category of location data, how well is each climatic mapping 
method likely to perform?’
Stage 5 outlines the implications of using each method based on the information 
assembled in stages 2–4.

Examples of how potential climatic suitability is modelled in the framework of 
EPPO PRAs

The new developments described above concerning the guidance to map the potential 
endangered area of a species were integrated into the EPPO DSS in 2011. The way the 
potential climatic suitability range has been assessed since these new developments is 
illustrated through two examples: Thaumatotibia leucotreta (Lepidoptera) and Apriona 
germari (Coleoptera).

Study of the area endangered in the EPPO region by Thaumatotibia leucotreta 
(Lepidoptera)

Basic elements on Thaumatotibia leucotreta
Thaumatotibia leucotreta is a polyphagous pest and has been recorded on many hosts 
present in the EPPO region. Significant hosts include citrus species, cotton and maize. 
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Damage is caused by larvae feeding in fruits, maize ears or cotton bolls. On citrus, the 
degree of damage is highly variable, but can reach up to 90%. The species is native and 
widespread in sub-Saharan Africa and also occurs on islands in the Atlantic and Indian 
Oceans (Madagascar, St. Helena, Cape Verde, Mauritius and Reunion). In the EPPO 
region, the species is only recorded in Israel.

Thaumatotibia leucotreta has 2–10 generations annually (Daiber 1980, Couilloud 
1994, Begemann and Schoeman 1999). The number of generations is determined by 
several factors including temperature, food availability/quality, photoperiod, humid-
ity, latitude and the effect of predators and diseases. In South Africa, during the sum-
mer, it can complete a generation in 45 days, while during the winter, development 
slows, although there is no actual diapause, and a generation takes about 100 days. In 
areas with a prolonged dry season, irrigation allows populations to build up to levels 
which can cause damage. For example, Thaumatotibia leucotreta was uncommon in 
Nigeria but became a major pest within 10 years of cotton irrigation being introduced 
into Nigeria in the 1960s (Glas 1991).

All hosts are widely grown over the EPPO region, and hosts are therefore not a 
limiting factor to the establishment of the species. Mapping hosts is therefore insuf-
ficient. Except for climate, no other abiotic factors are likely to have an influence 
on the limits of the endangered area and were not considered further (see EPPO 
Unpublished a).

Assessment of the climatic suitability of the EPPO region for T. leucotreta
For this assessment, it was decided to undertake a more detailed investigation than a 
visual comparison of global climate zones (i.e. the Köppen-Geiger climate classifica-
tion, the World Hardiness Zones) to attempt to map the area of climatic suitability. 
The climatic suitability DSS (Eyre et al. 2012) was implemented.

It showed that, although T. leucotreta is present in the coastal plain of Israel, 
further investigation is needed to identify other areas that are climatically suitable 
in the EPPO region. T. leucotreta’s presence in the coastal plain of Israel indicates 
that some parts of the EPPO region are highly suitable climatically. The larval stage 
is protected within the fruit and the pupal stage may be in the soil but climate will 
still play a role in influencing survival. The species distribution is well known in 
sub-Saharan Africa. However, in the south-west of South Africa (Western Cape) the 
species is not considered to be native, there are only a few location records, and the 
southernmost limits to its distribution are set by the Indian and Atlantic Oceans. In 
addition, for year-round survival, the species needs fruits to be continuously avail-
able (although the species is polyphagous and can be found on alternate hosts such 
as nuts in the Cape).

Although the climatic suitability DSS indicated that the CLIMEX ‘Compare loca-
tions’ model (that predicts a species’ potential distribution based on known climatic 
responses and its current known distribution) would have been an appropriate task to 
undertake, this model was not run due to lack of time and because too little is known 
about the factors influencing winter survival. In addition, the distribution in South 
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Africa is too strongly influenced by the presence of the sea and the requirement for a 
continuous food (fruit) supply to make it easy to infer the areas that are at the climatic 
limits of its distribution.

As a consequence, a simple rule based on diurnal temperatures (based on the dif-
ference between weekly maxima and minima) was adopted although it is recognised 
that this is based on very few locations (though these are considered to include the 
extremes in South Africa). Moreover, since there is uncertainty about the character-
istics of the coldest winter that T. leucotreta can survive, this rule may identify only a 
minimum area of potential establishment when extrapolated to the EPPO region.

The maximum and minimum temperatures in South Africa and Israel (range 
limit of the species) were compared using the 1961-90 mean monthly minimum 
and maximum temperature interpolated to 10 minutes of latitude and longitude 
(New et al. 2002) and the similar Climond database (which contains global high 
resolution historical and future scenario climate surfaces for bioclimatic modelling, 
see www.climond.org) loaded into CLIMEX (Kriticos et al. 2012). It was assumed 
that the capacity to survive cold stresses during the winter is the key climatic fac-
tor influencing establishment of the species. The following rule fitted the differ-
ent locations in South Africa: Tmin >= 1°C and Tmax >= 18°C, or Tmin >= 3°C 

Figure 2. Non-desert areas of the EPPO region that are climatically suitable for T. leucotreta. This map is 
based on the relationship between maximum and minimum temperatures in the coldest month (July for 
the southern hemisphere and January for the northern hemisphere) based on: Tmin >= 1°C and Tmax >= 
18°C, or Tmin >= 3°C and Tmax >= 15°C.
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and Tmax >= 15°C. This rule was therefore extrapolated to the EPPO region, and 
the desert regions which are not suitable for the species to survive were removed. 
As represented in Figure 2, the following countries were considered suitable for 
T. leucotreta to establish: Algeria, Cyprus, Israel, Italy, Jordan, Malta, Morocco, 
Portugal, Spain and Tunisia. An analysis of more recent meteorological data from 
southern Greece, e.g. Crete, showed that conditions are also suitable for establish-
ment in this country.

The potential for transient populations to develop during summer was explored. 
As shown in Figure 3, this analysis found that one generation (assuming eggs are laid 
early in the summer) is possible as far north as the Baltic coast of Sweden, Latvia and 
central England. In southern coastal Mediterranean climates, up to seven generations 
may be possible. In key citrus growing areas such as Valencia (Spain), five generations 
may be possible. In the Canary Islands and the Azores (not pictured in Figure 3), three 
to six generations are possible.

The tools provided by the EPPO DSS for assessing and mapping climatic suit-
ability, simplified appropriately for the analysis (Baker et al. 2012b, 2013), allowed a 
complex and thorough analysis for the area where the species could establish as well as 
where transient populations could be present. All details of this analysis are presented 
in the Pest Risk Analysis for Thaumatotibia leucotreta (EPPO 2012a).

Figure 3. The number of generations for T. leucotreta possible in the EPPO region. This map is based on a 
minimum development threshold of 12°C and the number of degree days required for each generation of 433.
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Study of the endangered area in the EPPO region of Apriona germari (Coleoptera)

Basic elements on Apriona germari
Apriona germari is an important pest of broadleaved trees. Seventy plant species of 
hosts are reported (from Betulaceae, Cornaceae, Ericaceae, Euphorbiaceae, Fabaceae, 
Fagaceae, Moraceae, Rosaceae, Salicaceae, Ulmaceae and other families). In its native 
area, this species causes significant economic damage (Huang et al. 1996). Many of 
its hosts are important commercial, ornamental or forest trees in the EPPO region. 
The life cycle of the species generally lasts one year in warm climates (tropical parts 
of China) and two to three years in cooler areas. The main damage associated with A. 
germani is caused by the larvae, which bore into the wood soon after hatching, creating 
long tunnels. This affects the growth of the trees and decreases the quantity and quality 
of the timber and the longevity of the trees (Shui et al. 2009; Li 1996).

A. germani is distributed in a large number of Asian countries (including Cambo-
dia, China, India, Korea, Laos and Thailand). Although the species is believed to have 
originated in Asia, its exact native range is unknown. A. germari has been intercepted by 
countries in the EPPO region and in the USA on a number of occasions, and in particu-
lar in the Netherlands in 2008 and 2009, which triggered the production of a Dutch 
PRA (Ibáñez Justicia et al. 2010). The species is still absent from the EPPO region.

The presence of hosts, the climate and the managed environment are factors which 
affect the extent of the area endangered by A. germari in the EPPO region. As large 
numbers of host species are of interest, global distribution maps of the main hosts, 
Ficus carica, Malus domestica and Pyrus spp., have been consulted and included in the 
PRA adapted from Monfreda et al. (2008). Maps of Populus nigra, Populus tremula and 
Pyrus pyraster have been consulted and included in the PRA from the EUFORGEN 
programme(http://www.euforgen.org/distribution_maps.html). It was concluded that 
hosts are not a limiting factor for establishment, but that the Mediterranean area may 
be most suitable as host plants are more widespread.

Assessment of the climatic suitability of the EPPO region for A. germari
To evaluate the climatic suitability of the EPPO region, the assessment was strongly based 
on the existing Dutch CLIMEX ‘Compare Locations’ model (Ibáñez Justicia et al. 2010). 
Some data on development times were available in Yoon and Mah (1999). As there is 
a lack of data on the biological characteristics of the species, developmental tempera-
ture thresholds were extrapolated from available data for Apriona japonica (Kitajima et al. 
1997). The Dutch PRA modelled the potential distribution of A. germani based on its dis-
tribution in China and two scenarios for the biology of the species relevant to the climates 
of the EPPO region: a 3 year life-cycle and a 2 year life-cycle. As shown in Figure 4 which 
shows the results for a 3 year life-cycle (which represents the scenario that will lead to the 
largest area of potential establishment), this analysis found that the following countries 
of the EPPO Mediterranean area are at risk: Albania, Algeria, Bulgaria, Croatia, Cyprus, 
France, Greece, Israel, Italy, Jordan, Malta, Morocco, Portugal, Spain, Tunisia and Turkey.

In addition, maps of temperature accumulation in degree days have been com-
pared for Asia and Europe and are shown in Figure 5.
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Figure 4. Potential distribution of Apriona germari in Europe based on a CLIMEX model with the 
hypothesis of a 3 year life cycle (1295 DD/year). The Ecoclimatic index (EI) indicates the climatic suit-
ability for establishment. Crosses indicate unsuitable locations (EI=0). Green dots indicate the degree of 
climate suitability. The minimum threshold temperature for development in all models was 12 °C, based 
on Ibáñez et al. (2010).

Figure 5. European Map of Temperature Accumulation (Degree Days). This map is based on a mini-
mum threshold temperature for development of 10 °C, using 1961–90 monthly average maximum and 
minimum temperatures taken from the 10 minute latitude and longitude Climatic Research Unit data-
base (New et al. 2002).



Sarah Brunel et al.  /  NeoBiota 18: 9–23 (2013)20

As for T. leucotreta, careful attention had been given to the assessment of the area 
of potential establishment by Apriona germari. Although hosts and climatic maps were 
not superimposed, the available maps have been gathered. All details of this analysis 
are presented in the Pest Risk Analysis for Apriona germari (EPPO Unpublished b).

Conclusions and further directions

EPPO, as a regional plant protection organization, plays a major role in PRA and 
stands at the forefront of practical application in this field by integrating a detailed 
climatic mapping DSS in its PRA processes. The maps of pest risk analyses are used to 
support recommendations to member countries concerning the pests and phytosani-
tary measures that can be added to their regulations.

Mapping and modelling nevertheless remain very difficult exercises, limited by 
available expertise, time and data related to the species being assessed. It is thus essen-
tial for an assessor to be trained and to regularly perform climate studies. EPPO organi-
ses training courses to risk assessors to increase their modelling expertise in the EPPO 
region. Training courses have therefore been organized on CLIMEX in Spain and in 
France in 2008 and 2010 respectively. As CLIMEX demands a relatively high level of 
expertise, ‘Instructions for the Use and Interpretation of CLIMEX’ were develo ped by 
PRATIQUE (Baker et al. 2011). It is also to be noted that although the two examples 
presented here used the software CLIMEX, it is also possible to use other models such 
as MAXENT or OPENMODELLER in the EPPO DSS.

EPPO Expert Working Groups for PRA take advantage of models that have al-
ready been performed on the pest being assessed. In the case of Apriona germani, the 
EPPO PRA was built on the Dutch PRA CLIMEX model. This highlights the need for 
existing models on pests to be shared and circulated so as to combine and not duplicate 
efforts. The development of a database centralizing existing publications and PRAs on 
pest climatic models would be of great relevance and use.

Furthermore, modelling is a highly technical task. While modellers may under-
stand the limits of models and of the maps they produce, risk managers may interpret 
the maps differently and may get a false sense of certainty. Uncertainty is assessed for 
each question in the EPPO PRA scheme, including climatic suitability, and given a 
low, medium or high score, but no straightforward method for representing uncer-
tainty in maps has been identified. Climatic requirements are very often mentioned as 
a key component of uncertainty in PRAs. This emphasizes the importance of consider-
ing the level of understanding of maps by readers and the need for further enhance-
ments of risk communication.

In addition to the modelling of pest distributions in PRA, other sectors may lead 
to future developments in the field of mapping. Citizen science for the surveillance and 
reporting of pests and invasive alien species is gaining increased attention. At the Eu-
ropean scale, the European Environment Agency intends to adapt the ‘Eye on Earth’ 
initiative to invasive alien species (http://www.eyeonearth.org/en-us/Pages/Home.
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aspx). Citizens would then be invited to provide data on the presence of particular 
invasive alien species which are already present in Europe and are sufficiently conspicu-
ous and easy to identify. National projects have also been implemented with success. 
In Belgium, the Walloon region launched a citizen survey of the invasive alien plant 
Heracleum mantegazzianum. H. mantegazzianum is the tallest Apiaceae in the world 
as it grows up to 3 m high. Data provided by citizens are then displayed on a Google 
map which can be zoomed (http://environnement.wallonie.be/berce/ ). Norway is also 
developing such a citizen project (Rafoss et al. 2013). In the United Kingdom, ‘Plant 
Tracker’, a project launched by the Environment Agency, the University of Bristol 
and the Centre for Ecology and Hydrology developed an iPhone application to track 
the locations of three invasive alien plants in the country: Fallopia japonica, Impatiens 
glandulifera and Hydrocotyle ranunculoides (http://planttracker.naturelocator.org/). All 
aggregated data are then displayed on a map at the scale of the United Kingdom. Such 
innovative initiatives and the mapping skills and software required need further devel-
opment by the International Pest Risk Mapping Workgroup as part of its roadmap for 
improving the pest risk mapping process (Venette et al. 2010).
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Abstract
Decision support systems (DSSs) for pest risk mapping are invaluable for guiding pest risk analysts seek-
ing to add maps to pest risk analyses (PRAs). Maps can help identify the area of potential establishment, 
the area at highest risk and the endangered area for alien plant pests. However, the production of detailed 
pest risk maps may require considerable time and resources and it is important to match the methods em-
ployed to the priority, time and detail required. In this paper, we apply PRATIQUE DSSs to Phytophthora 
austrocedrae, a pathogen of the Cupressaceae, Thaumetopoea pityocampa, the pine processionary moth, 
Drosophila suzukii, spotted wing Drosophila, and Thaumatotibia leucotreta, the false codling moth. We 
demonstrate that complex pest risk maps are not always a high priority and suggest that simple methods 
may be used to determine the geographic variation in relative risks posed by invasive alien species within 
an area of concern.
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Introduction

Pest risk analysis (PRA) provides the context for this paper. PRA is fundamental to 
plant biosecurity because it is primarily undertaken to assess the risks posed by plant 
pests that are not officially established in an area and to identify appropriate phytosani-
tary measures to prevent entry and establishment if the risk is unacceptable. Pest risk 
analyses that may affect international trade should follow international standards for 
phytosanitary measures (especially ISPM 11; FAO 2004) because they have been for-
mulated by the International Plant Protection Convention and are recognised by the 
World Trade Organization. Although the international standards set out clearly what 
elements need to be assessed in order to evaluate the likelihood of entry and establish-
ment together with the magnitude of spread and impacts, they do not provide clear 
guidance on the methods to be used in completing the PRA. As a result, a number 
of schemes have been created to assist pest risk analysts with the production of PRAs 
based on expert judgement and documented evidence. For example, the European and 
Mediterranean Plant Protection Organization (EPPO) provides a well known scheme 
to guide the production of PRAs through a series of questions that require answers in 
the form of a risk rating, an uncertainty score, and a written justification (EPPO 2011).

The EPPO PRA scheme has recently been enhanced by PRATIQUE, an EU fund-
ed research project (Baker et al. 2009), by providing several guidance documents and 
tools, for example, guidance for rating the level of risk (Schrader et al. 2012) and a 
computerised procedure for completing the PRA (Griessinger et al. 2012). Additional 
modules are available to help when it is important for pest risk analysts to quantify risk 
spatially or at least provide greater detail for particular components of the PRA. These 
include a decision support system (DSS) for mapping climatic suitability, summarised 
in Table 1 (Eyre et al. 2012) and a DSS for mapping endangered areas (Baker et al. 
2012), the topic of this paper.

Maps provide an important method for visualising, summarising and communi-
cating the risk posed by a pest in the PRA area that can be an officially defined country, 
part of a country or all or parts of several countries (FAO 2012). Within the PRA area, 
three different risk areas can be identified by pest risk analysts. These are: (i) the area 
of potential establishment, where it is likely that there is “perpetuation, for the foresee-
able future, of a pest within an area after entry” (FAO 2012); (ii) the endangered area, 
where “ecological factors favour the establishment of a pest whose presence in the area 
will result in economically important loss” (FAO 2012) and (iii) the area at highest 
risk, where impacts are assessed as likely to be greatest, e.g. because particularly valu-
able or vulnerable hosts are growing in areas where abiotic and biotic factors are most 
suitable for the pest. Economic loss in the endangered area definition is considered to 
include environmental damage (FAO 2012). Although areas at risk can be described 
just by listing the geographical regions that are included, maps can convey a clearer 
message. Maps can also be deployed to help target eradication and containment ac-
tions in the event of an outbreak and set up an effective surveillance programme.
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Although many PRAs already contain maps depicting components of pest risk that 
have been created without formal models and geographical information systems (GIS), 
most profit from such tools. Frequently, the PRA just includes a map of climatic suit-
ability. Climatic suitability needs to be combined with factors such as host or habitat 
distribution firstly to obtain the area of potential establishment and secondly with im-
pact related components, such as host or habitat vulnerability and value, to map the 
areas at highest risk. NAPPFAST provides a suite of interconnected models that can be 
used individually or collectively with tailored climatic data to map pest risk for North 
America (Magarey et al. 2007, 2011). Outputs from the PRATIQUE DSS for map-
ping climatic suitability (Eyre et al. 2012) and the area of potential establishment and 
highest risk (Baker et al. 2012) can be linked to models of spread (Kehlenbeck et al. 
2012) and economic impact (Soliman et al. 2012) to map the dynamics of invasion and 
impact scenarios that illustrate possible endangered areas. The DSSs are independent of 
the models used and the area of concern, although the examples are provided for all or 
parts of Europe.

The PRATIQUE DSS described by Baker et al. (2012) focuses on identifying the 
area of potential establishment and the area at highest risk rather than endangered 
areas. This is because a map of the endangered area should show only where economi-
cally important loss is predicted to occur and this is very difficult given the uncertainty 
surrounding all pest invasions together with the need to predict pest population densi-
ties and relate these to poorly defined economic injury levels (Pedigo et al. 1986) while 
taking into account the effectiveness of pest management practices. Since the areas at 
highest risk from economic, environmental or social impacts can be mapped without 
modelling population densities in relation to economic thresholds it is therefore more 
practical to follow this approach not only to provide evidence supporting the PRA 
but also to help target actions following outbreaks and to design effective surveillance 
programmes and contingency plans.

Table 1. Summary of the PRATIQUE climatic mapping decision support scheme.

Stage Tasks Detail

1 Decide whether mapping climatic suitability 
is appropriate

Based on available data for mapping and 
importance of the pest

2 Gather and interpret key climatic factors 
affecting distribution

Determine which data sets are important for 
the pest

3
Determine the quality and quantity of 
information that is available on the key 
climatic factors

Provide a rating based on availability and 
reliability

4 Categorise location data Diagrams are provided to help the assessor to 
choose from 13 categories of location data

5 Evaluate pros and cons of different climatic 
mapping methods

Use tables to show possible drawbacks of 
the different methods available based on the 
ecology of the pest and the data available
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Methods for combining maps of climatic suitability, host distribution, and host 
value with a simple mapping program (ABARES 2012) are summarised by Baker et al. 
(2012). The DSS has an introduction and four further stages, see Table 2.

In stage 1, the key factors that influence the endangered area are identified by us-
ing the biological, ecological and agronomic information in the pest risk assessment, 
the geographic data sets are assembled and, where appropriate, maps of the key factors 
are produced listing any significant assumptions. In stage 2, methods for combining 
these maps to identify the area of potential establishment and the area at highest risk 
from pest impacts are described, documenting any assumptions and combination rules 
utilised. When possible and appropriate, stage 3 can then be followed to show whether 
economic loss will occur in the area at highest risk and to identify the endangered area. 
As required, stage 4, provides techniques for producing a dynamic picture of the inva-
sion process using a suite of spread models. Baker et al. (2012) illustrate the function-
ing of the DSS with two pests: the maize insect pest, Diabrotica virgifera virgifera, and 
the aquatic invasive alien plant, Eichhornia crassipes. For both these species, extensive 
information and maps are available on, e.g. climatic responses and host/habitat dis-
tribution, and there was ample time and resources for the analyses. A comprehensive 
description of the DSS is available in the project report (Baker et al. 2011).

In this paper, we apply the area mapping DSS to four case studies to determine the 
need for pest risk maps. We propose simple, quick analyses (i.e., shortcuts) to answer 
questions posed by the DSS and suggest these shortcuts could be particularly useful when 
risk maps are needed urgently, when an incursion threat seems imminent, or an outbreak 
has been detected. In addition, many plant health services have limited staff with skills 
in pest risk mapping and modelling and are faced with budget reductions. If used ap-
propriately, the DSS can guide the production of exploratory pest risk maps created with 
relatively little time and resources. These exploratory analyses can still be helpful and, at 
minimum, can justify the need for a more detailed analysis and additional funding.

Table 2. Summary of the PRATIQUE endangered areas decision support scheme.

Stage Tasks Detail

Introduction Decide whether mapping the endangered 
areas is going to be possible and useful

Based on the value of additional information 
that this process is likely to lead to and the 
data available

1 Confirm the factors that influence the 
endangered area

Describe the area of potential establishment, 
gather all appropriate data including maps 
that can influence the endangered area. Put 
maps into the same resolution and enter into 
the mapping software MCAS

2
Combine maps to determine areas of 
potential establishment and areas of 
highest risk

Guidance is given on how to combine the 
different data sets to obtain the relevant maps

3 Combine maps to determine 
endangered areas

4 Optional module to evaluate rate of 
spread

Guidance is provided on the application of 
spread models
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The rationale for shortcuts

It is important to tailor efforts according to the priority for which pest risk mapping is need-
ed to provide support for the PRA. Although strict rules cannot be set because maps provide 
other important functions, we have attempted to identify situations of high and low priority.

High priority situations

In the main, pest risk maps are more useful when the potential for invasive alien species 
to establish and thrive in the PRA area is highly uncertain. Thus, the highest priorities 
for pest risk mapping are generally for those species that also require the most attention 
to detail, e.g. because impacts could be high but the likelihood is uncertain. This could 
occur when the likelihood of establishment is considered to be uncertain but, if estab-
lishment were to occur, the magnitude of impact is expected to be high because the 
measures available for eradication and containment would be limited and expensive.

Low priority situations

Risk maps can be considered to be a low priority without detailed analysis when it is 
already clear that:

 widespread establishment is likely, e.g. because the pest is common in neigh-
bouring areas with similar climates and hosts or because pest outbreaks have 
already occurred within the PRA area demonstrating the potential for establish-
ment and indicating that harmful impacts are likely to be uniformly distributed.

 the area of potential establishment can be identified without risk mapping, e.g. 
because establishment is only possible on hosts with a well defined and mapped 
distribution in discrete habitats or crop production systems, such as protected 
cultivation, and harmful impacts are likely to be uniformly distributed.

In addition to taking these priorities into account when deciding whether or not to 
map risk, it is also important to identify and apply any shorter or simpler methods of 
mapping when there is little time (for example, because an outbreak has occurred and 
emergency action is required in an area where the pest is not established), resources are 
limited, (for example, because of budgetary cuts or a lack of staff experienced in risk map-
ping) or the priority for risk mapping is relatively low. We therefore indicate where short 
cuts may be possible and discuss the implications for the PRATIQUE area mapping DSS.

To show how these priorities and the amount of detailed analysis required can 
match up when undertaking PRAs, four examples based on recent work by EPPO and 
by the Food and Environment Research Agency (FERA) and Forest Research in the 
UK representing a range of risk and uncertainty are explored in this paper.
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Case studies

Phytophthora austrocedrae (Oomycetes: Pythiaceae) in the United Kingdom

This pathogen of Cupressaceae originates from Argentina and Chile and has recently been 
found in the UK on juniper (Juniper communis), Lawson cypress (Chamaecyparis lawso‑
niana) and Nootka cypress (Chamaecyparis nootkatensis) (Forestry Commission 2013). It 
is established outdoors, particularly in north-west England and western Scotland. Forest 
Research (2012) undertook a rapid PRA on P. austrocedrae for consultation to assess its 
risk to the UK. It concluded that the climate is suitable for establishment throughout the 
UK and that environmental impacts are potentially significant because of the importance 
of juniper for biodiversity (JNCC 2007). For this species there was no need to produce 
climatic suitability maps and so the climatic mapping DSS could be ignored.

Since the climate is suitable for establishment throughout the UK, the area of 
potential establishment can be considered to be equivalent to the distribution of J. 
communis in uncultivated areas and the ornamental Cupressaceae hosts in parks and 
gardens. Maps of the distribution of J. communis and its subspecies are available from 
the National Biodiversity Network (see Figure 1) and the Botanic Society of the Brit-
ish Isles (Lockton 2012). The endangered area for environmental impacts can be rep-
resented by mapping the 1,100 ha of juniper in areas of Special Scientific Interest 
(JNCC 2007). This pest can therefore be considered a low priority for pest risk map-
ping because pest outbreaks have already occurred in the UK demonstrating the high 
potential for establishment and indicating that harmful impacts are likely to occur 
wherever juniper grows.

Drosophila suzukii (Diptera: Drosophilidae) in Europe

This small fly lays its eggs in a wide variety of ripe and unripe soft skinned fruit and 
can cause significant damage (Lee et al. 2011). It originates from Eastern Asia and in 
2008 it was first found in several locations in Europe (Calabria et al. 2012) and North 
America (Hauser 2011). In 2010, EPPO conducted a PRA and concluded that this 
species can establish in a wide area of the EPPO region because its hosts are ubiquitous 
and only the coldest and most arid climatic zones are unsuitable for survival; economic 
impacts could occur wherever the pest can establish (EPPO 2011).

Although considerable efforts were made to find and map all the locations where D. 
suzukii had been recorded and to search the literature for any records of climatic respons-
es, these conclusions were based on a relatively simple analysis. D. suzukii can survive the 
long cold winters at its northern limits to its distribution in northern China through its 
association with human habitation. Since such severe winters occur very rarely in Europe 
and hosts are very widespread, the principal factor determining its northerly limits in 
Europe was considered to be the amount of degree days available for development and 
reproduction. A simple phenology model with a base temperature of 10°C and 250 
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degree days was therefore applied to the 1961-90 Climatic Research Unit monthly grid-
ded climatology at 30 minute latitude and longitude resolution (New et al. 2002) and 
mapped (see Figure 2). Only extreme northern and mountainous areas were found to be 
unsuitable. Elsewhere there are sufficient accumulated degree days for numerous genera-
tions to be completed in the summer. Since oviposition in unripe fruit allows pathogens 
to enter and causes a serious loss of quality, the presence of D. suzukii populations is 
likely to cause economic loss and the endangered area can be considered to be equiva-
lent to the area where host crops are grown in the area of potential establishment. This 
pest can therefore be considered a low priority for pest risk mapping in most of Europe 
because widespread establishment is very likely and pest outbreaks have already occurred 
demonstrating the high potential for establishment and indicating that harmful impacts 
are likely to be uniformly distributed. Therefore, on a European scale, the endangered 
area DSS is not relevant. However, more detailed mapping at the limits to its distribu-
tion in Scandinavia and at high altitude is of higher priority and would be justified.

Figure 1. Distribution of Juniperus communis in Great Britain and Ireland from the National Biodiver-
sity Network Gateway (NBN Gateway: data.nbn.org.uk) © Crown copyright and database rights 2011 
Ordnance Survey [100017955]
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Thaumatotibia leucotreta (Lepidoptera: Tortricidae) in Europe

This polyphagous fruit pest, the false codling moth, is native to sub-Saharan Africa 
and can be particularly damaging to a variety of fruits including oranges and peaches. 
As summarised by Brunel et al. (2013), EPPO undertook a limited climatic analy-
sis on this species as part of a detailed PRA. As with D. suzukii, substantial efforts 
were taken to obtain as many distribution records as possible and collect information 
on its climatic responses from the literature but climate suitability models, such as 
CLIMEX, were not employed. This was partly due to lack of time and partly because 
its presence in the Israeli coastal plain had already demonstrated its ability to estab-
lish in the EPPO region. However it was also because the factors influencing winter 
survival are poorly known and the distribution in South Africa is strongly influenced 
by non-climatic factors.

A simple rule based on the difference between maximum and minimum winter 
temperatures above a minimum threshold fitted both the limits to the distribution 
in South Africa and the area in Israel where it is established. The maps generated by 
applying this rule to global climatologies could therefore be used to define the area of 
potential establishment, especially because the hosts, e.g. Ricinus communis (castor oil 
plant), are widespread in southern Mediterranean coastal areas. Areas of highest risk 
occur where the crops of major economic importance, such as oranges, are grown 

Figure 2. The area (in green) where annual degree day accumulations above a base temperature of 10°C 
exceed 250 with the locations of Drosophila suzukii known in August 2010 (in red).
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in the area of potential establishment. This pest can therefore be considered a rela-
tively high priority for pest risk mapping in the EPPO Region. Outbreaks have already 
occurred in one area (Israel) demonstrating that establishment is possible, but more 
detailed mapping is required to explore the limits to its distribution in southern Eu-
rope. The mapping needs to take into account the magnitude of the potential impact 
together with the feasibility and expense of eradication and containment.

Thaumetopoea pityocampa (Lepidoptera: Thaumetopoeidae) in the United Kingdom

This pest, the pine processionary moth, defoliates Pinus species and the larval hairs 
can cause severe skin rashes and eye damage. Since it is widespread in the Mediterra-
nean area and is spreading northwards in France assisted by climate change (Robinet 
et al. 2011), FERA undertook a rapid PRA for consultation (FERA 2012a) for the 
UK. This PRA showed that, although establishment is unlikely, there is a high un-
certainty and a more detailed analysis is required because of the potential for severe 
impacts. This conclusion was justified by some exploratory analysis. Maps of the 
main Pinus hosts in the UK were obtained from the Botanic Society of the British 
Isles (BSBI 2012) and visually compared with maps of mean minimum and maxi-
mum winter temperatures and sunshine duration for 1971–2000 (UK Meteorologi-
cal Office 2012a). Coastal central southern England was found to have the highest 
diversity of host Pinus species in the UK and the warmest, sunniest winters. Survival 
at the northern edge of its range in France is related to nest temperatures (maxi-
mum daily temperature and solar radiation) which is correlated with mean mini-
mum winter temperatures (Robinet et al. 2007). FERA therefore (2012a) compared 
the mean minimum winter (October to March) temperatures over the last twenty 
years at one location in coastal central southern England (Hurn Airport, 50.7800°N, 
1.8425°W) with those in Orleans and Paris where the pest has established damaging 
pest populations (see Figure 3). The similarity in the winter minimum temperatures 
at Hurn Airport and Orleans suggests that parts of southern coastal England have 
sufficient warmth to sustain populations of PPM. Thus for a rapid comparison of the 
climatic conditions in locations where the pest found and the most southerly loca-
tions in England was able to demonstrate some risk. The host distribution provided 
an indication of the areas at highest risk. These simple methods were sufficient to 
demonstrate the need for further analysis without the use of either of the DSSs. For 
this pest the area of potential establishment is still very uncertain and further work is 
required to try and resolve the uncertainties concerning, for example whether there 
is sufficient solar radiation for survival in southern England. This pest can therefore 
be considered a high priority for pest risk mapping because the likelihood of estab-
lishment in even a small area of the UK where host crops are grown is considered 
to be very uncertain but, if establishment was to occur, the magnitude of impact is 
expected to be high.
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discussion

The risk maps used to support these PRAs were all created by using short cuts and none 
of them utilised all components of the PRATIQUE DSSs for climatic suitability analy-
sis (Eyre et al. 2012) and mapping areas at highest risk (Baker et al. 2012) although 
detailed investigations of the current distribution of the pest and its climate responses 
were generally carried out.

Based on the rationale for shortcuts described above, P. austrocedrae and P. pityo‑
campa can be considered to represent, respectively, low and high priorities for pest risk 
mapping. For P. austrocedrae, distribution maps of juniper for the whole country and 
for areas important for nature conservation were considered to be sufficient to show 
the area of potential establishment outside parks and gardens and the endangered area 
for environmental impacts, whereas even the potential for establishment of T. pityo‑
campa is highly uncertain. The risk mapping priorities for D. suzukii and T. leucotreta 
are intermediate. The area of potential establishment for both species was assessed with 
relatively simple methods based on climatic suitability analyses using, respectively, a 
simple phenology model and the difference between minimum and maximum winter 
temperatures with the distributions of the host crops primarily influencing the endan-
gered areas and areas of highest risk.

The extent to which limited methods are appropriate to map risk is debatable 
because PRAs can only be validated when invasions occur. However, by ensuring that 

Figure 3. Mean minimum winter (October - March) temperatures from 1991–2011 for one location 
in southern UK (Hurn Airport) (coloured in green) with Orleans (blue) and Paris (red) in France. Data 
were obtained from the UK Meterological Office (2012b) and from the Ensembles project (http://eca.
knmi.nl/dailydata/index.php).
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the literature has been searched comprehensively to uncover, for example, all that is 
known about a pest’s distribution, host range and climatic responses, greater reliance 
can be placed on the priority given and the methods used.

Short cuts and limited methods also generate greater uncertainty. Demonstrating 
uncertainty in maps remains a fundamental challenge (Venette et al. 2010) and so 
it is very important that pest risk analysts carefully document the uncertainties. For 
example, the D. suzukii PRA (EPPO 2011) noted that, although the 250 degree days 
above a base of 10°C used in Figure 2 is required for development from egg to adult, 
a simple division of the annual degree days to obtain a map of the number of genera-
tions possible in an area creates uncertainty because: (a) an additional period is usually 
required by insects before adults are ready to oviposit, (b) considerable individual 
variation can be expected with overlapping generations occurring and (c) the grid cells 
both summarise and interpolate climate measured at weather stations, many locations 
within each grid cell will have different temperature accumulations. In addition, al-
though the higher the degree day accumulation above 10°C, the greater the number 
of generations expected, the species cannot tolerate high temperatures if humidity is 
low and, in the southern Mediterranean areas, the species may survive only in irrigated 
crops. While such uncertainties influence the area at highest risk and the endangered 
area for D. suzukii they do not fundamentally change the overall risk. For T. pityo‑
campa, however, the uncertainties concerning winter solar radiation are so critical to 
the overwintering survival of PPM in southern England that the uncertainties do need 
further investigation.

Many other shortcuts are available in addition to the examples provided here. 
In fact the D. suzukii PRA also included a visual examination of the global Köppen-
Geiger climate zones (Kottek et al. 2006), hardiness zones (Magarey et al. 2008) and 
day-degree (Baker 2002) maps to help with the assessment. Regional maps of environ-
mental zones, e.g. for Europe (Metzger et al. 2005), may help because they provide 
greater resolution than global maps. Tools that match the climate at locations that 
would be novel to the pest with those in the area where the pest is present, irrespective 
of a pest’s known climatic responses, can also be very useful. CLIMEX (Sutherst et al. 
2007) provides an application for matching locations and regions that can exploit both 
weather station and gridded climatologies, e.g. CliMond (Kriticos et al. 2011).

Conclusions and further work

The PRATIQUE DSSs for mapping the suitability of the climate for pest risk analysis 
(Eyre et al. 2012) and mapping areas at highest risk (Baker et al. 2012) already pro-
vide advice and examples for (a) when to map and when not to map, (b) what climate 
suitability model to use, (c) where to find other relevant spatial data and (d) how to 
combine other relevant spatial data with climatic suitability to create maps of potential 
establishment. Some of the issues that require further work are: (i) the representation 
of uncertainty to pest risk managers, (ii) the incorporation of climate and land use 
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change in risk maps, (iii) linking maps of the area of highest risk with models of pest 
spread and impacts and (iv) exploring ways of mapping endangered areas. These chal-
lenges relate closely to the recommendations for improving pest risk maps identified 
by Venette et al. (2010).

This paper has focused on the additional challenges of identifying when pest risk 
mapping is a low and a high priority and relating this to an appropriate reduction or 
increase in the level of detail employed while ensuring that the uncertainties inherent 
in simplification are clearly demonstrated. We have shown that a number of approach-
es for simplifying the DSS and reducing the time taken to produce risk maps can be 
considered, e.g. (a) using previously published maps to help indicate risk, (b) deploy-
ing simpler models and (c) mapping key components for visual comparison without 
importing them all into a GIS, converting them to the same resolution and using GIS 
tools to highlight areas at high risk. However, the examples provided in this paper 
show that, to justify any shortcuts, it is always important to ensure that the literature 
is thoroughly searched for key information on, for example pest distribution, host/
habitat range and climatic responses. In addition, any maps that have been generated 
from simplified approaches should be clearly documented so that the reader knows 
why these methods have been used and understands the uncertainties. The priorities 
for further research should also be indicated.

The future priorities for pest risk mapping DSSs include further testing and en-
hancements to address the challenges articulated in the roadmap provided by Venette 
et al. (2010) not only to assist pest risk mappers but also to guide policy makers when 
interpreting the maps produced. The identification of the situations that are priori-
ties for detailed pest risk mapping with guidance on shortcuts relates closely to the 
increasing use of shorter PRA schemes that can be completed quickly, e.g. the Quick 
Scan PRA scheme of the Netherlands (Netherlands Plant Protection Service 2012), 
the Rapid PRA scheme of the UK (Fera 2012b) and the EPPO express PRA scheme 
(EPPO 2012).
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Introduction

Invasive species can have enormous economic and ecological impacts (Perrings et al. 
2000, Pimentel 2011, Simberloff et al. 2005, Simberloff 2013). If we can assess the 
invasion threat early in the invasion process, we are likely to have more success in 
controlling the species, and suffer less impact than if we cannot. In general, the rate of 
spread of an invasive species will influence practical issues around our ability to control 
its spread and thus its ultimate impact. Targeted research to address the early, ‘post-
entry’ stage of invasion is critical to inform management strategies and ultimately to 
improve biosecurity.

This article focuses on this ‘post-entry spread’ stage of the invasion process, specifi-
cally understanding dispersal processes and modelling the spread and establishment 
potential of a pest or pathogen once it has arrived into a region. We differentiate this 
from the population dynamics and dispersal of native species, as post-entry pest spread 
of non-native species has particular features that add to the modelling challenge. These 
include the requirement for rapid response, data paucity and high levels of uncertainty.

Whilst the majority of pest and pathogen entry today is largely due to anthropo-
genic pathways (Wilson et al. 2009), mainly from the transport of goods and com-
modities (Costello and McAusland 2003), once a pest has gained entry the mecha-
nisms of spread can be multiple and diverse. The rate of spread will depend on a range 
of factors not just relating to the species’ ecology but also relating to host distributions 
and to potential dispersal vectors; not only human but animal and environmental 
(such as wind or ocean currents). Ecological factors and landscape context may influ-
ence the pest/pathogen, vector and host, either facilitating or inhibiting the dispersal 
of the species. Likewise, the success of individual dispersal events may be strongly 
influenced by low probability extreme meteorological events, or by human-induced or 
other environmental factors.

When integrated with field-based research and surveillance, dispersal models can 
help inform pest and pathogen outbreak management about a range of processes, such 
as the rate of spread of a pest (Gilbert and Liebhold 2010), which can lead to better 
surveillance strategies (Cacho et al. 2010, Demon et al. 2011, Epanchin-Niell et al. 
2012), and more effective response strategies (Coutts et al. 2011). Models can also be 
used to inform policy-makers about the risks posed to target ecosystems (Rutherford et 
al. 1999), at both immediate and long-term time scales (Kriticos et al. 2003; 2013a). 
Similarly, integration of dispersal simulation models and economic models can help to 
inform the design of optimal management strategies (Bogich et al. 2008, Carrasco et 
al. 2009, Florec et al. 2013, Kriticos et al. 2013b). For example, models can be used to 
decide when and at what scale a management strategy should be implemented given the 
progression of an invasion, and to decide whether the costs will outweigh the benefits.

With such diversity of pathways, scales and complexity of dispersal processes for 
post-entry spread, and with such a wide range of possible applications, there is a par-
allel diversity of modelling methods. We aim to give an overview here to help guide 
modellers to select appropriate methods.
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Background

Models of pest and pathogen spread post-entry largely occupy one of two categories 
of model: analytical methods (Hastings 1996, Kot et al. 1996, Neubert and Caswell 
2000, Royama 1992) and mechanistic, process-based methods (Higgins and Richard-
son 1996, Jongejans et al. 2008). Analytical models have been used for many years to 
study dispersal in ecology, beginning with simple diffusion equations (Skellam 1951). 
An analytical model can be broadly defined as a deterministic mathematical expres-
sion. Such models seek to distil the complexity of a system or process into a single 
representation of its behaviour under given circumstances. They have the advantage 
that they tend to be more easily generalised than mechanistic models (Turchin 1998). 
They incorporate a range of techniques, in particular theoretical or empirical curve 
fitting models for dispersal kernels and other generalisations of the movement of 
organisms as a simplified physical process (e.g. travelling wave (Sharov and Lieb-
hold 1998), matrix models (Parker 2000) and diffusion (Kot et al. 1996)). Analytical 
models have varying data requirements, depending on whether they are developed as 
purely abstract theoretical models or if they are phenomenological statistical models 
that are empirically derived. In the latter case data availability often becomes a big is-
sue for modelling incursions (see following section). Such methods generally involve 
assumptions that include uniformity of the landscape and population, which mean 
they are simple to implement but can be highly abstract. Criticisms of these models 
are a lack of complexity and realism that can be key to studying processes such as 
long-distance dispersal and the influence of landscape heterogeneity. Moreover, long-
distance dispersal events are often caused by different mechanisms to short distance 
dispersal and are highly significant drivers of accelerated population spread (Liebhold 
and Tobin 2008).

To explore the long distance connectivity of populations, network models and 
metapopulation models have also been applied to invasion ecology in recent times 
(Chadès et al. 2011, Drake and Mandrak 2010, Facon and David 2006, Paini and 
Yemshanov 2012). Whilst these also have the advantage of simplifying complex pro-
cesses, equally they make their own assumptions about the uniformity and ‘patchiness’ 
of the landscape.

Mechanistic, process-based simulation models are a more recent development for 
modelling spread post-entry (Turchin 1998), enabled in part by the growing power of 
computing to support large, complex models. Such approaches to dispersal modelling 
align with ‘ballistic’ simulations or in physics termed ‘Lagrangian’ models – where 
individual pathways are traced as they move according to a set of stochastic or behav-
ioural rules (e.g. individuals influenced by wind trajectories). Such models tend to 
have greater flexibility across spatial scales, and therefore can more easily encompass 
both short and long distance dispersal events. Consequently, individual-based models 
(Grimm and Railsback 2005), cellular automata (Travis and Dytham 2002) and tra-
jectory models (Chapman et al. 2010, Nathan et al. 2005) have become part of the 
ecological modeller’s toolkit over the last few years, although there are relatively few 



Hazel R. Parry et al.  /  NeoBiota 18: 41–66 (2013)44

examples of the application of these methods to dispersal modelling for post-entry 
spread (e.g. Guichard et al. 2012, Kanarek et al. 2012).

It is also possible and can be advantageous for a dispersal model to contain both 
analytical and mechanistic components (e.g. Nathan et al. 2011). One example is 
WALD (Katul et al. 2005), which is used to estimate long distance dispersal kernels 
of wind-dispersed seeds and their escape probability from the plant canopy. A com-
putationally intensive trajectory model that incorporates the effects of canopy turbu-
lence was used to derive an expression for an analytical model, therefore retaining the 
mechanisms but giving the advantage of analytical simplicity (essentially an inverse 
Gaussian distribution). More broadly, bringing together the simplicity of an analyti-
cal, phenomenological method with mechanistic understanding of processes can be 
very powerful (e.g. Pitt et al. 2011).

Multiple dispersal vectors add extra layers of complexity (Buckley et al. 2006, Pitt 
et al. 2009). Many species have multiple dispersal pathways and these can be considered 
by the model(s), using an integrated multi-modelling method (Harwood et al. 2009).

In addition, species niche models can inform post-entry spread in multiple ways. 
Firstly, they can inform the total area that can potentially be invaded. This informa-
tion can define the spatial bounds of the spread modelling, i.e., the model ‘universe’, 
for both simulation and analytical spread models. Alternatively, a niche model can be 
used to differentiate between different components of a heterogeneous landscape over 
which a species may spread, and this can be used by spatially-explicit dynamic dispersal 
models (e.g., Pitt et al. 2011).

When considering how best to apply these models, understanding the ecology and 
landscape factors relevant to the population dynamic and dispersal of a pest or patho-
gen species is critical. Often, not enough consideration is given to an organism’s ecol-
ogy and behaviour prior to developing a dispersal model, where population dynamics 
models are commonly separated from dispersal simulation. However, biological pro-
cesses operating at different spatial and temporal scales are key drivers in the dispersal 
process, and ideally should be taken into account explicitly.

In selecting a model, there are also important characteristics to consider, such as the 
sensitivity of the model (the proportion of known spatio-temporal dispersal events mod-
elled correctly) versus the specificity of the model (the proportion of unoccupied sites that 
are modelled correctly) (Fielding and Bell 1997, Pitt et al. 2011). Where spread models 
combine highly specific model realisations to create a probability surface for occupancy, 
they inevitably become less specific through time, eroding their usefulness for addressing 
long-term strategic questions (Pitt et al. 2011).  A good example of the sensitivity-biased 
effects of applying a stochastic mechanistic modelling method to long-term dispersal 
scenarios is Robinet et al. (2009).  In this paper, the spread of the pinewood nematode 
was simulated over 23 years in China.  A probability surface of nematode presence was 
generated from a combination of 300 replicate simulations.  The fit of the model was 
assessed by comparing how many of the known locations fell into cells with a positive 
modelled probability.   This commonly applied method ignores the model specificity 
(the number of cells that had a positive modelled probability, but did not include any 
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reported infestations).  As a guide for surveillance activities, poor model specificity could 
lead to much wasted effort, and for pest risk, an over-estimate of the potential impacts of 
the pest due to inappropriately high rates of spread.  Therefore there is a need to critically 
consider this effect when developing a model of post-entry dispersal (Fletcher and West-
cott 2013), perhaps limiting mechanistic models to short-term tactical applications such 
as informing regional pest management plans, including activities such as surveillance, 
eradication and containment strategies, and using far simpler spread models for strategic 
applications such as pest risk modelling (e.g. Kriticos et al. 2013b).

The post-entry spread modelling framework

Defining biosecurity objectives

The rate of spread of a pest or pathogen can affect the present value of its future eco-
nomic and ecological impacts, taking into account the economic discount rate; all else 
being equal, a slower-spreading pest/pathogen is thought to have less potential future 
impact than a faster-spreading one. However, for terrestrial plants in particular, there 
may be a deceptive time lag between the arrival of the pest and the point at which the 
rate of spread begins to accelerate (Mack et al. 2000). Thus, shortly after establishment 
it can be difficult to discern a potential invasive from a non-invasive species. This may 
hamper our ability to model such cases accurately unless the potential drivers of both 
the lag phase and subsequent growth phase of spread are known. The rate of spread 
of a pest can also influence practical issues around our ability to control its spread 
(not necessarily a linear relationship), and the communication tactics employed (e.g. 
emphasising detection and slowing the spread, versus advising land managers about 
methods to control the pest once it arrives in an area) (Sharov and Liebhold 1998).

The International Standards for Phytosanitary Measures (FAO 2006) highlight 
various factors that are important to the estimation of the spread potential of an or-
ganism after establishment. These include the need for reliable biological information 
on pest occurrence, which can then be compared with the outbreak situation. Key 
considerations include:

• suitability of the natural and/or managed environment for natural spread of the pest,
• movement with commodities or conveyances,
• intended use of the commodity,
• potential vectors of the pest in the outbreak area,
• potential natural enemies of the pest in the outbreak area.

In this regard, we seek to estimate the potential extent of the endangered area, as 
well as the likely rate at which that area might become occupied by the organism. In 
the early stages of response it is important to assess the factors above as rapidly as pos-
sible, along with the route of introduction, the mechanisms of subsequent movement 
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and the shape of the natural dispersal kernel. Some factors will be easier to assess than 
others. While the potential extent can be estimated using niche modelling methods 
based on the organism’s overseas distribution and where available knowledge of its 
ecology, simulating the organism’s rate of spread relies on estimated spread rates, of 
which our knowledge is often poor. For example, use of Ripley’s K-function or an O-
ring analysis with available data (Wiegand and Moloney 2004) allows rapid estimation 
of the likely points of introduction and spatial clustering by statistically analysing and 
describing aggregation or dispersion patterns up to or at a given distance from a source. 
However, many of the other parameters required for a full assessment of spread poten-
tial may not be estimated readily until after several months of research.

Post-entry spread models: from the conceptual to the mathematical

A framework is suggested for post-entry dispersal modelling (Fig. 1). We expand on 
the key aspects of this framework in the following sections. Important to this process 
are clearly defined biosecurity objectives and scale informing the conceptual model 
(1), with an awareness of the constraints (such as time and the value of the problem in 
terms of pest/pathogen impact). Two primary issues are faced when modelling post-
entry spread: obtaining data for model parameterisation and the difficulty of modelling 
multiple dispersal pathways (Pitt et al. 2009). Data availability can be a limiting fac-
tor in post-entry dispersal modelling, thus a consideration of what data is available is 
critical at the conceptual stage. Data availability may constrain how the model can be 
calibrated (3) or evaluated once the model is developed, which will affect the reliabil-
ity of the model results (4). In addition, at the model refinement stage (3 and 4), the 
modeller may also include other methods with which to refine a model, such as Bayes-
ian learning, and also validate the model, if appropriate data is available. In addition, 
an estimation of model uncertainty is an important basis for reliable decision making.

In the model formulation (2), a consideration of scale and complexity is paramount. 
How complex can the model be, given the availability of data and knowledge of the 
system, and how complex does the model need to be to address the salient questions? In 
general the complexity of a model is determined by the model scope and purpose, and 
the complexity of the study system. However, in rapid response situations, the inevita-
ble lack of data means that in general it is best to construct simple (perhaps over-sim-
plified) models rather than complex models (Jørgensen and Bendoricchio 2001). This 
may mean that species-specific models require rapid construction or that general model 
(e.g. traits-based or ‘meta-models’) may be applied in a specific incursion context (Sal-
telli et al. 2008). An advantage of simpler models is their more rapid generalisation to 
future contexts defined by new invasive species and landscapes, though it is important 
that such models balance generality with a need to include important processes at a suf-
ficient level of mechanistic realism (Renton et al. 2011, Savage et al. in press).

As more data becomes available, model complexity and specificity can be in-
creased. When selecting a modelling method, we suggest that modellers should con-
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sider a) the minimum level of model complexity required to address the pressing and 
foreseeable management and research questions, and b) the maximum level of model 
complexity that can be supported by the available knowledge and resources. Where 
a < b, the modeller has the option of choosing to build an elaborate model, perhaps 
capable of addressing unthought-of questions. Where a > b there is an information 
deficit and decision-makers expectations and confidence in the model results may need 
to be managed carefully. For pre-border risk assessments, there is latent demand for 
spatially-explicit spread models that are combined with impacts. Unfortunately, the 
initialisation of such models is a critically sensitive factor. Prior to an incursion and es-
tablishment of a pest or pathogen, the starting point for the spread model is unknown, 
and unknowable, a situation similar to that of the state of Schrödinger’s Cat prior to 
opening the box.

The importance of scale

Temporal and spatial scale has an important role in the modelling process. Models for 
invasion post-entry pest spread most often need to be spatially-explicit, as landscape 
structure can impact on the invasion process significantly (With 2002) and policy-

2. Model 

formulation

Biosecurity objectives
and constraints

(e.g. time, economics)

Empirical data,
existing knowledge

(e.g. source region)

Literature,
existing 
models

MODELCalibration 
dataset

Model scale

Model complexity

Evaluation 
dataset

Fitted values Result values

3. Calibration 4. Results

1. Conceptual 

model

Figure 1. A framework for the model building process, when two data sets are available – one for fitting 
and one for evaluating the model (after Guisan and Zimmermann 2000).
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makers generally consider both pest-led and site-led management strategies. This al-
lows models to inform spatial contingency planning to control or manage an outbreak. 
Some policy relevant applications outlined in the introduction are more relevant at 
particular landscape scales than others, or may be answered in different ways depend-
ing on the scale of the model. For example, there are five different kinds of model that 
are developed for post-entry spread of pests or pathogens to address policy relevant 
issues: tactical spread models, daily forecasting, seasonal forecasting, optimal manage-
ment and monitoring strategies, and scenario modelling for future species distribu-
tions. The different focuses of the models result in them operating at different spatial-
temporal scales (Fig. 2). Models that operate on a ‘short-term’ timescale, i.e. days to 
months, tend to also focus at a local spatial scale close to an outbreak, to consider issues 
of tactical spread and daily or seasonal forecasting. ‘Long-term’ models, i.e. operating 
across years to decades, tend to operate at much larger spatial scales to consider future 
species distributions and long-term management or monitoring strategies.

Although operating at different spatio-temporal scales, all of these models are like-
ly to be required as soon as possible in a biological invasion. For example, long-term 
pest risk assessments are critical to help evaluate the suitable level of response to the 
incursion, e.g. through an economic analysis (e.g. Bogich et al. 2008, Carrasco et al. 
2009, Kriticos et al. 2013b). Scenario models may also be constructed that allow for 
the user to explore potential invasion pathways, rate of spread and locations at risk (e.g. 
Harwood et al. 2009). These all require a certain capacity to simulate the movement 
and timing of pest outbreaks following the initial establishment.

A methodological roadmap

To summarise the broad range of methods that are available to modellers, we have identi-
fied important attributes of each of the model types that are commonly used to simulate 
post-entry spread (Table 1). For each of these methods, we highlight the common model 

Temporal 
Scale

Spa�o-temporal 
Meteorological 
scale

Instantaneous Seasonal Long-term

Global 
Circula
on

Mesoscale

Microscale Tac
cal spread 
models

Seasonal 
forecas
ng

Daily 
forecas
ng

Scenario modelling for 
poten
al species 
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Op
mal management 
and monitoring 
strategies

Figure 2. Pest and pathogen modelling foci at different spatio-temporal scales.
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focus and application, with references to some key examples in the literature. We identify 
the common data requirements, and highlight the overall advantages and disadvantages of 
each method. We also categorise the models according to their most appropriate temporal 
and spatial scale of use (although we acknowledge there is some potential overlap between 
our categories and that our references may refer to more than one scale or approach).

By understanding the scale at which policy questions are formulated (Fig. 2), we can 
align the spatio-temporal scale at which particular modelling techniques are best applied 
(Fig. 3) to identify which modelling methods may be best to use for particular policy ques-
tions (Table 1). However, it should be noted that in many cases it is necessary to examine 
an incursion event at multiple spatial and temporal scales and there can be significant 
advantages in doing so, such as an increased understanding of the invasion process and 
accounting for non-equilibrium of the species with the environment (Jones et al. 2010). 
This means that the modeller may need to select a flexible modelling approach that can 
span multiple spatial scales (see Table 1), or it may be necessary to develop multiple, 
possibly integrated models to address the range of dispersal pathways or policy questions 
that are posed. To further illustrate the pathway the modeller may take to arrive at using 
a particular modelling approach (or approaches) to address a particular problem, we have 
condensed the above to a flow-diagram (Fig. 4). This is intended as a further guide and 
illustration of the concepts in this paper. Constraints dictate the type of model and level 
of complexity that can be achieved, in relation to a biosecurity objective. In particular, the 
complexity of a model will be constrained by the available knowledge about the organism 
and it’s behaviour, that may lead to assumptions about the organism. Constraints may 
also relate to the level of complexity and capacity for model development. It may be that 
to achieve an appropriate model, constraints must be overcome as there is no other option.

Instantaneous Seasonal Long-term

Global 
Circula
on

Mesoscale

Microscale

Temporal 
Scale

Spa�o-temporal 
Meteorological 
scale

Spa
ally implicit

Dispersal kernels

Individual-based

Network models and 
Metapopula
on models

Gaussian Plumes

Cellular Automata

Trajectory models

Normal = examples of analy
cal modelling approaches

Bold = examples of mechanis�c modelling approaches

Trajectory coupled to 
atmospheric models

Poten�al Distribu�on models

Figure 3. Examples of dispersal modelling techniques employed at different spatio-temporal scales.
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To explore the flow diagram, first consider the objective of the modelling exercise, the 
spatial temporal scale and consider the existing knowledge about the organism (as indi-
cated above); this defines the level of model complexity (with constraints). For example, 
if the objective is to make a tactical spread model very quickly, about an organism that 
little is known about, then this means there are many constraints on the approach that can 
be taken (i.e. time and knowledge). Due to this constraint, the level of complexity is best 
viewed as a single dispersal event with passive dispersal (i.e. solid line, Fig 4). At this level of 
complexity, the options available in this case (Spatially Implicit, Dispersal Kernel or Cel-
lular Automata, Fig. 4) are suitable even under many constraints (solid line, Fig. 4), so any 
of these could be applied, with the final decision based on the appropriate spatio-temporal 
scale and to some extent the personal preference of the modeller (arrow at top, Fig. 4).

To give a more complex example, the objective is to make a large-scale seasonal 
pest forecast model about an organism that has multiple modes of dispersal, both ac-
tive and passive ranging across multiple habitats/pathways. As this objective relates 
to a complex model including multiple dispersal events and active dispersal, then a 
model of this complexity is only possible to construct if there are few constraints (i.e. 
dash line). The model development requires a certain level of existing knowledge about 
the organism’s behaviour and perhaps a certain financial budget or amount of time 
to gather the information and develop the model. Given that the constraints are sur-
mountable and it is possible to acquire the knowledge within the timeframe, then 

Figure 4. Flow diagram to illustrate the modelling process with concepts from this paper.
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different model types might be chosen, again relating to further constraints on model 
complexity/development such as budget/time: (1) if there are many constraints at this 
point the suggestion is the use of dispersal kernels or cellular automata – which sim-
plify the known complexity of the dispersal events and mechanisms, or (2) if there are 
few constraints then a mechanistic approach may be taken such as individual-based 
modelling, gaussian plumes or trajectory models, all of which can better represent the 
complexity of the dispersal mechanisms. The other option for seasonal pest forecast-
ing, if the first constraint cannot be met (i.e. the modeller is required to assume highly 
simplified behaviour such as limited dispersal pathways within defined areas), then the 
modeller can make the assumption of a more limited mode of dispersal that allows for 
such constraints. This leads to a different approach where the preferred option (if there 
are further constraints relating to e.g. model development time and budget) would 
be potential distribution models; however if a more dynamic approach is feasible by 
fewer constraints at this point (e.g. as there is good data availability about movement 
pathways) then network models/metapopulation models may be more appropriate.

Data availability

The importance of integrating field-based research and surveillance efforts with models 
as part of an ongoing multidisciplinary research effort continues to be highlighted in 
the literature (Restif et al. 2012). Ideally, a library of observed spread rates can provide 
valuable parameterisation for models, whilst at the same time models may inform on-
going surveillance efforts (e.g. Leighton et al. 2012, Leskinen et al. 2011, Fletcher and 
Westcott 2013). However, in practice good data are rarely available for post-entry spread 
modelling. Surveillance efforts may be ad hoc, and therefore not provide full coverage 
of the range and dispersal rate of the pest or pathogen as the invasion front moves. This 
is especially the case if the intrinsic probability of detecting an organism when present 
is low, given the existing surveillance technologies. Indeed, it is the estimated capacity 
for dispersal that will greatly influence the modelled rate of spread of the organism. For 
example, leptokurtic dispersal kernels (i.e. fat tailed compared to a normal distribution) 
lead to accelerating rates of population spread (Shigesada et al. 1995). While the ex-
treme “fat tailed” dispersal events can have the largest influence on the overall behaviour 
of a dispersal model, it is these extreme events that are the most difficult to observe, and 
hence to estimate their prevalence. Even if good spread rate data are available on the 
characteristics of a species in another invaded range, this may not transfer into the con-
text of a new region due to differences in natural and anthropogenic conditions. Models 
must therefore be constructed with an awareness of the shortcomings of data availability 
and the impact this will have on the model results, including presence-only data, bias to 
particular regions, missing life-history parameters and habitat suitability information.

Dispersal data are amongst the most difficult to collect and interpret. Post‑hoc 
inferential methods relying on date-stamped geographical location records for inva-
sions may be biased, incomplete and collected at a scale that is poorly suited for spread 
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modelling (Pitt et al. 2011), and there are few published examples of validated models 
derived from this source. Direct observations of spread rates are typically confounded 
by multiple potential sources of dispersers. Battisti et al. (2006) observed and meas-
ured an unusually rapid range expansion of winter pine processionary moth in its na-
tive range related to climate change, which was subsequently used to inform a simple 
spread simulation model for the invasion of New Zealand (Kriticos et al. 2013a).

Observations of the movement of an individual may have little informative value 
for the spread of a population. Spread rates for a species may vary greatly in relation to 
the potential movement of individuals, depending upon the suitability of the environ-
ment for population establishment and growth (Waage et al. 2005). Finally, there may 
be multiple dispersal pathways and therefore spread rates for a single organism: natural 
means of spread (e.g. wind dispersal) are often combined with long-distance transpor-
tation by humans or other animals (Harwood et al. 2009, 2011).

A key data requirement common for many models is to identify the incursion 
source. This underlines the importance of studies and models to identify entry points. 
However, even this may not be readily identifiable, and modellers must often work 
with partial information on an already spreading population without knowing the 
precise origin. Next, information on dispersal, such as movement rates, distances and 
directions are required. In more mechanistic methods, population dynamics and life-
history parameters are required in order to simulate how individual dispersal events 
arise from a population. Habitat suitability and landscape data are also highly impor-
tant in mechanistic, spatially-explicit simulations. A mechanistic method allows us 
to include important landscape interactions, such as foraging for food and breeding 
hosts, which can be critical factors of spread. This is one of the major advantages of 
a mechanistic method over an analytical one, as we are rarely able to adequately use 
an analytical approach to include the interaction of the organism with the landscape.

Ongoing monitoring and data acquisition is one solution to providing modelling 
support for decision-making in the face of knowledge scarcity. Existing models may 
be updated by calibration to fit new data as it is acquired, for example using methods 
such as a Kalman filter (most commonly used to update state-space equation model 
estimations with newly observed values, e.g. Hlasny 2011), allowing for more accu-
rate short-term projections. However, the utility of the calibrated model estimates 
for a long term strategy is potentially compromised, as the underlying mechanism of 
population growth and dispersal can be mis-specified (e.g. Hooten and Wikle 2008). 
Thus, model reformulation and/or re-estimation is generally the most robust means to 
incorporate new data when the new data justifies it (Fig. 1).

Integrating existing knowledge and handling uncertainty

Knowledge gaps may relate to either a gap in knowledge of how a process is under-
stood and therefore modelled (i.e. model uncertainty), or the uncertainty with which 
we can estimate the true value of a model parameter (parametric uncertainty). If the 
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knowledge of a critical process is incomplete, it is prudent to be cautious, and to be 
wary of management imperatives derived from regression-based patterns. The method 
of multiple competing hypotheses (Chamberlin 1890, Hilborn and Mangel 1997) is 
starting to gain popular acceptance as a basis for both studying and communicating 
deep uncertainty in areas as diverse as ecology and intelligence (Beven et al. 2005). An 
adaptive management, monitoring and modelling framework (A3MF) may be an ap-
propriate method to adopt. In A3MF a model is iteratively updated as new knowledge 
or data is acquired that shows the model fails to represent the ecological process well 
(Holling 1978). Potential also exists within A3MF to employ different management 
strategies in different regions or periods of time to observe the response of the invasive 
organism to the different strategies and contexts, thereby accelerating our acquisition 
of knowledge about the organism and its management. However, A3MF requires long-
term investment by a team of experts and managers over a time scale akin to the time 
scales of the invasion process, and the lagged impacts the invasion may have on the 
invaded agricultural or ecological system. This weakness of A3MF in its fullest sense is 
one of the reasons why simple, readily applied models have such broad appeal.

Parameter uncertainty, as a knowledge gap, is a function of data paucity and the 
availability of statistical methods. Model complexity also contributes to parameter un-
certainty. On the one hand, highly complex models may contain so many parameters 
that not all may be known adequately, but on the other hand models that are very sim-
ple often contain parameters that are hard to estimate. Commonly, individual param-
eters are estimated through monitoring or experimental data targeted towards those 
parameters. These parameter estimates are then used in the model. If uncertainty in the 
estimates is quantified then the parameter uncertainty can be fed through the model to 
provide an estimate of parameter sensitivity. Other sources of uncertainty can also be 
incorporated into models through developing Bayesian posterior confidence intervals, 
such as measurement error or errors assigned to ad hoc parameter values (Higgins et 
al. 2003). In general, Bayesian methods have improved greatly with recent advances 
in computing, and can support a direct fitting of the model to the data, rather than a 
parameter plug-in approach. Hierarchical Bayesian methods of inference enable popu-
lation dispersal models to be fitted to the data (Hooten and Wikle 2008, Royle et al. 
2007). In lieu of a direct model-fitting procedure such as Hierarchical Bayes then the 
ad hoc ‘plug-in’ methods of model calibration are required, which may include:

1. garnering parameter values from analyses of the existing literature; or
2. minimising some measure of discrepancy between model output and the lim-

ited set of observations available, and which includes Approximate Bayesian 
Computation (ABC; Marjoram et al. 2003) and the inverse model problem.

Simulation is perhaps the best way to assign ‘prediction’ error or intervals to determin-
istic models, given uncertain starting conditions of the pest/pathogen population. Poste-
rior prediction intervals can also be derived for stochastic models through cross-validation, 
and more generally through the use of independent test and training data sets. Generating 
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prediction intervals to be tested against new data sets also falls under the rubric of model 
validation (e.g. Higgins et al. 2001), which should also include logical tests for the “rea-
sonableness” of model results. If model uncertainty of various management options on the 
end point of the invasion can be specified then a measure of policy or management activity 
risk can be developed, which may help determine an optimal risk mitigation strategy.

Common to all dynamic models is a temporal limit in quantifying model error. In 
this case an error is associated with a single time step, and in iteratively running a model 
then the error is compounded. The consequence of this compounding error is that long 
term utility of any dispersal model is dogged by severe and growing uncertainty. Two 
options are then available: (i) continual updating of results by resetting the model’s initial 
conditions to the current conditions (e.g., the Kalman Filter process); or (ii) applying a 
decision method developed for severe uncertainty. Continual updating is consistent with 
both A3MF and Bayesian model updating, or ‘learning’: as new data arrive then our un-
derstanding of the processes, our ability to predict system processes, or belief in our model 
should also improve. However, continual updating requires ongoing monitoring to feed 
the model any change in system state as it occurs. Continual updating is most appropriate 
for developing tactical management responses to invasions, but does nothing to address 
the inability of these models to address strategic questions in a timely manner.

In contrast, decision making under severe uncertainty is common for long-term 
strategy development, or where continual updating is a cost-prohibitive option. Sev-
eral analytical decision frameworks have been developed for dealing with severe un-
certainty, with the two most popular being robust optimisation (RO) (Ben-Tal et al. 
2009, Hansen and Sargent 2007) and info-gap theory (IGT) (Yakov 2006). The key 
difference between the two methods is that IGT provides a robust decision only in 
the local neighbourhood of the best guess parameter value for a model, whereas RO 
provides a solution that is robust over the entire range of parameter values to worst 
case scenarios (Sniedovich 2010). Neither framework handles a multivariate decision 
and parameter space well. A conservative strategy is to limit decision frameworks under 
severe uncertainty to those few key parameters that contribute most to the variability 
in model output, as identified through a sensitivity analysis.

discussion

There is no single recipe for constructing a model of post-entry spread, due the di-
versity of policy applications, ecological and landscape contexts, temporal and spatial 
scales and possible techniques to employ. We have attempted to present some practical 
guidelines on how to approach model framing and construction for post-entry spread 
in invasion ecology by identifying what method may be most suitable to apply to par-
ticular policy questions, at what spatial and temporal scale, given the available data and 
knowledge. In recent years, we have seen the evolution of more process-based, mecha-
nistic models that attempt to capture system dynamics and complexity. This trend has 
been supported (and perhaps encouraged) by the availability of suitable computer plat-
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forms capable of processing the immense amount of information required to simulate 
these processes, as well as the availability of suitable covariate data.

The need for a more rapid response in outbreak situations has resulted in the recent 
development of fine-scale dispersal models designed to forecast and backcast spread for 
surveillance and response activities (Guichard et al. 2012) and generic models, such as 
a General Model of Biological Invasions (GMBI) (Renton et al. 2011, Savage et al. in 
press), Modular Dispersal in GIS (MDiG) (Pitt et al. 2009, 2011), demoniche (Nenzén 
et al. 2012) and a model suite for Pest Risk Analysis (Robinet et al. 2012). In the future, 
we anticipate modelling methods will continue to improve our ability to incorporate 
complex spatial and temporal dynamics, such as highly mechanistic models of wind 
dispersal. For example, recent research has simulated seed dispersal using a ballistic 
method coupled with large-eddy simulations incorporating turbulent airflow (Nathan 
et al. 2011). As sophisticated, multi-level wind circulation models are improved and 
made more accessible for a wider range of applications (e.g. NCEP/NCAR reanaly-
sis data (NOAA 2011)), the opportunity to couple mechanistic dispersal models with 
process-based population dynamics models becomes apparent (Parry et al. 2011).

However, even when armed with limitless computing power and knowledge of a 
species’ dispersal ecology we cannot forecast far into the future with high precision. We 
should be wary therefore of applying increasingly sophisticated mechanistic models and 
running them for long-term forecasts; the results may appear to have a fine resolution, 
but this should not be confused with reality – in such instances an analytical approach 
may be preferable, where fewer variables, constrained behaviour and obvious lack of pre-
cision make more explicit the model uncertainties and inaccuracies. Overall, there is great 
value in combining modelling methods; indeed it is likely to be necessary as the multi-
dimensionality of the problem of post-entry pest spread will often require an integrated, 
multi-model, multi-scale approach, aligned with an empirical surveillance programme.

The most pressing limitations to applying spread modelling to post-entry invasion 
ecology are clearly not methodological. Modellers are spoilt for choice. The biggest 
constraints concern our knowledge of the rates of spread of organisms in novel land-
scapes at fine spatial and temporal scales, as well as across the time course of invasions. 
A clear challenge here is the cost of monitoring the spread of invasive organisms, which 
typically sees a rapid decline in interest once an organism stops being an eradication 
target. Options for overcoming this problem include placing more emphasis on the 
collection of time-stamped location data for invasive species, “crowd-sourcing” initia-
tives, and the development of a rich library of spread rate data for different organisms.
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Abstract
The banana leaf spotting disease yellow Sigatoka is established and actively controlled in Australia through 
intensive chemical treatments and diseased leaf removal. In the State of Queensland, the State government 
imposes standards for de-leafing to minimise the risk of the disease spreading in 6 banana pest quarantine 
areas. Of these, the Northern Banana Pest Quarantine Area is the most significant in terms of banana 
production. Previous regulations imposed obligations on owners of banana plants within this area to re-
move leaves from plants with visible spotting on more than 15 per cent of any leaf during the wet season. 
Recently, this leaf disease threshold has been lowered to 5 per cent. In this paper we examine the likely 
impact this more-costly regulation will have on the spread of the disease. We estimate that the average 
net benefit of reducing the diseased leaf threshold is only likely to be $1.4 million per year over the next 
30 years, expressed as the annualised present value of tightened regulation. This result varies substantially 
when the timeframe of the analysis is changed, with shorter time frames indicating poorer net returns 
from the change in protocols. Overall, the benefit of the regulation change is likely to be minor.
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Introduction

The Sigatoka disease complex affects banana cultivation in many countries. The dis-
ease yellow Sigatoka (Mycosphaerella musicola) is established and actively controlled in 
Australia through intensive fungicide treatments and diseased leaf removal (Henderson 
et al. 2006). Although less virulent than the malign black Sigatoka (M. fijiensis), M. 
musicola also imposes substantial costs on affected banana growers. This is particularly 
true for Australia’s premier banana growing regions located in the State of Queensland, 
including the Innisfail-Tully area. In 2011, the State as a whole produced 279.1 thou-
sand tonnes of bananas valued at $448.3 million from a plantation area of approxi-
mately 10 100 hectares (ABS 2012).

In all areas of the State where M. musicola occurs, grower costs are incurred through 
compliance with government-imposed standards for de-leafing to minimise the risk of 
the disease’s spread. The Plant Protection Regulation 2002 was put in place under 
the Plant Protection Act 1989 which defined 6 banana pest quarantine areas (State of 
Queensland 2002). Of these, the Northern Banana Pest Quarantine Area (NBPQA) is 
the most significant, encompassing over 80 per cent of the State’s banana production. 
The Plant Protection Regulation 2002 imposed an obligation on the owner of land 
in a pest quarantine area to treat every banana plant by removing every leaf from the 
plant that has visible symptoms of M. musicola (and another endemic disease, banana 
leaf speckle (M. musae)) on more than 15 per cent of any leaf at any time between 
1 November and 31 May or on more than 30 per cent of any leaf at any time between 
1 June and 31 October.

An amendment to the Plant Protection Regulation 2002, the Plant Protection 
Amendment Regulation (No. 4) 2003, was subsequently put in place in response to 
concerns that the de-leafing standards initially imposed were too permissive. In par-
ticular, during wet season conditions in the NBPQA the 15 per cent de-leafing thresh-
old was deemed insufficient to prevent M. musicola and M. musae from spreading. 
Moreover, the 30 per cent action level in the dry season was thought to be far too high 
for wet weather conditions highly conducive to disease spread (State of Queensland 
2003). The Amendment imposed a lower threshold of 5 per cent throughout the year 
in the NBPQA.

As deleterious as these amended regulations appear to be in terms of the foliage 
carried by commercial banana plants, the impact on production volume is likely to be 
minimal. During their life, individual banana plants may produce 30 or more leaves, 
which is surplus to their phosynthetic needs. The oldest leaves are shed at a rate of ap-
proximately 1 leaf every 10 to 12 days so that when the fruit bunch emerges from the 
top of the pseudostem the plant has an average of 15 leaves. After the bunch shoots no 
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new leaves are produced. The oldest leaves of the plant continue to fall until, at harvest, 
between 6 and 8 leaves remain (Ostmark 1974).

While the incidence of leaf disease is likely to be reduced if stricter thresholds are 
implemented and maintained over time, additional costs to banana growers in the 
NBPQA will apply. These include substantial increases in chemical treatment and ap-
plication costs in addition to more rigorous de-leafing cycles. In this paper we estimate 
the likely change in net returns to the banana industry in the NBPQA from adopting 
the new 5 per cent de-leafing threshold.

Methods

The stochastic simulation model used in this assessment determines total expected (or 
probability-weighted) damage from M. musicola in the NBPQA over a 30-year period 
under both a 15 per cent and a 5 per cent de-leafing threshold. Uncertain or variable 
parameters are specified as probability distributions. 10 000 model iterations are run 
using values randomly sampled across the range of each distribution using a Latin hy-
percube sampling algorithm.

The total damage banana producers in the NAPQA experience because of the dis-
ease in time period t (dt) is estimated by:

dt  = Yt Pt At + Vt At  (1)

where: Yt is the mean change in banana yield resulting from infection (assumed 
100 per cent) in year t; Pt is the prevailing domestic price for bananas in year t; Vt is 
the increase in variable cost of production per hectare induced by M. musicola on-
plantation management methods in year t; and At is the area infected with M. musicola 
in year t.

A stratified diffusion model combining both short and long distance dispersal pro-
cesses is used to predict At. Parameter estimates for this model appear in Table 1, and 
are explained below.

Note that due to the uncertainty surrounding some of these parameters, they are 
specified using a range of distributional forms, rather than simple point estimates. 
Types of distributions used in the table include: (a) pert – a type of beta distribu-
tion specified using minimum, most likely (or skewness) and maximum values often 
preferred when parameters are reliant a number of sources (or expert opinions) since 
the mean is relatively insensitive to minimum and maximum values compared to the 
most likely value; (b) uniform – a rectangular distribution bounded by minimum and 
maximum values used to highlight the fact that there is little known about a parameter 
(Vose 2008).

The dispersal model is derived from the reaction diffusion models originally de-
veloped by Fisher (1937) which have been shown to provide a reasonable approxima-
tion of the spread of a diverse range of organisms (Cook et al. 2011a; Dwyer 1992; 
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Table 1. Parameter values

Description 15% de-leafing threshold 5% de-leafing threshold
Detection probability (%). 100 100
Infection diffusion coefficient, D (m2/yr). † Pert(2.0×103,3.5×103,5.0×103) Pert(0.0,1.0×102,2.0×102)
Percentage of total NBPQA plantation area 
infected in the first time step (%). ‡ Pert(0.0,1.5,3.0) Pert(0,2,4)

Minimum area infected, Amin (m2). 1.0×103 1.0×103

Maximum area infected, Amax (m2). § 9.8×107 9.8×107

Intrinsic rate of infection and density 
increase, r(yr-1). † Pert (0.00,0.01,0.02) Pert (0.00,0.01,0.02)

Minimum infection density, Nmin (#/m2). 1.0×10-4 1.0×10-4

Maximum infection density, K (#/m2). † Pert(100,550,1000) Pert(100,550,1000) 
Minimum number of satellite sites generated 
in a single time step, Smin (#). 1 1

Maximum number of satellite sites generated 
in a single time step, Smax (#). † Pert(0,5,10) Pert(0,5,10)

Intrinsic rate of new foci generation per unit 
area of infection, µ (#/m2). † Pert(1.0×10-2,3.0×10-2,5.0×10-2) Pert(1.0×10-2,3.0×10-2,5.0×10-2)

Demand elasticity. | Uniform(-1.1,-1.0) Uniform(-1.1,-1.0)
Prevailing market price of bananas in the first 
time step ($/T). § 1 900 1 900

Maximum area considered for eradication, 
Aerad (ha). 0 0

Treatment costs upon detection – chemical 
($/ha). ¶ Pert(8.0×103,1.1×104,1.3×104) Pert(1.6×104,5.0×104,6.6×104)

Treatment costs upon detection – de-leafing 
($/ha). # Pert(1.4×103,2.1×103,2.8×103) Pert(2.1×103,3.1×103,3.2×103)

Yield reduction despite control (%). Pert(0.0,2.5,5.0) Pert(0.0,0.5,1.0)
Discount rate (%). †† 5 5

† Specified with reference to Cook (2003) and Waage et al. (2005).
‡ Derived from Peterson et al. (2005).
§ ABS (2012), Note 1ha = 10 000m2.
| Ulubasoglu et al. (2011).
¶ Assumes: (i) average density of planting of 2 000 stems/ha and removal, (ii) control of M. musicola in the 
NBPQA involves applications of dithane (at 3kg/ha or $21.60/ha) and oil (at 3L/ha or $8.85/ha) at week-
ly intervals during the wet season (Cook 2003); (iii) it is desirable for growers to rotate the use of dithane 
and oil with propiconazole (at 0.3L/ha or $22.20/ha) to manage resistance (Cook 2003); (iv) 15 to 25 
cycles of fungicides are used for control of M. musicola in the NBPQA to comply with a 15% de-leafing 
threshold; (v) an additional 5 to 10 spray cycles are needed to comply with a 5% de-leafing threshold.
# De-leafing plantations to control M. musicola to a 15% threshold occurs up to 15 times per season. Assume 
an additional 5 to 10 de-leafing cycles are necessary to achieve a 5% threshold at a cost of $140/ha each.
†† Commonwealth of Australia (2006).

Holmes 1993; McCann et al. 2000; Okubo and Levin 2002). These models assert that 
an invasion diffusing from a point source will eventually reach a constant asymptotic 
radial spread rate of  in all directions, where r describes a growth factor for M. 
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musicola per year in the NBPQA (assumed constant over all infected sites) and Dj is a 
diffusion coefficient for an infected site with an age index j (indicating the time step in 
which the site was originally formed) in the NBPQA (Cook et al. 2011a; Hengeveld 
1989; Lewis 1997; Shigesada and Kawasaki 1997). Hence, we assume that an original 
infection in a previously unaffected area takes place in a homogenous environment 
within the NBPQA and expands by a diffusive process such that area infected at time 
t, ajt, can be predicted by:

. (2)

We assume Dj  is constant across all sites with an age index j, so ignore demo-
graphic stochasticity and consequent non-uniform invasion. Since the two control 
strategies we are considering (i.e. 5 per cent and 15 per cent de-leafing regulations) are 
very similar, many of the parameters remain the same for both scenarios. But, D is as-
sumed to be lower under the 5 per cent de-leafing threshold due to increased chemical 
suppression limiting local dispersal opportunities for the disease.

The density of M. musicola infection within ajt  influences the control measures 
required to counter the effects of infection and thus partially determines the value of 
At. We assume that within each site with age index j affected, the infection density, Njt, 
grows over time period t following a logistic growth curve until the carrying capacity 
of the host environment, Kj, is reached:

. (3)

Here, Nj
min

 is the size of the original infection at site with age index j and r is the 
intrinsic rate of density increase (assumed to be the same as the intrinsic rate of in-
fection increase) (Cook et al. 2011b). Note that for simplicity we assume Njt and Yt 
are independent of one another. In addition to ajt and Njt, the size of At depends on 
the number of nascent foci or satellite infection sites in year t, st, which can take on a 
maximum value of smax in any year (Moody and Mack 1988). These sites result from 
events external to the initial outbreak itself, such as weather phenomena, animal or 
human behaviour, which periodically jump the expanding infection beyond the infec-
tion front (Cook et al. 2011b). We use a logistic equation to generate changes in st as 
an infectious outbreak continues:

 (4)

where µ is the intrinsic rate of new foci generation (assumed constant over time) 
and smin is the minimum number of satellite sites generated.

Given equations (1)-(4), we can express At as:

 
where max0 AAt ≤≤ . (5)
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Spread area, infection density and the number of foci are combined with the prob-
ability of entry and establishment in an expression of probability-weighted, or ex-
pected damage over time. Assuming a discount rate δ, the present value of expected 
damage after t time periods (TCP) is:

. (6)

This expression provides us with an estimate of infection-induced producer losses 
over time. It therefore provides an indication of the economic significance of M. musi‑
cola over time given a de-leafing protocol. If we denote the total expected damage un-
der a 15 per cent and a 5 per cent de-leafing protocol TCP

15% and TCP
5%, respectively, 

we can determine the likely change in expected damage ( ) from adopting the 
new 5 per cent protocol as:

. (7)

If indeed the 5 per cent de-leafing protocol is more effective than the previous 15 
per cent protocol at reducing M. musicola prevalence and impact over time, we would 
expect  .

Results

M. musicola is assumed to be present within the NBPQA at the beginning of time 
period 1. Therefore, the resultant expected spread area values calculated from 10 000 
iterations of the model are positive, as revealed by Figure 1. Spread is predicted to 
be very slow in both the 5 per cent and 15 per cent de-leafing protocol scenarios 
due to the effectiveness of chemical and de-leafing treatments applied simultaneously. 
The box-whisker plot used in this Figure (and in Figures 2 to 4 to follow) shows the 
extent of uncertainty in the model predictions dictated by the uncertainty in param-
eter specification. The box-whisker plot shows the 25th percentile of the frequency 
distribution of model outcomes, the median (i.e. the 50th percentile), the 75th per-
centile and remaining values up to and including the 5th and 95th percentiles of the 
frequency distribution of model outcomes.

Figure 2 illustrates how the resultant TCP
15% and TCP

5% (i.e. see equation (6)) are 
expected to change over the 30-year period of the simulation. Here, the mean values 
of TCP

15% and TCP
5% predicted by the model in each year are plotted with 10th and 50th 

percentiles of the frequency distribution of model outcomes. All projected costs are 
discounted at 5 per cent per annum. By the 30th year, TCP

15% is expected to average just 
under $30 million per year, and TCP

5% just under $15 million per year.
Note that despite the area affected by the disease remaining relatively constant 

in both control scenarios, the erosive effects of the discount rate lead to a gradual 
decline in present value of future expected annual industry damage.
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Figure 1. Expected area of commercial banana plantations affected by yellow Sigatoka in Australia under 
different management guidelines.

Figure 2. Predicted industry losses from yellow Sigatoka in Australia under different management guidelines.

Figure 3 illustrates how the difference between TCP
15% and TCP

5% (i.e.  in 
equation (7)) is expected to change over time, and therefore the relative merit in the 
banana industry choosing a 5 per cent de-leafing protocol over a 15 per cent protocol 
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in the NBPQA. Over the 30 years simulated by the mode, the annualised present value 
of benefit to producers is $11.3 million. But, as Figure 3 shows there is a large amount 
of uncertainty associated with predicting this far into the future (i.e. the standard de-
viation of the benefit estimate is $9.3 million).

discussion

Economic research in the area of invasive species has grown substantially in the last 20 
years from a modest base (Born et al. 2005; Colautti et al. 2006). Most research has in-
volved retrospective assessments of invasive species impacts and management (Born et al. 
2005; Naylor 2000). Where predictive models have been used, analyses have tended to 
be deterministic, thereby neglecting uncertainties in species behaviour and environmen-
tal interactions. For example, State of Queensland (2003) includes a cost benefit analysis 
of the change in disease threshold in the NBPQA which reveals little about the flow of 
producer benefits over time. Point estimates of the net producer impact of a 5 per cent 
de-leafing threshold (-$50 000 in the first year, -$20 000 in the second year, $0 in the 
third year and $400 000 by the end of the fourth year) are provided (State of Queens-
land 2003), but no indication is given about possible variation around these estimates. 
Moreover, information about their derivation in the Amendment text is not provided.

In contrast, the predictive model presented in this paper provides a more open and 
transparent means of summarising complex interactions between natural processes and 

Figure 3. Predicted gross benefit of adopting a 5 per cent de-leafing threshold for yellow Sigatoka sup-
pression in the NBPQA relative to a 15 per cent protocol.
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land managers over time for a policy audience. Policy-makers face a difficult challenge 
because invasive species impacts change with respect to time, space and other variables 
in ways that are difficult to predict (Regan et al. 2002). They therefore require tools 
that are explicit about uncertainty and management options that are both precaution-
ary and adaptive (Doak et al. 2008; Simberloff 2005). Rather than over-simplified 
point estimates, the model we have developed takes into account system dynamics 
and conveys the natural variation of the system to decision-makers when analysing the 
intertemporal effects of changing de-leafing protocols.

Several studies have integrated established ecological models (including reaction-
diffusion, stratified diffusion and predator-prey models) with economic management 
frameworks for invasive species using comparable approaches (Barbier 2001; Cacho et 
al. 2008; Carrasco et al. 2010; Hyder et al. 2008; Sharov and Liebhold 1998). Others 
have emphasised spatially explicit approaches using stochastic simulations combining 
environmental variables and dissemination behaviours to characterise uncertainty in 
spread patterns over time (Rafoss 2003; Yemshanov et al. 2009). Other recent analyti-
cal spatial studies of invasive species spread and control have relied on metapopulation 
models (Albers et al. 2010; Sanchirico et al. 2010).

At the cost of not producing spatially explicit outputs, our model provides a more 
accurate estimation of the economic impacts of invasive species by incorporating par-
tial equilibrium models. This approach allows a detailed examination of changes in 
producer (and consumer) welfare in domestic (e.g. Cook 2008; Heikkila and Peltola 
2004; Paarlberg et al. 2003) and export markets (e.g. Acquaye et al. 2005; Cook and 
Fraser 2008) induced by invasive species. Flow-on effects of incursions to other areas 
of the economy can also be estimated using general equilibrium models (Wittwer et 
al. 2005). However, these assume perfect coordination of trading mechanisms and 
maximise a common sector utility function making it difficult to integrate them with 
ecological processes (Carrasco et al. 2012).

Similar problems arise with partial equilibrium models due to their aggregated 
and compact nature, and their integration with ecological spread requires the use of 
exogenous assumptions regarding the effect that an invasive species will have on the 
supply curve of the host commodity (Acquaye et al. 2005; Paarlberg et al. 2003). In 
this analysis we have been explicit about these assumptions with the notes accompany-
ing Table 1 providing technical details of the way we assume grower behaviour is likely 
to change with a 5 per cent disease threshold compared to a 15 per cent threshold. 
Specifically, we assume:

(i) An average density of planting of 2 000 stems per hectare and removal;
(ii) Control of M. musicola in the NBPQA involves applications of dithane (at 3 kg 

per hectare or $22 per hectare) and oil (at 3 L per hectare or approximately $9 
per hectare) at weekly intervals during the wet season (Cook 2003);

(iii) Growers rotate the use of dithane and oil with propiconazole (at 0.3 L per hec-
tare or $22 per hectare) to manage resistance (Cook 2003);
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(iv) 15 to 25 cycles of fungicides are used for control of M. musicola in the NBPQA 
to comply with a 15 per cent de-leafing threshold, and an additional 5 to 10 
spray cycles are needed to comply with a 5 per cent de-leafing threshold;

(v) De-leafing plantations to control M. musicola to a 15 per cent threshold occurs 
up to 15 times per season, and an additional 5 to 10 de-leafing periods are nec-
essary to achieve a 5 per cent threshold at a cost of $140 per hectare each.

Extrapolating across the entire NBPQA, these assumptions imply that producer 
costs will rise by approximately $43.8 million under the 5 per cent de-leafing thresh-
old (Table 2). This includes both de-leafing and chemical application costs required 
in areas affected by M. musicola. Since the market is closed to imports, the domestic 
price of bananas will increase as producers pass these cost increases on to consumers. 
The extent of the price change is predicted in the model using the elasticity of demand 
(i.e. the ratio of percentage quantity changes over percentage price changes). Thus, our 
producer behavioural assumptions combine with the spread model to simulate changes 
in the market over time.

Note that the costs indicated in Table 2 are annualised average costs estimated 
across the whole NBPQA attributable to compliance with the leaf disease thresholds. 
The right hand column labelled B-A represents the annualised increase in chemical 
and de-leafing costs imposed by the lower threshold of 5 per cent. By comparing the 
present value (i.e. the discounted or real) value of these annual cost increments to the 
predicted benefits derived from Figure 3, we can estimate the likely change in net 
returns (i.e. benefits minus costs) to the NBPQA from adopting this lower standard.

While Table 2 summarises our analysis, it does not show the extent to which likely 
net benefits change depending on the time frame of the analysis. Net returns on a 
year-by-year basis are shown in Figure 4, which reveals the full extent of uncertainty 
surrounding possible net returns to the region in each time step. Initially, due to the 
increased cost of compliance to the 5 per cent leaf disease threshold, net costs (i.e. a 
surplus of costs over benefits) are likely to result in the short term. However, after a 
period of time (between 7 and 14 years) the benefits generated by lower M. musicola 
prevalence and impact begin to outweigh compliance costs. By the end of the simula-
tion period, net benefits are likely to be over $13 million per annum.

On average, over the 30-year model simulation period, the annualised present val-
ue of net benefit to the banana industry in the NBPQA from the adoption of the more 
stringent leaf disease threshold is estimated to be $1.4 million. Considering this benefit 
accrues over an area of approximately 10 100 hectares, the impact of the change in dis-
ease thresholds appears to be marginal. If we calculate average net returns over a 20-year 
period, we find that a net cost of the order of -$3.4 million per annum is likely to result. 
As Figure 4 clearly shows, this is due to the large net costs concentrated in the early 
years of adopting the new threshold. The further forward in time we project, the larger 
the likely returns to the banana industry of imposing the stricter leaf disease threshold.

Given the intertemporal nature of cost accrual, our model clearly communicates 
the importance of the timeframe being considered for a policy choice to decision-
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makers. Assuming they prefer to consider a 30-year time period, the annualised average 
present value of benefits expected to result from tightening the de-leafing threshold is 
likely to be small, but positive. Shorter time frames suggest the net benefits will be 
smaller, and (if less than a 10-year time frame is considered) possibly negative. We 
should also point out that if decision-makers apply a higher (personal) discount rate of 
10 per cent to the mean or average model calculations, as opposed to a public/social 
discount rate of 5 per cent, the mean net benefit to the banana industry would fall to 
-$1.6 million over 30 years. This highlights the importance of both the choice of time 
frame and the choice of discount rate.

While the modelling framework we have developed provides a solid foundation 
over which other comprehensive economic analyses of invasive species effects can 
be performed, future extensions to the model may be warranted in some situations. 
These could include the adoption of an ecosystems approach within the bioeconomic 
model to capture interactions between invasive and native species (Hulme 2006). It 

Figure 4. Predicted net benefit of adopting a 5 per cent de-leafing threshold for yellow Sigatoka suppres-
sion in the NBPQA relative to a 15 per cent protocol.

Table 2. Annualised cost of adopting a 5 per cent de-leafing threshold for yellow Sigatoka suppression in 
the NBPQA relative to a 15 per cent protocol aggregated across the region.

Description 15% de-leafing threshold (A) 5% de-leafing threshold (B) B-A
Chemical treatment costs ($ million) 115.4 146.1 31.3

De-leafing costs ($ million) 19.6 32.0 12.5
Total ($ million) 134.9 178.7 43.8
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may also be necessary to use more complex biophysical modelling of susceptibility 
and resilience to infection where polyphagous species are concerned (e.g. Hester and 
Cacho 2003). In these cases the importance of potential non-market (e.g. impacts on 
native biota, environmental costs due to the use of fungicides, etc.) and indirect market 
(e.g. impacts on input markets as industries are affected by invasive species) effects may 
also be critical factors that policy-makers wish to consider.

Conclusion

In a plant biosecurity context, it is often difficult to predict policy benefits over time 
due to complex biophysical interactions between invasive species, their hosts and the 
environment. In this paper, we have demonstrated how a bioeconomic analysis can 
help decision-makers using the example of M. musicola. We have developed an analyt-
ical approach using a stratified diffusion spread model to simulate the likely benefits 
of adopting a 5 per cent de-leafing threshold for M. musicola suppression in the NB-
PQA relative to a 15 per cent protocol. Using Monte Carlo simulation to generate a 
range of possible incursion scenarios over a 30-year time period, we predict that in an 
average year this new protocol will only reduce the net impact of the disease by $1.4 
million. However, this result varies substantially depending on the timeframe over 
which benefits and costs are projected, with shorter time frames indicating poorer 
net returns from the change in protocols. Compounding this issue is the uncertainty 
involved in predicting policy impacts further into the future. It is therefore difficult 
to evaluate the 5 per cent de-leafing protocol. But, if we take the 30-year timeframe 
presented in our analysis as a guide, the effects of the policy are likely to be positive, 
but relatively minor.
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Abstract
For greater preparedness, pest risk assessors are required to prioritise long lists of pest species with potential 
to establish and cause significant impact in an endangered area. Such prioritization is often qualitative, 
subjective, and sometimes biased, relying mostly on expert and stakeholder consultation. In recent years, 
cluster based analyses have been used to investigate regional pest species assemblages or pest profiles to 
indicate the risk of new organism establishment. Such an approach is based on the premise that the co-
occurrence of well-known global invasive pest species in a region is not random, and that the pest species 
profile or assemblage integrates complex functional relationships that are difficult to tease apart. In other 
words, the assemblage can help identify and prioritise species that pose a threat in a target region. A com-
putational intelligence method called a Kohonen self-organizing map (SOM), a type of artificial neural 
network, was the first clustering method applied to analyse assemblages of invasive pests. The SOM is a 
well known dimension reduction and visualization method especially useful for high dimensional data 
that more conventional clustering methods may not analyse suitably. Like all clustering algorithms, the 
SOM can give details of clusters that identify regions with similar pest assemblages, possible donor and 
recipient regions. More important, however SOM connection weights that result from the analysis can 
be used to rank the strength of association of each species within each regional assemblage. Species with 
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high weights that are not already established in the target region are identified as high risk. However, the 
SOM analysis is only the first step in a process to assess risk to be used alongside or incorporated within 
other measures. Here we illustrate the application of SOM analyses in a range of contexts in invasive spe-
cies risk assessment, and discuss other clustering methods such as k-means, hierarchical clustering and the 
incorporation of the SOM analysis into criteria based approaches to assess pest risk.

Keywords
Invasive pest assemblages, prioritisation, self-organising maps, hierarchical clustering, k-means, multi-
criteria analysis, plant pathogens

Introduction

Global tourism, trade and climate change continue to drive invasive species impact by 
increasing opportunities for species dispersal and establishment in new regions of the 
world. Nonindigenous invertebrates, vertebrates, plants, bacteria, fungi and viruses 
continue to establish in regions where they are not normally found (Vitousek et al. 
1997), threatening both cultivated and indigenous species. Invasive species are capable 
of doing irreparable damage to the biodiversity of natural and agricultural ecosystems 
and to human and animal health, but for many nations, protecting the biological po-
tential and production of managed systems is of particular concern, as well as increas-
ingly urgent, as climate change threatens global food security. For greater preparedness 
and prevention, important decisions about invasive species need to be supported by a 
range of approaches that are integrative and capable of converting scientifically relevant 
data into data that is also decision relevant.

Regulators and pest risk assessors face the unenviable task of providing pest lists 
to policy makers based on their assessment of risk of pest establishment in endangered 
areas. When creating such lists it is difficult to ignore species that have a recent history 
of invasiveness. The result can be compilations that are often qualitative, subjective and 
frequently biased toward current knowledge and expertise of the panel involved in the 
creation process. Despite such drawbacks, regulators use such lists to allocate scarce 
resources to the prevention of perceived high risk species establishing.

Many attempts have been made to address the shortcomings of pest prioritisation 
but few have delivered anything that approaches a rigorous quantitative process. For 
example, a range of tools for prioritisation can be found in plant risk management (see 
Skurka Darin et al. 2011 for a brief review). Very few new tools have centred on arthro-
pod pests or plant pathogens. Trait-based categorisation of invasive pests that aspire to 
give some predictive capability have been attempted with little success. For example, a 
study by Simberloff (1989) attempted to characterise the traits that lead to successful 
establishment of insects. As well, Peacock and Worner (2008) compared a selection of 
insect species that are often intercepted at the New Zealand border that have estab-
lished, with species that, despite numerous interceptions over many years, have not yet 
established. The latter were used as a proxy for “failed” introductions. More recently, 
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Philibert et al. (2011) used species–level traits of forest pathogenic fungi to predict 
invasion success using a combination of ecological and biological traits.

However, data associated with invasive species, as for most ecological data, involve 
features that are complex, dynamic and nonlinear. Many conventional multivariate 
statistical approaches used to analyse such data often involve linear methods that are 
affected by noise and outliers (Chon 2011). The purpose of this study is to review the 
use of the co-occurrence of pest species that make up regional species assemblages or 
profiles for knowledge discovery. We also review the application of novel nonlinear 
methods such as a neural network called Kohonen self-organising map (SOM) (Ko-
honen 1982) and other clustering methods, to the problem of prioritising pest species 
by profiling pest assemblages in target regions. Additionally, future research require-
ments if such methods are to be used to influence policy decisions, will be highlighted.

The idea of clustering pest complexes or assemblages of species to identify do-
nor and recipient regions in an invasive species context was described by Worner and 
Gevrey (2006) using a self-organising feature map. Using species assemblages as indi-
cators of environmental conditions is not new. Assemblages of fossil organisms such 
as Radiolaria and Foraminifera are used in petroleum geology and oil exploration to 
indicate presence of fossil hydrocarbon reservoirs (Gregory et al. 2007) as well as past 
climates (Heiri and Lotter 2005). Species assemblages are also well used in fresh water 
studies and other ecosystem studies to determine changes in composition or behaviour 
in response to toxic substances and responses to natural and other anthropocentric 
changes (Chon 2011, Lek and Guégan 2000). A SOM is an artificial neural network 
that can detect patterns and similarity in complex data. SOMs have found application 
in a range of disciplines from image recognition (see Chon 2011 for a short review) to 
detecting shifts in climate (Schmidt et al. 2012).

A basic assumption underpinning the Worner and Gevrey (2006) and Gevrey et al. 
(2006) studies is that a grouping or assemblage of pest species integrates complex vari-
ables that are difficult to tease apart. Some might question that assumption on the basis 
that such groupings are not natural and have come about mainly by anthropogenic influ-
ences. Despite that a history of transport, trade and food production has largely influenced 
which pests are where in the world, it is clear that those species able to establish viable 
populations rely on a complex interaction of biotic and abiotic variables. Indeed, Watts 
and Worner (2009a) have shown that such pest groupings are not random assemblages of 
species. Co-occurrence of species forming a particular pest profile for a region indicates 
suitable environmental conditions, and in the case of arthropod pests and plant pathogens, 
co-occurrence indicates suitable hosts and a particular invasion history of the region. In 
their 2006 study, Worner and Gevrey first used a conventional cluster analysis to identify 
global donor and recipient regions, using more than 800 species over 456 geopolitical ar-
eas (Worner and Gevrey 2006). The analysis resulted in long drawn out clusters that were 
difficult to interpret. They then applied a self-organising map (SOM) that appeared to 
have a number of advantages. The first is that the high dimensional data set was reduced to 
a 2- dimensional map or visualisation that greatly improved interpretation (Fig. 1). In ad-
dition, the analysis created a separate map for each species in the assemblage with a weight 
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or value that indicated the strength of association that species has for the pest profiles or 
assemblages associated with the cells in the map. These weights allow the species complex 
for a region to be filtered into high risk established species and high and low risk non-
established species. The high weight allocation for a species in a region indicates it is closely 
associated with the particular pest complex of that region. In other words, the species co-
occurs globally with similar assemblages of pests. For species that are not established but 
allocated a high weight, the weight is interpreted as an index of high risk of establishment.

Clearly, clustering can be done using a number of approaches and SOM clustering 
can be used in a number of contexts to address the problem of pest risk assessment. We 
discuss some recent studies that further explore SOM analysis or are variations of that 
approach, along with some alternative clustering methods in more detail.

Clustering methods and applications to risk analysis

Data

The data used in all the studies reviewed here comprised the presence and absence of 
pest species in different countries and regions in the world. This information was ex-
tracted with permission from the CABI Crop Protection Compendium (2003, 2007) 

Figure 1. A representation of the application of a self organising feature map to the analysis of pest 
distribution data.
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and CABI’s Plantwise Knowledge Bank (http://www.plantwise.org/knowledgebank), 
which are interactive multimedia encyclopaedias edited by CABI, a not-for-profit sci-
ence-based development and information organization.

Data presented by country or geographical regions where pest presence or absence 
is represented by binary data, with 0 corresponding to absence and 1 corresponding to 
presence of species in a specific geographical area. Incomplete data from the database 
were discarded. Depending on the taxa of interest in the study, different numbers of 
pest species and regions comprised the actual database used for analysis.

The SOM Model

A detailed description of self-organising maps (SOM) can be found in Kohonen (1982) 
and Kohonen (2001), and examples of its application to pest risk data in Worner and 
Gevrey (2006) as well as Gevrey et al. (2006). The self-organising map is an unsupervised 
learning algorithm that is a type of neural network. A SOM consists of two layers of arti-
ficial neurons, 1) the input layer that represents the input data (pest profiles comprising, 
presence = 1 or absence = 0 for each species in each region) and the output layer or map, 
which is usually arranged in a two-dimensional structure (Fig.1). Every input neuron 
or vector (pest profile) is connected to every output neuron (map neuron or node), and 
each connection has a weight attached to it. The batch SOM algorithm can be summa-
rized as follows: (i) Initialize the values of the virtual (node) vectors (VVi, 1 ≤ i ≤c) using 
random values. (ii) Repeat steps (iii) to (vi) until convergence. (iii) Read all the sample 
vectors (SV or pest profiles) one at a time. (iv) Compute the Euclidean distance between 
SV and VV. (v) Assign each SV to the nearest VV according to the distance results. (vi) 
Modify each VV with the mean of the SV that were assigned to it (Worner and Gevrey 
2006). In other words, when the input vectors (pest profiles for global sites) are presented 
to the SOM algorithm, random weight values are assigned to each virtual (weight) vec-
tor associated with each neuron (node) of the map. For each input vector (pest profile) 
the Euclidean distance between the input vector (pest profile) and the incoming weight 
(node or virtual) vector of each map neuron, is calculated. Each input vector is then 
assigned to the closest virtual vector (the winner, also known as the best matching unit 
(BMU)) according to the Euclidean distance. Each virtual vector is then updated during 
an iterative learning process, where weights are modified according to equation (1.1).

wi,j(t+1)=wi,j(t)+h(t)(xi-wi,j(t)) (1.1)

where wi,j(t) is the connection weight from input i to map neuron j at time t, xi is ele-
ment i of input vector x, and h is the neighbourhood function. In other words, the 
neighbourhood function determines how strongly the neurons or nodes are connected 
to each other, as defined in equation (2).

h(t)= α exp(-d2/(2σ2(t))) (1.2)
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where α is the learning rate, which decays towards zero as time progresses, d is the Eu-
clidean distance between the winning unit (BMU) and the current unit j, and σ is the 
neighbourhood width parameter, which also decays towards zero (Watts and Worner 
2009b).

Basically, the large number of data vectors, or pest profiles are sorted such that 
those pest profiles that are most similar are associated with a particular node, neuron 
or cell on the map. Additionally, pest profiles associated with cells that are close to each 
other are more similar than those cells that are further away. While the SOM algorithm 
is essentially a clustering algorithm, the detail within each cluster is very useful for 
questions concerning the invasive species of interest. The analysis shows similarities 
between pest profiles of countries and regions despite that intuitively many regions 
may not appear to have analogous climates and environmental conditions. Clearly, 
however, such similarity requires close study and indeed, if the percentage similarity 
between any two countries in a cluster is examined one usually finds a level of simi-
larity that is often unexpected. Clearly, the SOM analysis is only the start of a more 
detailed analysis into what the clusters mean. The most important result of the SOM 
analysis is that the SOM weights can be used to create a risk list where the weight as-
signed to each species (element in the vector of species) can be used as an index of the 
risk of those species of establishing in the target area Gevrey et al. (2006). In this way, 
a subset of the original 844 species can be targeted for more in-depth risk assessment.

Sensitivity analysis of SOMS

Databases often contain errors and the concern is that such error will significantly af-
fect the confidence in any analysis that is based on the database. Paini et al. (2010a) 
evaluated the sensitivity of the SOM method by altering the original presence/absence 
data by an increasing percentage and compared estimates of risk with those generated 
by a national coordinating body (Plant Health Australia) utilizing expert stakeholder 
opinion. The same species distribution data set as used by Worner and Gevrey (2006), 
described above, was used in this study. Additionally, Impact Risk Assessments (IRAs) 
generated by the Australian Government’s Department of Agriculture, Forestry, and 
Fisheries (http://www.daff.gov.au/ba/ira/final-plant) were analysed to estimate the er-
ror rate in a sample of the CABI data and to determine the range of data alteration re-
quired. To simulate database error, data from all regions in the original database (459) 
were altered by 5%, 10%, 20%, and 30%. To do that, a set percentage of species were 
randomly selected from each regional pest profile and their presence or absence records 
reversed. Each region was altered separately so that no two regions were altered in the 
same way. Paini et al. (2010a) found that evaluation of the risk posed by the species 
based on the SOM analysis remained unaffected by alterations of up to 20% of data 
over all regions (Fig. 2). Of interest was the comparison of species indicated as high risk 
by the SOM with expert stakeholder methodology. Unsurprisingly, the comparison 
revealed significant differences in the estimates of establishment risk.
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Clearly, no data set is complete and the impact of potentially inaccurate or in-
complete data was tested in another study where species profiles were bootstrapped 
(resampling with replacement) 1000 times and the change in each species rank (high-
est weight to the lowest) was recorded (Watts and Worner 2009b). The New Zealand 
regional pest profile was used. For the top 50 most highly ranked species, that were 
not established in New Zealand, their ranks changed on average only 14 places out of 
a possible 800, indicating considerable confidence in the method.

SOM Validation: New Zealand data

Another question is whether a SOM analysis could have helped identify those pest 
species that actually established in a target region. As a means of validation Worner 
and Soquet (2010) carried out a new SOM analysis on an updated CABI data base 
(CABI 2007). New Zealand’s pest profile again was used where the status of each 
currently established pest species was changed one at a time. In other words, if a 
species is established/present (1) its status was changed to not established/absent 
(0). The objective was to determine whether changing a species status from present 
to absent changes its risk index significantly. After the status of a single species was 
changed from present to absent, a new self-organizing map was created using the 
modified data and the new risk index for the target species recorded. Following that, 
the species status was reinstated to its original before repeating the process with the 
next established/present species.

Figure 2. The proportion of species remaining in the top 100 list in response to an increasing level of data 
alteration. (Reprinted with permission from Paini et al. 2010a).
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By using the same initial parameters for a SOM (map size, initial weight values, 
number of epochs), the same clusters were formed and for each trial, the same regions 
were associated with the same neuron or node (cell on the map).

A rank was also associated with each species depending on its weight or risk value. 
Before validation the species were sorted in descending order from the species with the 
highest risk allocated the first rank and so on. Using ranks is a good way to measure 
the change in the risk by evaluating the change of rank before and after alteration. If 
a species rank hardly changes, in other words, if a previously present species that is 
changed to absent, maintains a high rank or risk index on re-analysis of the data then 
the self-organizing map has performed well.

The Spearman’s rank correlation between ranks obtained before and after data 
modification was r = 0.987, showing high correlation. Altering the data did not have a 
significant influence on risk assessment. A species that is highly ranked remains highly 
ranked even though its status is changed. Notably, the cluster to which New Zealand 
was assigned also never changed, nor were the adjacent neurons modified. Those re-
sults once again, illustrated the stability of the method.

The average change in risk values for the top 100 pests was 0.07 and the ranks 
changed on average, 14 places (Fig. 2) for the 120 established species when their status 
was changed to absent (Worner and Soquet 2010). Clearly, their initial high risk in-
dex barely changed after data transformation thus a SOM analysis would have identi-
fied these species as high risk before they established in New Zealand. Despite this, a 
change of status of 4 of the 120 species currently present in New Zealand resulted in a 

Figure 3. Average absolute change in risk index = 0.07.
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change of cluster. For these 4 species the risks values also changed considerably. Some 
species have low initial risk simply because of low prevalence. Any interpretation of 
risk for low prevalence species, in other words less than about 20 occurrences, requires 
much caution and should be based on additional information. It is clear however that 
this tool is robust enough to not be influenced by even quite large variations for a large 
number of known global crop pests.

SOM Validation: USA data

Suiter (2011) carried out a SOM analysis on USA data. The data bases used were 
the Global Pest and Disease Database (GPDD) which is an archive of information 
for pests of concern to the USA. The study also used data extracted from the CABI 
Crop Protection Compendium (CPC) as described above for comparative analysis. 
The GPDD comprised over 3000 species and is well used by many agencies such as the 
United States Department of Agriculture (USDA), Customs and Border Protection 
(CBP), Department of Homeland Security (DHS) and State Co-operators. In contrast 
to the study carried out by Worner and Gevrey (2006) and Gevrey et al. (2006), Suiter 
(2011) included all pest species recorded in the respective data bases, from bacteria 
to weeds, in the analysis. World pest distribution data extracted from both databases 
included only distributions marked as “Present”. “Unverified, Uncertain, Eradicated, 
Intercepted” and “Questionable” citations were discarded. The resulting analysis of 
the GPDD data comprised 45,051 unique distribution records and for the CABI da-
tabase, there were 47,411 unique distribution records. Interestingly, there was only 
9.8% overlap in the species recorded in each database (Fig. 4). Of particular interest 
with respect to validation of the SOM method was the number of high risk species, as 
determined by the SOM method, that were not established in 2007, that subsequently 
established by 2011. A 10 X 15 SOM map was used for the analysis and the databases 
were analysed separately.

The analysis of the GPDD database showed six species with high risk indices that 
had not established in 2007 had established by 2011 and also six species with high risk 
indices in the CABI database. These species were not the same, so 12 high risk species 
have subsequently established by 2011. It is not known whether any of these species 
were regulated at the time or whether they were on any agency risk list. It appears that 
the SOM analysis is a useful filter that may alert risk assessors to potential threats that 
require a closer analysis.

Suiter (2011) found that the SOM analysis was quite robust and provided a con-
sistent fit of the neural network to the pest distribution data. Suiter (2011) pointed 
out that the results of the analysis may be subject to data over- or under-sampling 
artefacts. For example, countries that have been heavily sampled for invasive pests (i.e., 
USA, China, Australia) consistently cluster together on the SOM neural net. Suiter 
(2011) concluded that this could be due to one or more of several factors, 1) a high 
probability of overlap in pest assemblages for countries with a large number of pests, 
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2) the countries are vast with a wide range of climates that may be very similar, 3) the 
countries with high pest numbers may be major trading partners and the similarities 
in current pest assemblages are most likely historical in nature due to trade and human 
movement, and 4) these countries have the resources and capacity to survey for inva-
sive pests, unlike poorer countries. However, comparing the results of Suiter (2011) 
with the findings of Worner and Gevrey (2006) it appears that oversampling does not 
completely explain why some clusters occur. For example, Worner and Gevrey (2006) 
found that some countries (e.g., Tasmania, 63 species) in the New Zealand cluster had 
only half the number of species as some other countries (Canary Islands, 125) in the 
same cluster. Also the fact that trading history is important has always been proposed 
as one of the reasons why some pest assemblages are similar (Worner and Gevrey 2006, 
Paini et al. 2010b).

The Suiter (2011) study found that of the 2600 GPDD pests and 2500 CABI 
pests, only 505 (9.8%) (Fig. 4) were shared by both datasets and despite that, the 
GPDD and CABI geopolitical SOM projections looked very similar. When risk rank-
ings were used to produce a prioritized pest list, the species compositions generated for 
the United States for both datasets were quite different. The study illustrates that the 
composition of the pest species complex present in a dataset and the distribution of 
species in the country of interest, are important. When there are many endemic pests 
in the data matrix for a large area like USA, the Euclidean distance values (risk rat-
ings) for pests tend to be significantly lower in general than if the majority of species 
in the pest profile are not present in the country. That result highlights the need to 
analyse and interpret the results of each database separately and be mindful of endemic 
species that may have very low global prevalence and therefore tend not to co-occur 
with many other species. The fact that each database was able to highlight the risk of 

Figure 4. The level of similarity between the GPDD and CABI databases.
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a number of species that had not established in 2007 but subsequently established by 
2011 (Suiter 2011), illustrates that the information in each database, despite being 
different, is valid.

SOM Validation: simulated data

Paini et al. (2011) tested the ability of the SOM to rank fungal species that could estab-
lish in a region above those species that couldn’t establish according to simulated data. 
The authors did this in a virtual world in which regions had particular characteristics 
and species had particular requirements. Surprisingly, there was little or no difference 
between species that had low prevalence and species that were widely distributed and 
the success rate was above 90% for all species.

K-means clustering

K-means is an unsupervised algorithm that performs clustering (Lloyd 1982). In other 
words, the algorithm finds the best way to partition data into groups or clusters. The 
name k-means comes from the fact that the user decides how many clusters (k clusters) 
are necessary to partition data. The k-means algorithm proceeds as follows:

Choose k initial centres. These centres (vectors) can be generated randomly or they can 
be vectors that are randomly selected from the data set.

For each data vector (eg. regional pest profile), calculate the distance to each of the k 
cluster centres.

Assign each data vector (pest profile) to its nearest cluster.
Calculate new cluster centres, corresponding to the mean of all vectors in each cluster.
Repeat steps 2-4 until a stopping condition is reached. This is usually when vectors no 

longer change the cluster they are assigned to, that is, the clusters are stable.

The approach of using k-means to analyse the regional pest profiles is the same 
as the self-organizing one where geographical regions are clustered together based on 
their pest species assemblage (pest profiles) to determine which species are more likely 
to establish in a new region. In k-means, the risk index of a species establishing in a 
specific region is assessed by its frequency of presence in the vectors/pest profiles in 
the cluster to which the target region has been assigned. Watts and Worner (2009a, 
2009b, 2011, 2012) have reported a number of analyses of the CABI data set (2003, 
2007) described above, using k-means clustering. In Watts and Worner (2009b) the 
results of clustering insect assemblages with SOM were compared with the results of 
the k-means algorithm. While that study found that in some ways k-means could be 
superior to SOM, several issues were left unaddressed such as the effect of noise or 
small random changes to the performance of each algorithm.
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Watts and Worner (2012) compared the performance of SOM maps with the per-
formance of equivalent k-means algorithms over assemblages of bacterial crop diseases 
and also investigated the effects of adding noise to the assemblages and measuring 
cluster quality. Cluster quality for each algorithm was measured using quantisation er-
ror (Hansen and Jaumard 1997), which is the mean distance between each vector and 
the centre of its cluster. In addition, the computational efficiency of each algorithm 
was also considered. While the Watts and Worner (2012) study found differences in 
the performance of the clustering algorithms in most instances the difference are not 
significant. More important, however, in this study as well as previous studies, the dif-
ferent algorithms give high to medium risk indices to basically the same species. For 
example, in the Watts and Worner (2012) study only 12 species out of the top 80 used 
for the comparisons, were not in both the SOM and k-means risk lists.

Hierarchical clustering

Borgatti (1994) and Hastie et al. (2009) give good explanations of hierarchical cluster-
ing as a means of classifying similar samples or objects. Given a set of N items to be 
clustered, the start of the hierarchical agglomerative clustering is to:

Assign each item to its own cluster. In each of the subsequent steps, two clusters 
are merged and a new cluster is formed until all clusters are merged into a single 
cluster. There are various methods to determine which clusters are merged, for ex-
ample using the most similar pair of observations in two clusters (single linkage), the 
most dissimilar pair of observations (complete linkage) or the dissimilarity between 
the average of the observations in each cluster (group average; Hastie et al. 2009). The 
method used to merge clusters determines the size of the clusters and the relationships 
between them. A dendrogram provides a graphical representation of the relationship 
between the clustered items by plotting each merge at the similarity (distance) between 
the merged groups. It is important to note that, like the other clustering techniques 
discussed in this paper the clustering result does not imply a causal relationship and 
should be interpreted with caution.

An example of a hierarchical cluster analysis of the CABI data is provided by Es-
chen and Kenis (2012) who investigated the trade in woody plants for planting in Eu-
rope, as a major pathway for the introduction of alien forest pests and diseases. While 
phytosanitary inspections at the import stage are essential to prevent such introduc-
tions, Eschen and Kenis (2012) suggest they are limited and tend to target recognised 
pests, particular hosts and shipments that are likely to contain them. Such phytosani-
tary inspections tend to be biased, moreover, the identification of risk depends to some 
extent on expert judgement. The aim of the Eschen and Kenis (2012) analysis was to 
provide an objective assessment of the risk posed by individual species and identifica-
tion or prediction of potential sources of invasive species based on the global distribu-
tion of known pests. Eschen and Kenis (2012) analysed distribution data (presence/
absence data) obtained from CABI’s Plantwise Knowledge Bank (http://www.plant-
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wise.org/knowledgebank) for 1009 invertebrate pests and pathogens of woody hosts 
in 351 global regions within 183 countries. Seven large countries were subdivided 
into regions. The 1009 taxa were divided into twelve groups (4 micro-organism and 8 
invertebrate taxa).

Countries and regions with similar pest species assemblages were identified for each 
organism group using hierarchical cluster analysis and the likelihood of establishment 
of those species was calculated as the proportion or frequency of countries within the 
cluster containing EU and European Free Trade Association countries (EFTA) where 
each species has been recorded as present. Taxa recorded in fewer than six regions were 
excluded from the analysis to reduce the influence of rare species and outliers. Eschen 
and Kenis (2012) used Ward minimum variance method (Ward 1963) to determine 
which clusters were merged, as it consistently produced interpretable clusters, while 
other methods did not. The optimal number of clusters was determined for each of the 
twelve groups of taxa using the Davies-Bouldin Index, a measure based on the ratio 
between the variation within and between clusters (Davies and Bouldin 1979).

Interpretable clusters were formed for all groups of taxa, except for the Oomy-
cetes, where the European countries were spread over all clusters. Clusters for micro-
organisms contained nearly twice as many regions as clusters for invertebrates (111 vs. 
61 regions per cluster). The non-EU regions with the most similar pest species assem-
blages to EU regions were North America, the Mediterranean region, the northern part 
of Eurasia and Australia/New Zealand (Fig. 5), which have a broadly similar climatic 
range as the EU and a long history of intensive trade. Most pest species in the database 

Figure 5. Geographical representation of the results of the hierarchical cluster analysis for species of 
micro-organisms and invertebrates. Countries on the map that are hatched have several regions that typi-
cally are in the European cluster. For each country and organism group, lists were produced that indicate 
those species that pose the greatest risk.
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used for hierarchical analysis were already present in one or more EU countries at the 
time of the study, which indicated that the risk of these species primarily comes from 
within the EU and is similar to the result of Paini et al. (2010b), who used a SOM 
to identify potential new invasive agricultural invertebrate pests for the USA and also 
found that the majority of species in their dataset were already recorded in one or more 
states. Moreover, the high proportion of species already recorded in the target region 
lowered the risk values (Suiter 2011). Eschen and Kenis (2012) suggested that combin-
ing the results of this analysis with economic data could provide a clearer indication 
about the likely origin of unidentified, future alien species establishing in Europe, that 
should be considered when assessing the risks associated with the import of woody 
plants for planting.

SOMs and multi-criteria analysis

Plant-parasitic nematodes (PPN) cause estimated losses of $157 billion/year worldwide 
(Abad et al. 2008) and documented losses of $600 million/year in Australia (Hodda 
2009). Fortunately, Australia does not have many of the globally damaging and quar-
antinable PPN species and the current losses result from the activities of a relatively 
few damaging species, such as root-knot nematodes, root lesion nematodes, cereal cyst 
nematode, Heterodera avenae and potato cyst nematode, Globodera rostochiensis (in the 
state of Victoria only). Despite this, trade is increasing, as it is in many other countries, 
thus providing multiple pathways for introduction of more exotic nematode species. 
Based on the need for a system to prioritize risks from many PPN species and to 
predict their potential biosecurity threats, Singh et al. (2012) carried out a study that 
analysed the distribution data of 250 PPN species from 355 regions worldwide using 
a SOM. As in the previous studies, Singh et al. (2012) compared the presence and 
absence of pest species in Australia to other regions of the world by clustering regions 
with species assemblages similar to Australia and her component states. The SOM was 
also used to determine regions which could act as a donor for potential invasive species.

Singh et al. (2012) considered that in addition to distribution, there are other cri-
teria that contribute towards the risks and impact of a species. Additionally, there are 
often biases in the distribution data as thorough nematode surveys are lacking in coun-
tries where there is very limited nematological expertise available. In consideration of 
all these factors, Singh et al. (2012) devised an assessment including the following nine 
criteria. For example, 1) the existence of particular pathways, 2) survival adaptations, 
3) pathogenicity, 4) host range, 5) whether the species is an emerging pest, 6) its taxon-
omy, 7) the existence of particular pathotypes and, 8) association in disease complexes, 
and, 9) the level of knowledge that exists about the species. For each of the nine criteria, 
a probability scale was established indicating the level of risk. For example, for the pine 
wilt nematode, Bursaphelenchus xylophilus, and the criterion “Pathways”, they define 
the probability scale as, a) association with propagative material p ≥ 0.6, b) association 
as a contaminant, p < 0.6 > 0.3, c) not directly associated with trade p < 0.3. For each 
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criterion, probability values were estimated based on both literature search and expert 
judgment. Following that, weights were assigned based on the relative contribution of 
each criterion towards the biosecurity risk. The SOM index from the analysis of PPN 
distributions was combined with the values from the nine criteria and the sum of the 
weighted average values was calculated to determine the overall biosecurity risk.

Initial SOM clustering indicated that potential donor regions or regions from 
where species are most likely to pose the greatest threat were unsurprisingly, Australia’s 
major trading partners. Bursaphelenchus xylophilus is a well known quarantine nema-
tode species and based on the SOM analysis of the distribution data the resulting 
SOM index of 0.37 indicated the species to be of medium risk. Singh et al. (2012) 
used SOM index risk scale, > 0.7 = High, < 0.7 > 0.3 = Medium and < 0.3 = Low risk. 
When the criteria based assessment was included, the resulting risk value was much 
higher than that estimated by the SOM index alone (Table 1).

The higher risk is the result of considering the potential economic impacts of the 
species and additional information such as recent spread and availability of pathways as 
indicated by the number of interceptions in wood packaging materials and pine timber 
products. Another example is the carrot cyst nematode, Heterodera carotae, an economi-
cally important pest which currently has a restricted distribution. However, despite this 
restricted distribution, there is evidence of its spread and also its good survival adaptations 
by the formation of cysts. The SOM estimate ranked the species as low risk, but based 
on the multicriteria analysis, it becomes categorised as a medium risk species (Table 2).

The study by Singh et al. (2012) illustrates, as Worner and Gevrey (2006) sug-
gested, that relying only on SOM estimates alone may lead to under- or overestimation 
of risks depending on the species. SOM remains a useful method for initial prioritiza-
tion and can be incorporated with criteria based methods to better estimate a species 
biosecurity risks. A similar suggestion was made by Eschen and Kenis (2012), who 
found that their analysis did not identify Asia as a potentially important source or 
donor region for new invasive pests, despite a recent, strong increase in trade in plants 
for planting from that region.

Table 1. SOM analysis and criteria based assessment of the pine wilt nematode (B. xylophilus)

Criteria Probability Weight
Distribution (SOM index from 1) 0.37 0.2
Pathways 0.80 0.15
Survival adaptations 0.65 0.1
Pathogenicity 0.85 0.1
Host range 0.55 0.1
Emerging pest 0.80 0.1
Taxonomy 0.60 0.1
Pathotypes 0.50 0.05
Disease complex 0.60 0.05
Knowledge 0.45 0.05
Sum (probability by weight) 0.62
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discussion

The studies described here suggest that SOMs can provide additional or preliminary 
information for evaluation and prioritisation of alien invasive species. It appears that 
no matter which clustering method or database is used, the analysis of similarities 
among pest species assemblages or regional profiles can be very useful. A criticism 
made by stakeholders has been that the databases used for such analyses contain a 
substantial number of errors. However, sensitivity analyses carried out by Paini et al. 
(2010a) and Watts and Worner (2009b) show that species weights and species ranks 
appear relatively robust to quite large errors in species distribution data. Given the 
many errors of omission and commission that are inevitable in such databases, these 
findings illustrate the practical utility of this approach and the utility of SOMs as a 
method, that can complement the current approaches used by biosecurity agencies. 
Additionally, the study by Suiter (2011) showed that quite different databases can still 
provide useful assessments of potential threats borne out by the number of species in 
each database given high risk weightings in 2007 that eventually established by 2011. 
In addition, the Suiter (2011) study seems to indicate that there may be some value 
in including other pest taxa in the analysis. The reason why the inclusion of more pest 
species might give better results is that more species may better characterise the pest 
complex by integrating more information about the abiotic and biotic influences of 
the region compared with fewer species. This hypothesis clearly requires more research.

With respect to the clustering methods that have been applied to the pest prioriti-
sation problem, they all have advantages and disadvantages. The SOM analysis is com-
putationally less efficient, but gives rich results. K-means is reputed to be susceptible to 
outliers and the results greatly depend on the initial partitions (the values of the cluster 
centres). However, an advantage of a SOM analysis is that it deals quite well with outli-
ers. Indeed we have observed it can confine outliers in a part of the SOM map without 
affecting the other parts. K-means just partitions the data, whereas a SOM analysis 
preserves the relationship between neighbouring clusters or nodes in the map. Nearby 
data vectors in the input space are mapped onto neighbouring locations on the output 
(map) thereby preserving the internal structure of that data. SOMs also provide good 
data visualization and provide users with results that can simplify further analysis

Despite the difference between SOMs and k-means, a further analysis of the results 
in Watts and Worner (2012) shows that the differences between a k-means analysis and 

Table 2. The results of a multi-criteria analysis for a range of exotic nematode species.

Species SOM Index Combined weighted average
B. xylophilus 0.37 0.62
H. carotae 0.10 0.47
H. glycines 0.40 0.63
H. oryzae 0.47 0.52
M. chitwoodi 0.20 0.62



Prioritizing the risk of plant pests by clustering methods; self-organising maps... 99

a SOM analysis can be minor if the same number of clusters as the SOM analysis are 
used. The advantage of k-means over SOM is that it is much more computationally 
efficient, however that does not seem so important when risk analyses, particularly 
when related to a new commodity or import risk assessment, may take a year or more 
to complete.

A striking feature when the clusters that result from the methods presented here 
are compared is the similarity of the results. The clusters in Worner and Gevrey (2006), 
Watts and Worner (2009b), Eschen and Kenis (2012) and another study by Vänninen 
et al. (2011) are very similar, although three techniques and two different datasets were 
used. The Eschen and Kenis (2012) study investigated twelve groups of invertebrates 
and micro-organisms with woody hosts, while the other studies investigated agricul-
tural insect pests, but the clusters produced were strikingly similar. Such similarity 
suggests that the results of all three techniques were robust. However, values for the 
risk factors varies and a formal comparison of the methods discussed here would be 
desirable

Like all data analyses, the methods described here involve error. A weakness of all 
the clustering methods is their inability to provide a realistic risk index for species that 
have a restricted distribution and low prevalence, or emerging pests that initially have 
low prevalence and therefore low co-occurrence with other species. Although Paini et 
al. (2011) showed the SOM was able to successfully identify even low prevalence spe-
cies as having a higher likelihood of establishing than other more widespread species 
that were not able to establish. The SOM method in particular identifies species that 
are strongly associated with a particular pest profile. For those species that are not yet 
established, there could be very good reasons why those species have not established 
but clearly they need closer study. Other information should be considered. In fact the 
multi-criteria analysis is a good example of first using the SOM analysis to target spe-
cies for in-depth risk assessment then quantifying additional relevant information to 
provide a more informed risk assessment.

Recommendations

Self-organising maps and other clustering methods have been used to filter the large 
amounts of information about the distribution of known global invasive arthropod 
pests and plant pathogens for risk assessment to help prioritise policy and resources. 
This novel approach continues to be researched and adopted by a scientists and agen-
cies internationally to provide decision support for risk assessors. With more people ap-
plying the concept of clustering invasive species assemblages, indicative protocols that 
allow for robust comparative studies need to be developed. Protocols for the detection 
and removal of possible outliers, guidance for the choice of the initial number of seed 
clusters (or cells for a SOM), acceptable methods for cluster validation and judging 
cluster quality across all methods as well as methods for reconciling the information 
coming from different clustering methods, are required. An additional requirement for 
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risk assessment is to determine the efficacy of using clustering methods to refine the 
projection of the potential for establishment of high risk species by combining regional 
assemblages with regional climate and habitat variables. Moreover, additional research 
is needed to investigate whether, in addition to pests and pathogens, the inclusion in 
the analysis of other associated organisms, such natural enemies, biological control 
agents, and fungal endophytes, can give stronger and more informative aggregations. 
Additionally, the analyses presented here are based on political regions where an alter-
native is to use eco-climatic regions that might provide closer links of the pest profiles 
with specific host and climate combinations.
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Abstract
Increasing trends in global trade make it extremely difficult to prevent the entry of all potential invasive species 
(IS). Establishing early detection strategies thus becomes an important part of the continuum used to reduce the 
introduction of invasive species. One part necessary to ensure the success of these strategies is the determination of 
priority survey areas based on invasion pressure. We used a pathway-centred conceptual model of pest invasion to 
address these questions: what role does global trade play in invasion pressure of plant ecosystems and how could 
an understanding of this role be used to enhance early detection strategies? We concluded that the relative level of 
invasion pressure for destination ecosystems can be influenced by the intensity of pathway usage (import volume 
and frequency), the number and type of pathways with a similar destination, and the number of different ecologi-
cal regions that serve as the source for imports to the same destination. As these factors increase, pressure typically 
intensifies because of increasing a) propagule pressure, b) likelihood of transporting pests with higher intrinsic inva-
sion potential, and c) likelihood of transporting pests into ecosystems with higher invasibility. We used maritime 
containerized imports of live plants into the contiguous U.S. as a case study to illustrate the practical implications of 
the model to determine hotspot areas of relative invasion pressure for agricultural and forest ecosystems (two ecosys-
tems with high potential invasibility). Our results illustrated the importance of how a pathway-centred model could 
be used to highlight potential target areas for early detection strategies for IS. Many of the hotspots in agricultural 
and forest ecosystems were within major U.S. metropolitan areas. Invasion ecologists can utilize pathway-centred 
conceptual models to a) better understand the role of human-mediated pathways in pest establishment, b) enhance 
current methodologies for IS risk analysis, and c) develop strategies for IS early detection-rapid response programs.
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Introduction

Biological invasions can produce severe environmental and economic impacts in plant 
ecosystems worldwide (Pimentel 2009, Vilà et al. 2010, Scalera 2010, Aukema et al. 
2011), and the threat of new invasions will continue to be of global concern in the years 
ahead (Pejchar and Mooney 2009, Ziska et al. 2010, Lugo and Gonzalez 2010, Pyšek 
and Richardson 2010, Bradley et al. 2012). Global trade has been widely acknowl-
edged as one of the leading causes of the introduction of invasive species (IS) (Meyer-
son and Mooney 2007, Westphal et al. 2008, Hulme 2009, Perrings et al. 2009). In 
the continuum of approaches used against IS in plant ecosystems, initial efforts are 
focused on the prevention of their entrance, which is the primary responsibility of 
the National Plant Protection Organizations (NPPOs) in each country (Magarey et 
al. 2009). NPPOs, however, face an ever-increasing challenge in this regard. In 1995, 
the World Trade Organization Agreement on the Application of Sanitary and Phy-
tosanitary Measures (SPS) (SPS Agreement) entered into force. With regard to plant 
ecosystems, the SPS Agreement lays out rights and obligations for member countries 
to protect the health of plants from the introduction and spread of pests and diseases. 
The SPS Agreement requires measures, commonly based on international standards, 
which are aimed to prevent the entry of pests and diseases while ensuring that such 
measures are not used as unjustified barriers to trade. SPS measures that are not based 
on international standards must be technically justified and based on scientific evi-
dence (usually through a risk assessment) (World Trade Organization 2010). Despite 
SPS measures and related efforts by countries to prevent the entry of IS there is the 
potential of novel introductions with increasing trends in the volume and origin of 
international cargo. This underscores the importance of establishing early-detection 
strategies for the detection of IS that may be introduced into a country.

Given the above challenges, countries implement approaches against IS based on ear-
ly detection-rapid response strategies (Mehta et al. 2007, Rabaglia et al. 2008, Simpson 
et al. 2009, Britton et al. 2010). These strategies include the following components: a) 
detection networks including syndromic surveillance; b) research and training; c) stake-
holder participation; d) integration of technologies to facilitate detection and commu-
nication of knowledge, skills, and data; and e) taxonomic support, including availability 
of voucher specimens and authoritative verifications (National Invasive Species Council 
2003). Early detection networks, often operating under limited resources, should focus 
on high-priority targets including “high-risk locations, high-value resources, important 
pathways, and populations and species of specific concern” (National Invasive Species 
Council 2003). For the particular case of trade-mediated introductions, we propose in 
this paper to include the concept of invasion pressure as a criterion to highlight poten-
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tial at-risk locations for early detection purposes. Invasion pressure, which is the prob-
ability that an ecosystem experiences an invasion within a specified time period, results 
from the interaction of three factors: propagule pressure, species invasion potential, and 
ecosystem invasibility (Lonsdale 1999, Davis 2009). For the purpose of this paper, we 
define propagule as a shipment in a pathway at any point in time and space that is in-
fested, infected, or contaminated by IS. We assume that IS are viable at arrival and have 
an intrinsic potential to establish. Building on the definition of the International Plant 
Protection Convention (2012a), a pathway is any means (commodity, container, and/
or conveyance) that allows the entry or spread of IS. Propagule pressure is thus a meas-
ure of the number of individuals in a shipment and the rate at which shipments arrive 
per unit of time (Simberloff 2009). Species invasion potential is the intrinsic ability of 
species to invade an ecosystem (di Castri 1989). Finally, ecosystem invasibility is the 
overall susceptibility of an ecosystem (Williamson 1996) due to factors such as climate, 
susceptibility of native species, and disturbance. To use the invasion pressure criterion 
in the selection of target locations for early detection programs, we need to answer two 
questions: what role does global trade play in invasion pressure of plant ecosystems, and 
how could an understanding of this role be used to enhance early detection strategies?

To answer the above questions, we framed the interaction between global trade 
and biological invasions using a pathway-centred invasion model (Fig. 1). As previously 
defined, a pathway can be any combination of a commodity, a container, or a convey-
ance (truck, plane, marine vessel, etc.) that facilitates the entry of an IS. It implies the 
existence of an origin and a destination, which in our model we label as the source and 
destination ecosystems, respectively. The uptake phase occurs when an IS infests (or 
infects, in the case of pathogens) a commodity, or when an IS is simply present (as a 
contaminant) on a commodity, or on or in a container or conveyance. The transport 
phase is the movement of the conveyance from origin to destination. The release phase 
of IS takes place at the destination end of the pathway and either of two situations can 
lead to an invasion. First, the IS can be released into a suitable habitat (in which case 
release and entry occur simultaneously). Second, the IS can be released into a situation 
that facilitates access to a suitable habitat (in which case release and entry are separated 
in time). The uptake, transport, and release phases are driven by logistic and freight dis-
tribution processes dictated by urban, production, and transportation systems. After re-
lease, ecological processes take over to determine whether the IS is able to establish and 
spread. Ecological processes also influence the occurrence of IS during the uptake phase.

What then is the answer to our first question, i.e., what role does global trade play 
in invasion pressure of plant ecosystems? Based on the pathway-centred invasion model 
(Fig. 1), the level of invasion pressure experienced by destination ecosystems can be 
influenced by the intensity of pathway usage, the number of pathways with similar des-
tinations, and the number of different ecological source regions for imports to the same 
destination. High-intensity pathway usage, high numbers of single destination path-
ways, and high numbers of source ecological regions can result in high invasion pressure 
because they increase a) propagule pressure, b) the diversity of IS transported (which 
may increase the likelihood of transporting IS with high intrinsic invasion potential), 
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and c) the likelihood of transporting IS that can take advantage of an ecosystem with 
high potential invasibility. It is important however, to clarify that when propagule pres-
sure is estimated using a proxy variable (e.g., volume of freight shipments) we cannot 
estimate invasion pressure per se. This is because we do not know the type and number 
of IS (if any) present in the freight shipment. Instead we should use the term relative 
invasion pressure to emphasize the fact that high and low values (of invasion pressure) 
are only relative to the space/time continuum under study. Subsequent risk analysis 
could be implemented to determine the actual risk experienced by areas under high rela-
tive invasion pressure. To answer the second question (how could an understanding of 
this role be used to enhance early detection strategies?), we will illustrate the use of this 
model to characterize the relative invasion potential of two plant ecosystems with a case 
study. In this case study, we will quantify the relative invasion pressure in agricultural 
and forest ecosystems due to U.S. imports via a single pathway (maritime containerized 
imports of live plants). Foreshadowing our results, we will show that this pathway places 
higher relative invasion pressure on several agricultural and forest areas in the U.S., in-
cluding many that occur within major metropolitan areas. Finally, we will highlight the 
implications of our model for researchers and policymakers who deal with IS. We an-
ticipate that the principles discussed in the present paper can also be applied and utilized 
as a framework to examine the invasion pressure of plant ecosystems via other pathways.

Case study: U.S. maritime containerized imports of live plants

Background

The value of global live plant trade has increased worldwide in the last decade (Fig. 
A1 in Appendix). Globally in 2011, the U.S. ranked 9th in exports and 2nd in imports 

Figure 1. Schematic diagram of a multi-stage invasion model that links global movement of traded 
goods (as part of the transportation and supply chain systems) to movement of invasive species (IS). 
This model was adapted from Isard et al. (2005) in which long-range dispersion of invasive species was 
depicted via atmospheric pathways and also includes concepts by Colautti and MacIsaac (2004) and 
Rodrigue et al. (2009).
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with 2% and 9.3% shares of the world exports and imports of live plants, respectively 
(Tables A1, A2 in Appendix). Maritime containerized imports represented 64.4% of 
the total value of all live plants imported into the U.S. in 2010. This value is after ex-
cluding fresh cut flowers (which are imported almost exclusively via the air conveyance 
pathway) (Table A3 in Appendix) and live plant imports from Mexico and Canada 
(which are imported via the land conveyance pathway such as truck or rail) (Table 
A4 in Appendix). The increase in trade of live plants has intensified concerns as they 
constitute a pathway for the introduction of invasive plant pests or pathogens (Reich-
ard and White 2001, Brasier 2008, Drew et al. 2010, Bradley et al. 2012, Liebhold 
et al. 2012, Parke and Grünwald 2012). In fact, on a commodity categorization scale 
of 1 to 4 where 4 represents commodities with the highest potential to introduce and 
spread pests, live plants are categorized as either 3 or 4 (International Plant Protection 
Convention 2009). Category 3, which includes cut flowers, refers to commodities that 
have not been processed and are intended for consumption or processing. Category 4 
includes commodities that have not been processed and whose intended use is plant-
ing. Live plants in this last category (serially ranked from highest to lowest based on 
risk) include rooted plants in pots; bare root plants; bulbs and tubers; root fragments, 
root cuttings, rootlets or rhizomes; rooted cuttings; unrooted cuttings; and budwood/
graftwood (International Plant Protection Convention 2012b). U.S. regulations of live 
plant imports are implemented via Plant Inspection Stations which besides inspec-
tions make sure that standard protocols for treatments are followed (Animal and Plant 
Health Inspection Service 2007, 2011, 2012a,b). When high risk IS are found associ-
ated with the imported live plants, fumigation treatments are implemented, a proce-
dure that often targets other IS present on the commodity.

Methods

To quantify the intensity of pathway usage we acquired a full set of PIERS® (http://
www.piers.com) records for U.S. maritime containerized imports of live plants (Har-
monized System Code = 06) during 2010. Data fields included vessel name, number of 
TEUs (i.e., Twenty-Foot Equivalent Unit containers), tonnes, place/port of container 
loading with live plants, and U.S. port of destination. Places/ports were geocoded 
using a variety of public domain sources including the World Port Source®, GEOnet 
Names Server (GNS), and Bing® maps. In the case of places whose names were the 
same as other places in the same country, an effort was made to search online to deter-
mine if those names were associated with places that commonly exported live plants. If 
this was not successful, the place was not included in the analysis. Because some U.S. 
ports that are involved in live plant trade are in close geographic proximity to each 
other (e.g., the ports of Long Beach and Los Angeles in California), we grouped them 
by their encompassing metropolitan area. Finally, we computed the daily number of 
TEUs between the origin of the containers (i.e., the place/port where live plants were 
loaded into a container) and the destination (i.e., the U.S. metropolitan area of the 
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port of entry). Because data records in PIERS® include fractions of TEUs (i.e., when 
only a portion of a container is occupied with live plants), the sum of TEUs becomes 
only a measure of import volume and does not reflect the actual number of individual 
containers. Due to data availability for this study, our analysis focused on live plants in 
general. However, Tables A3 and A4 in Appendix provide insight into the types of live 
plants that were included in the maritime containerized imports to the U.S. in 2010 
(and hence in the analyses found in this paper).

To provide an indicator of the potential diversity of IS transported into the U.S. 
we quantified the number of ecological regions from which live plant imports origi-
nated throughout the world and where they entered and moved to in the U.S., we used 
the world ecoregion classification by Olson et al. (2001). This classification system 
divides the world into 14 biomes, which are subdivided into 867 ecoregions. Each 
port or place of origin for the live plant imports in our dataset was assigned to the bi-
ome and ecoregion it intersected. We computed the number of biomes and associated 
ecoregions that served as the origin for the live plant imports that arrived in each U.S. 
metropolitan area and state.

To determine areas beyond the U.S. ports of entry that could be under high rela-
tive invasion pressure we modelled the final destination of live plant imports at the 
U.S. county level. First we acquired monthly data on U.S. maritime containerized 
imports of live plants during 2010 from USA Trade® Online (https://www.usatrade-
online.gov). This dataset included country of origin, weight imported, and U.S. state 
of destination. Then we acquired from Hoovers Inc. (http://www.hoovers.com) a list 
of geocoded retail nurseries, garden stores and other establishments engaging in the 
sale of ornamental nursery products in 2010–2011. This list contained, among other 
information, the total revenue per establishment, which was used to obtain the total 
revenue for all establishments within a county. We aggregated the revenue at the coun-
ty level due to the uncertainty of knowing which establishments actually imported live 
plants in 2010. Moreover, sales of live plants are not occurring only at those speciali- 
zed establishments, but also at home improvement stores and mass merchandisers 
throughout the U.S. (Waterman 2012). Therefore, revenue was used as an indicator of 
live plant demand in a county. We then computed the proportion of county revenue 
with respect to the total state revenue. This proportion was used as a weight factor to 
disaggregate State imports of live plants and produce a map of the likely destinations 
of live plant imports at the county level. This county-level map was intersected with 
the county centroids of the U.S. land-use based maps (agriculture and forest) from 
Colunga-Garcia et al. (2010a). Using the resulting maps (agriculture and forest centred 
maps for counties that were destinations for live plant imports) we estimated hotspots 
for potential invasion in those two plant ecosystems. To perform this procedure we 
used the software GeoDa (Anselin et al. 2006) and computed the Moran’s I to detect 
clusters of counties with high volume of imports. Moran’s I is a local indicator of spa-
tial association (Anselin 1995), and in our case, it detected which counties were the 
destinations of significantly higher volume of live plant imports than the mean volume 
for the entire contiguous U.S. (Fortin and Dale 2005).
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Results

Live plant imports to the U.S. in 2010 that entered via the maritime containerized 
pathway originated from 276 distinct places in 76 countries. These imports arrived at 
U.S. seaports located in 15 metropolitan areas within 13 states of the contiguous U.S. 
(Fig. 4B). Three metropolitan areas accounted for 72.2% of all containerized live-plant 
maritime imports entering the U.S. in 2010: Los Angeles-Long Beach-Santa Ana in 
the state of California (37.3%), New York-Northern New Jersey-Long Island which 
included parts of the states of New York, New Jersey, and Pennsylvania (23.3%); and 
Miami-Fort Lauderdale-Pompano Beach in the state of Florida (11.6%) (Fig. 2). For 
brevity we designated those metropolitan areas as Los Angeles, New York, and Miami, 
respectively. The source areas of these live plant imports represented 102 ecoregions 
within 13 biomes (Fig. 4A). However, 40.4% of the live plant imports originated from 
the temperate broadleaf/mixed forest and 40% came from the tropical and subtropi-
cal moist broadleaf forest biome. In addition, the source areas within these same two 
biomes contributed 53% of the 102 ecoregions, representing 31 and 23 ecoregions, 
respectively. The three aforementioned metropolitan areas not only received large vol-
umes of live plant imports but also received imports from a large number of ecoregions 
(Fig. 2). A visual display of the variation in weekly imports of live plants in 2010 by 

Figure 2. Relative invasion pressure of invasive species (IS) at seaports within selected metropolitan areas 
in the contiguous U.S. via maritime containerized imports of live plants. The number of source ecoregions 
is used as an indicator of potential IS diversity, while the number of containers (TEU = container length 
in Twenty-foot Equivalent Units) with live plants is used as an indicator of relative IS propagule pressure. 
Data sources: PIERS® port to port data and World Ecoregions (Olsen et al. 2011).
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biome of the source area (Fig. 3) showed that the New York metropolitan area exhib-
ited certain seasonality in imports with a large spike between the months of August 
and October and less activity between May and June. In contrast, the other two met-
ropolitan areas depicted in Fig. 3 (Los Angeles and Miami) showed less variation in 
the volume of imports throughout the year. Another observation to note is that while 
the tropical and subtropical moist broadleaf forests biome was a major contributor to 
the live plant imports entering Los Angeles and Miami, the temperate broadleaf/mixed 
forest biome was the major contributor for imports entering New York.

Figure 3. Trend in weekly number of maritime containerized imports (TEUs) of live plants entering the 
contiguous U.S. in 2010 at seaports in three selected metropolitan areas. Imports were classified according to 
the likely biome where the live plants were loaded within the country of origin. Numbers in parentheses for 
each biome refer to the total number of containers (TEUs) that arrived with live plants in 2010. The blackened 
areas for each biome type represent the trend in live plant imports at weekly intervals in 2010 based on the total 
number of TEUs indicated in parenthesis. PIERS® port to port data and World Ecoregions (Olsen et al. 2011).
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Figure 4. Maritime containerized imports of live plants entering the contiguous U.S. in 2010 from their 
source to their final destination. A Likely source areas of imported live plants by ecoregions (areas in red) 
B Volume of imports (TEUs) with live plants by U.S. state of entry. State abbreviations: CA California, 
FL Florida, GA Georgia, MA Massachusetts, MD Maryland, NC North Carolina, NY-NJ New York-New 
Jersey, PA Pennsylvania, SC South Carolina, TX Texas, VA Virginia, WA Washington C Biome at the 
source of the imported live plants by destination state d Biomes of the contiguous U.S E Distribution of 
agricultural and forest land use in relation to the potential final county destination of live plant imports.
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The maps in Fig. 4E indicate that many counties (2,422) served as the likely fi-
nal destination for the live plant imports that arrived in the U.S. via the maritime 
containe rized pathway in 2010. Overall, the top 80% of live plant imports (by volume) 
were likely shipped to 182 counties in the contiguous U.S., the next 15% of the im-
ports went to another 368 counties, and the remaining 5% of imports went to another 
1872 counties (Tables A5, A6 in Appendix). Of the 182 counties that received 80% 
of the imports in 2010, 154 (84.6%) were located in metropolitan areas and received 
74.2% of all live plant imports that entered the contiguous U.S. The analysis (Fig. 5) 
revealed that most of California, Florida, New Jersey, and Connecticut and portions of 
Washington, New York, Pennsylvania, and Maryland are potentially under high rela-
tive invasion pressure under the analyzed pathway. Of the 157 U.S. counties that fell 
within hotspots of relative invasion pressure, 154 had agricultural land and 143 had 
forest land, and of these, 134 (87%) and 125 (87.4%) counties, respectively, fell within 
metropolitan areas. The counties with agricultural and forest ecosystems received 64.5 
and 63.3% of the live plant imports to the contiguous U.S. in 2010, respectively.

discussion

At the beginning of this paper, we posed two questions: What role does global trade play 
in invasion pressure of plant ecosystems? And how could an understanding of this role 
be utilized to enhance early detection strategies? We answered the first question in the 
introduction by explaining the implications of a pathway centred invasion model. We 
addressed the second question with the case study. Given the risk of live plant imports as 
an IS pathway (International Plant Protection Convention 2009), USDA-APHIS puts 
special effort in the surveillance of this pathway (Animal and Plant Health Inspection 
Service 2007). However, IS that escape detection at ports of entry could potentially es-
tablish in the hotspot areas of relative invasion pressure identified by our model. The 
hotspot areas in the northeastern U.S. (Fig. 5) are likely the result of imports entering the 

Figure 5. Potential hotspots of relative invasion pressure to IS associated with maritime containerized 
imports of live plants in the contiguous U.S. in 2010. A Agricultural ecosystems B Forest ecosystems. 
Contour lines separate major U.S. biomes as shown in Fig. 4E.
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New York metropolitan area, which is a major gateway for large volumes of imports that 
originate from many different world ecoregions (Fig. 2). The major biome encompassing 
the hotspots in the northeastern U.S. (i.e., temperate broadleaf/mixed forest) (compare 
Figs. 4D and 5) is similar to the dominant biome that is the source of most live-plant 
imports that enter through the New York metropolitan area (Fig. 3). Such a relationship 
between source and destination biomes indicates that IS that gain access to plant eco-
systems in the northeastern hotspot areas are likely to find suitable conditions for their 
establishment. In contrast with the northeastern hotspots, a mixture of biomes comprises 
the source regions for live plant imports in the southwestern U.S. and these do not match 
well with the biomes that encompass the hotspots. This does not preclude invasion in the 
Southwest, but it forces one to think about what types of IS would thrive best in such 
hotspots and under what circumstances. The use of irrigation or other manipulations of 
the environment in the Southwest may provide suitable microclimates for IS to establish. 
If these areas are recognized as being within a hotspot for relative invasion pressure and a 
subsequent risk analysis determines the area as high risk then by regularly monitoring for 
IS there is a good chance that new IS will be detected relatively soon after establishment.

An important insight for early detection strategies is that the majority of U.S. 
counties experiencing high relative invasion pressure (Fig 4E, 5) are located in metro-
politan areas. In assessing the implications of this, it is necessary to realize that the term 
“metropolitan” is not synonymous with “urban” (at least in the U.S.) (Office of Infor-
mation and Regulatory Affairs 2010). In U.S. metropolitan areas only 11% of the area 
is classified as developed land. Other land uses, such as forest, agriculture, and shrub/
scrub account collectively for 70% of the land in metropolitan areas (Table A7 in 
Appendix). One key characteristic of metropolitan areas—the economic interactions 
between urban and rural areas—makes them a fertile ground for the establishment and 
spread of IS. Consequently, plant ecosystems within metropolitan areas that include 
hotspots are also under high relative invasion pressure.

From a research perspective there is a strong need to characterize in more detail the 
IS propagule pressure entering a country, i.e., what life stages are commonly associated 
with the uptake and transportation processes? Such an analysis could be conducted by 
combining a) high-resolution trade data (e.g., port to port), b) models developed to deter-
mine the location and extent of foreign regions that could potentially serve as the source 
of IS, and c) models for the growth and dispersion of IS around foreign logistic-network 
facilities (e.g., port terminals). The results of such analyses could then be applied at the 
release stage of the invasion model to determine the interacting mechanisms between IS 
biological traits and propagules that allow them to reach suitable habitats. In addition, 
further refinements are needed in the approach we used in our case study. For instance, 
we assumed that the origin of the imported live plants was near the place where the live 
plants were loaded into the containers (from a logistics perspective that assumption may 
make sense). However, implementing a probabilistic gravity model could account for the 
potential that other nearby ecological regions could be the source of the imports. Also, we 
assumed in our approach that IS potentially associated with live plants were due to infesta-
tions that occurred in the country of origin. However, we recognize that plants could be-
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come infested throughout the entire trade network, including when a container is opened 
at each port visited until the final destination is reached (Kaluza et al. 2010, Keller et al. 
2010, Paini and Yemshanov 2012). Similarly, for the final destination of the imported 
live plants, we used information related to commercial business establishments in the U.S. 
that are involved in the sale of ornamental/nursery plants. However, as these relatively 
small commercial establishments keep losing market share to mass merchandisers and 
large home improvement stores, there will be a need to adjust our analytical approach.

From a policy perspective, there is a need to further develop strategies that more 
effectively acquire and incorporate trade information in pest risk analysis. We showed 
in our case study the importance of information such as daily port-to-port import data 
from all countries of the world to the United States that included the type of imported 
commodities. Such information may already exist (Sparka 2010) and it may already be 
available as a commercial database for selected countries (e.g., Piers® in our case study). 
Similarly, there is interest in developing early detection strategies that can help im-
prove the decision processes regarding which IS to select for monitoring efforts. One 
way to improve the process would be to change the focus from individual pest spe-
cies of concern to geographic areas or regions of concern. As stated above, areas with 
ecosystems under higher invasion pressure are likely to continue to be under higher 
invasion pressure in the future. Focusing surveillance efforts in such high-risk areas 
should increase the likelihood of early detection of IS (Colunga-Garcia et al. 2010b).

For the past few years the invasion literature has repeatedly noted the importance 
of global trade. Invasion ecologists can utilize a pathway centred conceptual model 
as described in the present paper as a framework to a) better understand the role of 
human-mediated pathways, b) enhance current methodologies for pest risk analysis, 
and c) develop strategies for IS early detection-rapid response programs.

Acknowledgements

We thank Eva Kassens-Noor, Janice Molloy, Trixie Smith, Wen Li, Robert Venette, and 
two anonymous reviewers for providing comments to enhance this manuscript. This 
project was made possible, in part, by a Cooperative Agreement from the United States 
Department of Agriculture’s Animal and Plant Health Inspection Service (APHIS) to 
the first author. The information and views set out in this paper are those of the authors 
and it may not necessarily express USDA-APHIS views.

References

Animal and Plant Health Protection Service (2007) Plant Inspection Station strategic plan 
2007–2012. U.S. Department of Agriculture, Animal and Plant Health Inspection Ser-
vice, Plant Protection and Quarantine, Washington, D.C., 1–24.



Global trade and invasion pressure in plant ecosystems 115

Animal and Plant Health Inspection Service (2011) Bulb Preclearance Program Identification 
Manual. U.S. Department of Agriculture, Animal and Plant Health Inspection Service, 
Plant Protection and Quarantine, Washington, D.C., 1–301.

Animal and Plant Health Inspection Service (2012a) Cut Flowers and Greenery Import Manual. 
U.S. Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protec-
tion and Quarantine, Washington, D.C., 1–156.

Animal and Plant Health Inspection Service (2012b) Plants for Planting Manual. U.S. Depart-
ment of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and 
Quarantine, Washington, D.C., 1–620.

Anselin L (1995) Local indicators of spatial association - LISA. Geographical Analysis 27: 93–115. 
doi: 10.1111/j.1538-4632.1995.tb00338.x

Anselin L, Syabri I, Kho Y (2006) GeoDa: An introduction to spatial data analysis. Geographi-
cal Analysis 38: 5–22. doi: 10.1111/j.0016-7363.2005.00671.x

Aukema JE, Leung B, Kovacs K, Chivers C, Britton KO, Englin J, Frankel SJ, Haight RG, 
Holmes TP, Liebhold AM, McCullough DG, Von Holle B (2011) Economic impacts of 
non-native forest insects in the continental United States. PLoS ONE 6: 1–7. e24587. doi: 
10.1371/journal.pone.0024587

Bradley BA, Blumenthal DM, Early R, Grosholz ED, Lawler JJ, Miller LP, Sorte CJB, 
D’Antonio CM, Diez JM, Dukes JS, Ibanez I, Olden JD (2012) Global change, global 
trade, and the next wave of plant invasions. Frontiers in Ecology and the Environment 
10:20–28. doi: 10.1890/110145

Brasier CM (2008) The biosecurity threat to the UK and global environment from in-
ternational trade in plants. Plant Pathology 57: 792–808. doi: 10.1111/j.1365-
3059.2008.01886.x

Britton KO, White P, Kramer A, Hudler G (2010) A new approach to stopping the spread of 
invasive insects and pathogens: early detection and rapid response via a global network of 
sentinel plantings. New Zealand Journal of Forestry Science 40: 109–114.

Colunga-Garcia M, Magarey RA, Haack RA, Gage SH, Qi J (2010a) Enhancing early detec-
tion of exotic pests in agricultural and forest ecosystems using an urban-rural gradient 
framework. Ecological Applications 20: 303–310. doi: 10.1890/09-0193.1

Colunga-Garcia M, Haack RA, Magarey RA, Margosian ML (2010b) Modeling spatial estab-
lishment patterns of exotic forest insects in urban areas in relation to tree cover and prop-
agule pressure. Journal of Economic Entomology 103: 108–118. doi: 10.1603/EC09203

Davis MA (2009) Invasion biology. Oxford University Press, New York, 1–244.
di Castri F (1989) History of biological invasions with special emphasis on the old world. In: 

Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmanek M, Williamson M 
(Eds) Biological invasions: a global perspective. John Wiley, Chichester, UK, 1–30.

Drew J, Anderson N, Andow D (2010) Conundrums of a complex vector for invasive spe-
cies control: a detailed examination of the horticultural industry. Biological Invasions 12: 
2837–2851. doi: 10.1007/s10530-010-9689-8

Fortin M, Dale M (2005) Spatial analysis: a guide for ecologists. Cambridge University Press, 
Cambridge, United Kingdom, 1–365.



Manuel Colunga-Garcia et al.  /  NeoBiota 18: 103–118 (2013)116

Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in 
an era of globalization. Journal of Applied Ecology 46: 10–18. doi: 10.1111/j.1365-
2664.2008.01600.x

International Plant Protection Convention (2009) International standards for phytosanitary 
measures: ISPM No. 32. Categorization of commodities to their pest risk. Food and Agri-
culture Organization of the United Nations, Rome, Italy, 1–16.

International Plant Protection Convention (2012a) International standards for phytosanitary 
measures: ISPM No. 5. Glossary of phytosanitary terms. Food and Agriculture Organiza-
tion of the United Nations, Rome, Italy, 1–38.

International Plant Protection Convention (2012b) International Standards for Phytosanitary 
Measures: ISPM No. 36. Integrated measures for plants for planting. Food and Agriculture 
Organization of the United Nations, Rome, Italy, 1–20.

Kaluza P, Kölzsch A, Gastner MT, Blasius B (2010) The complex network of global cargo 
ship movements. Journal of the Royal Society Interface 7: 1093–1103 doi: 10.1098/
rsif.2009.0495

Keller RP, Drake JM, Drew MB, Lodge DM (2010) Linking environmental conditions and 
ship movements to estimate invasive species transport across the global shipping network. 
Diversity and Distributions 17: 93–102. doi: 10.1111/j.1472-4642.2010.00696.x

Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO (2012) Live plant imports: 
The major pathway for forest insect and pathogen invasions of the United States. Frontiers 
in Ecology and the Environment 10: 135–143. doi: 10.1890/110198

Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 
80: 1522–1536. doi: 10.1890/0012-9658(1999)080[1522:GPOPIA]2.0.CO;2

Lugo AE, Gonzalez G (2010) Changing conditions and changing ecosystems: A long-term 
regional and transcontinental research approach on invasive species. In: Dix ME, Britton 
K (Eds) A dynamic invasive species research vision: opportunities and priorities 2009–29. 
Gen. Tech. Rep. WO-79/83. U.S. Department of Agriculture, Forest Service, Research 
and Development, Washington, D.C., 121–126.

Magarey RD, Colunga-Garcia M, Fieselmann DA (2009) Plant biosecurity in the Unit-
ed States: roles, responsibilities and information needs. BioScience 59: 875–884. doi: 
10.1525/bio.2009.59.10.9

Mehta SV, Haight RG, Homans FR, Polasky S, Venette RC (2007) Optimal detection and 
control strategies for invasive species management. Ecological Economics 61: 237–245. 
doi: 10.1016/j.ecolecon.2006.10.024

Meyerson LA, Mooney HA (2007) Invasive alien species in an era of globalization. Frontiers 
in Ecology and the Environment 5: 199–208. doi: 10.1890/1540-9295(2007)5[199:IAS
IAE]2.0.CO;2

National Invasive Species Council (2003) General guidelines for the establishment and evalua-
tion of invasive species early detection and rapid response systems Version 1. U.S. Depart-
ment of the Interior, Office of the Secretary, Washington, D.C., 1–16.

Office of Information and Regulatory Affairs (2010) 2010 standards for delineating metro-
politan and micropolitan statistical areas. U.S. Office of Management and Budget. Federal 
Register 75: 123 (28 June 2010), 37246–37252.



Global trade and invasion pressure in plant ecosystems 117

Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood 
EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts 
TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestri-
al ecoregions of the world: a new map of life on Earth. BioScience 51: 933–938. doi: 
10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

Paini DR, Yemshanov D (2012) Modelling the arrival of invasive organisms via the interna-
tional marine shipping network: A Khapra beetle study. PLoS ONE 7: 1–9. e44589. doi: 
10.1371/journal.pone.0044589

Parke JL, Grünwald NJ (2012) A systems approach for management of pests and pathogens of 
nursery crops. Plant Disease 96: 1236–1244. doi: 10.1094/PDIS-11-11-0986-FE

Pejchar L, Mooney HA (2009) Invasive species, ecosystem services and human well-being. 
Trends in Ecology and Evolution 24: 497–504. doi: 10.1016/j.bbr.2011.03.031

Perrings C, Fenichel E, Kinzig A (2009) Globalization and invasive alien species: trade, 
pests, and pathogens. In: Perrings C, Mooney H, Williamson M (Eds) Bioinvasions and 
Globalization: Ecology, Economics, Management, and Policy. Oxford University Press, 
Oxford, 42–55. doi: 10.1093/acprof:oso/9780199560158.003.0004

Pimentel D (2009) Invasive plants: their role in species extinctions and economic losses to 
agriculture in the USA. In: Inderjit (Ed) Management of invasive weeds. Springer Science 
+ Business Media B.V., Netherlands, 1–7.

Pyšek P, Richardson DM (2010) Invasive Species, Environmental Change and Management, 
and Health. Annual Review of Environment and Resources 35: 25–55. doi: 10.1146/
annurev-environ-033009-095548

Rabaglia RJ, Duerr D, Acciavatti R, Ragenovich I (2008) Early detection and rapid response 
for non-native bark and Ambrosia beetles. USDA Forest Service, Forest Health Protection, 
Washington, D.C., 1–12.

Reichard SH, White P (2001) Horticulture as a pathway of invasive plant introductions in the 
United States. BioScience 51: 103–113. doi: 10.1641/0006-3568(2001)051[0103:HAA
POI]2.0.CO;2

Scalera R (2010) How much is Europe spending on invasive alien species? Biological Invasions 
12: 173–177. doi: 10.1007/s10530-009-9440-5

Simberloff D (2009) The role of propagule pressure in biological invasion. Annual Re-
view of Ecology, Evolution, and Systematics 40: 81–102. doi: 10.1146/annurev.ecol-
sys.110308.120304

Simpson A, Jarnevich C, Madsen J, Westbrooks R, Fournier C, Mehrhoff L, Browne M, Gra-
ham J, Sellers E (2009) Invasive species information networks: collaboration at multiple 
scales for prevention, early detection, and rapid response to invasive alien species. Biodi-
versity 10: 5–13. doi: 10.1080/14888386.2009.9712839

Sparka F (2010) Jurisdiction and arbitration clauses in maritime transport documents: A com-
parative analysis. Springer-Verlag, Berlin, Heidelberg, 1–281.

Vilà M, Basnou C, Pysvek P, Josefsson M, Genovesi P, Gollasch S, Nentwig W, Olenin S, 
Roques A, Roy D, Hulme PE, DAISIE partners (2010) How well do we understand the 
impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment. 
Frontiers in Ecology and the Environment 8: 135–144. doi: 10.1890/080083



Manuel Colunga-Garcia et al.  /  NeoBiota 18: 103–118 (2013)118

Waterman J (2102) Drying up: Consumers will seek out bargains from mass retailers, hurting 
traditional nurseries. IBISWorld Industry Report 44422 Nursery & Garden Stores in the 
US, 1–27.

Westphal MI, Browne M, MacKinnon K, Noble I (2008) The link between international trade 
and the global distribution of invasive alien species. Biological Invasions 10: 391–398. doi: 
10.1007/s10530-007-9138-5

Williamson M (1996) Biological invasions. Chapman and Hall, London, UK, 1–244.
World Trade Organization (2010) The WTO Agreements Series Sanitary and Phytosanitary 

Measures. World Trade Organization, Switzerland, 1–45.
Ziska LH, Blumenthal DM, Runion GB, Hunt Jr ER, Diaz-Soltero H (2010) Invasive spe-

cies and climate change: an agronomic perspective. Climatic Change 105: 13–42. doi: 
10.1007/s10584-010-9879-5

Appendix

Global trade and invasion pressure in plant ecosystems: Supplementary figures and 
tables. (doi: 10.3897/neobiota.18.4019.app1) File format: Acrobat Adobe document 
(pdf ).

Explanation note: Worldwide annual value (USD) for four categories of live plant 
imports from 2001-2011 (Fig. A1). Top 10 world exporting (Table A1) and importing 
(Table A2) countries of live plants in 2011. Value of U.S. live plant imports from all 
world regions except NAFTA (Mexico and Canada) (Table A3) and from the NAFTA 
region only (Table A4). Characterization of U.S. counties with agricultural (Table A5) 
and forest (Table A6) land use that were a potential destination of maritime container-
ized imports of live plants in 2010. Percentage of land use/cover types in the metro-
politan areas of the U.S. (Table A7).

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) 
is a license agreement intended to allow users to freely share, modify, and use this Dataset 
while maintaining this same freedom for others, provided that the original source and 
author(s) are credited. 

Citation: Colunga-Garcia M, Haack RA, Magarey RD, Borchert DM (2013) Understanding trade pathways to target 

biosecurity surveillance. In: Kriticos DJ, Venette RC (Eds) Advancing risk assessment models to address climate change, 

economics and uncertainty. NeoBiota 18: 103–118. doi: 10.3897/neobiota.18.4019 Global trade and invasion pressure 

in plant ecosystems: Supplementary figures and tables. doi: 10.3897/neobiota.18.4019.app1



Improving pest risk assessment and management through the aid of geospatial information... 119

Improving pest risk assessment and management 
through the aid of geospatial information 

technology standards

Trond Rafoss1, Jarle Skahjem2, John Atle Johansen2, Ståle Johannessen2, 
Udaya Sekhar Nagothu1, Inger S. Fløistad1, Arild Sletten1

1 Bioforsk – Norwegian Institute for Environmental and Agricultural Research, Høgskoleveien 7, 1342 Ås, 
Norway 2 Geoport AS, Kongens gate 33, 4608 Kristiansand, Norway

Corresponding author: Trond Rafoss (trond.rafoss@bioforsk.no)

Academic editor: Rob Venette |  Received 26 September 2012  |  Accepted 29 July 2013  |  Published 13 September 2013

Citation: Rafoss T, Skahjem J, Johansen JA, Johannessen S, Nagothu US, Fløistad IS, Sletten A (2013) Improving 
pest risk assessment and management through the aid of geospatial information technology standards. In: Kriticos DJ, 
Venette RC (Eds) Advancing risk assessment models to address climate change, economics and uncertainty. NeoBiota 18: 
119–130. doi: 10.3897/neobiota.18.4017

Abstract
Delivery of geospatial information over the Internet for the management of risks from invasive alien spe-
cies is an increasingly important service. The evolution of information technology standards for geospatial 
data is a key factor to simplify network publishing and exchange of maps and data. The World Wide Web 
Consortium (W3C)-geolocation specification is a recent addition that may prove useful for pest risk man-
agement. In this article we implement the W3C-geolocation specification and Open Geospatial Consor-
tium (OGC) mapping standards in a Web browser application for smartphones and tablet computers to 
improve field surveys for alien invasive species. We report our first season field experiences using this tool 
for online mapping of plant disease outbreaks and host plant occurrence. It is expected that the improved 
field data collection tools will result in increased data availability and thereby new opportunities for risk 
assessment, because data-needs and availability are crucial for species distribution modelling and model-
based forecasts of pest establishment potential. Finally, we close with a comment on the future potential 
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of risk assessment models based on new incoming data, and subsequent early warning.
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Introduction

Historical evidence shows that species composition and abundance are changing in 
time and space. This is not only evident in natural ecosystems, but also in managed 
ecosystems like agriculture and forestry. However, the rate of change has increased 
dramatically in modern times due to the globalization of trade and the movement of 
organisms to parts of the world where they have not been before. Climate change is 
expected to further affect species’ distributions and their phenology. The risks related 
to these changes are well known for both natural and agricultural resources, including 
loss of biodiversity, crop loss and increased pest problems (Mooney and Hobbs 2000).

When human society faces major new global challenges, solutions based on new 
technological developments are commonly suggested. So what about technological so-
lutions for reducing pest risks? The role of technology for reducing these risks has re-
ceived some attention in the literature. Baker et al. (2005) discussed novel strategies for 
the future management of the risks posed by invasive species to global crop production 
and biodiversity. They mentioned new mobile computing, Global Positioning System 
(GPS), digital photography and telephone technologies as potential tools that could 
greatly enhance the management of pest outbreaks by facilitating rapid transmission of 
key data between the field, lab and senior staff overseeing operations. They also men-
tioned Geographical Information Systems (GIS) for mapping and forecasting as invalu-
able to formulate contingency plans, containment strategies, and eradication campaigns 
against pests. For pest risk management of fire blight caused by the plant pathogenic 
bacterium Erwinia amylovora, Rafoss et al. (2010) demonstrated how the use of a ge-
neric application integrating mobile computing and mapping with GPS on a simple 
mobile telephone platform could lower effort needed for application development and 
increase information exchange. Aanensen et al. (2009) developed a generic application 
for smartphones that also included digital photography as part of the mobile mapping.

In this article we focus on two relatively new information technology standards; the 
World Wide Web Consortium (W3C) Geolocation specification and the Open Geo-
spatial Consortium (OGC) Web Processing Service. We discuss how these standards 
can contribute to risk reduction. Based on the former standard we present one new 
Web-tool for online pest field mapping of plant pests and host plants, while for the lat-
ter standards we discuss the potential and opportunities offered for prediction of future 
pest establishment. Geoport, the new Web-tool reported here, has also been tested to 
work directly towards biodiversity databases and the biodiversity data standard “Darwin 
Core.” This data standard was proposed by the community of end-users and has been 
widely implemented, thereby providing volumes of data to better reveal global patterns 
of biodiversity (Wieczorek et al. 2012). Such information is fundamental to protect 
biodiversity. These examples demonstrate how information technology might serve to 
reduce the risks from pests and forms a new foundation for further development.
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Applying information technology standards in Geoport – a Web tool 
example

The W3C-geolocation specification and support for its Application Programming In-
terface (API) were implemented in most Internet browsers after its publication. For 
mobile network devices having an Internet browser, like smartphones and tablet com-
puters have, the result of such an implementation is standardized and simplified access 
to location information. By pointing the Internet browser to a certain Web-address 
that makes use of the W3C-geolocation functionality, providing direct access to the 
GPS hardware chip device for a Web-application, the user can immediately start to do 
online data recording to central storage from the field. In order to secure privacy, it is 
a compulsory part of the standard that the user always is asked for permission to allow 
the Web-page/Web-application access to the location information. The ease of access 
to Web-based user location information was the single most important factor trigger-
ing our initiative to expand on our previous work on network-linked field tools for 
online pest data recording (Rafoss et al. 2010). While the SMILEX application utilized 
one information technology standard to dynamically construct the user interface based 
on the remote source it was configured to record data against (Rafoss et al. 2010), the 
W3C-geolocation standard allows for the whole application to be distributed over a 
network. A Web-application for mapping of plant pests utilizing this opportunity is 
presented in this article. We followed a generic approach where an application previ-
ously used only for desktop Web map display and manual recording of pest data (Gy-
land et al. 2007) was extended with data recording functionality. The product is named 
Geoport and is based on the open source JavaScript library OpenLayers (Fig. 1A).

Geoport support for the W3C-geolocation specification and the Geolocation 
API standard

According to Popescu (2012), the Geolocation API “defines a high‑level interface to lo‑
cation information associated with the device hosting the implementation, such as latitude 
and longitude. The API itself is ignorant of the underlying location information sources. 
Common sources of location information include Global Positioning System (GPS) and 
location inferred from network signals such as IP address, RFID, WiFi and Bluetooth MAC 
addresses, and GSM/CDMA cell IDs, as well as user input”.

Geolocation based on GPS signals regularly involves two sources of accuracy er-
ror under field conditions: (1) local reflection of GPS signals from large objects like 
buildings or trees, that can be falsely recorded by the GPS device and (2) error in the 
signal emerging from variation in solar activity that distort the GPS signals as they pass 
through the Earth’s ionosphere. In the situation where large objects in the vicinity af-
fect the accuracy of signals, the user can intervene by switching to an aerial photogra-
phy background map and then directly assessing the accuracy by comparing the physi-
cal surroundings to what is shown on the aerial photo around the position indicator. 
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Figure 1. Geoport displayed in an Internet browser running on a tablet. Upper figure shows existing 
mapped data on top of a topographic map, while the lower figure shows the dialog for registering new 
data, with background map switched to aerial imagery (orthophoto).

A

B
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Moreover, in such situations the application can be set to allow the user to manually po-
sition the data recording in the map. For the second source of error, correction services 
delivered by various commercial suppliers improve accuracy down to the decimetre or 
centimetre or centimeter level. Such correction information was once available only for 
advanced GPS receivers equipped with an additional radio receiver, as these correction 
signals were disseminated along FM-radio channel signals. However, in recent years, 
these correction signals have also started to be disseminated over the mobile telephone 
network. This new option was considered to be implemented as an additional func-
tionality of Geoport, but would have required programming of an additional software 
module that is not part of the Geolocation API standard to handle the signal code. To 
obtain this kind of increased accuracy, users would be required to buy access to such 
services from national suppliers. Although we considered the availability of GPS cor-
rection signals within the mobile network signal to be an interesting new option, we 
decided not to implement support for it in the current version. For the purpose of re-
cording field data on pests, the position accuracy of 3-4 meters typically obtained when 
the solar activity is the only source of distortion, was considered sufficiently accurate. 
The quality of the hardware and the positioning averaging algorithms implemented by 
the hardware vendor can also affect position accuracy. However, based on our experi-
ence with smartphones and tablets from different main producers, all current technolo-
gies provide adequate position accuracy. The Geolocation API itself has an optional 
parameter “enableHighAccuracy” in the set of instructions for position acquisition. 
This attribute is implemented in the API to provide a hint that the application would 
like to receive the best possible results. Another intended purpose of this attribute is to 
allow other applications to inform the Geolocation application that they do not require 
high accuracy geolocation information, therefore, the implementation can avoid using 
geolocation components (e.g., GPS) that consume a significant amount of power. For 
Geoport we chose to activate the “enableHighAccuracy” option by default in order to 
ensure that the device always provided the most accurate position it is able to deliver, 
although this results in the slowest response times and largest power consumption. 
One alternative not yet enabled in the current version of Geoport is to allow the user 
to switch on and off this “enableHighAccuracy” parameter, which in practice would 
mean to make more use of the manual placement option based on high quality aerial 
map background. However, this will break with some of the automatic quality control 
principles of this data collection principle where time and space attributes of the data 
recording could be set by the system without the user being able to manipulate them.

Geoport support for the OpenGIS® Web Feature Service Interface and the Web 
Map Service Interface

Based on our previous experiences with OpenGIS® Web Feature Service Interface 
Standard (WFS) we chose to design the Geoport web application to allow data record-
ing against any data source supporting Web Feature Service Transaction (WFS-T). 
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There are now several software products, both commercial and open-source based, 
supporting WFS-transactions (e.g. GeoServer, TinyOWS and ArcGIS Server) with 
most kinds of geographical data sources like file-based formats (e.g. ESRI Shape files) 
or database servers with support for geographic data types (e.g. PostgreSQL/PostGIS, 
Oracle Spatial, ArcSDE). In the following section, we introduce some of the technical 
principles to facilitate flow of species data records over the Internet, and furthermore, 
how eventually new data records can be used to trigger events like pest management 
actions or pest risk assessment re-analysis.

According to the OGC (Vretanos 2005), the OpenGIS® Web Feature Service In-
terface Standard (WFS) defines: “interfaces for data access and manipulation operations 
on geographic features using HTTP as the distributed computing platform. Via these inter‑
faces, a web user or service can combine, use and manage geodata ‑‑ the feature information 
behind a map image ‑‑ from different sources by invoking the following WFS operations on 
geographic features and elements:

• Create a new feature instance
• Delete a feature instance
• Update a feature instance
• Lock a feature instance
• Get or query features based on spatial and non‑spatial constraints”

A subset of the above described operations of the WFS specification has been 
named as Web Feature Service Transactions or WFS-T in abbreviated form. The sub-
set of the first four operations listed above constitutes the necessary operations to al-
low for full editing functionality for geospatial data over the Internet. While the WFS 
provide the information behind maps, and no map images, the OpenGIS® Web Map 
Service Interface Standard (WMS) does provide map images that also could be trans-
parent to combine map layers from one or multiple servers (de la Beaujardiere 2006). 
Also WMS uses the hypertext transfer protocol (HTTP) of the Internet, but here the 
role of the protocol is just to transfer images over the Internet similar to how photos 
appearing in a Web-based newspaper, but with the addition that they are accompanied 
by information on how the images could be arranged in a (geographical) coordinate 
system to present a geographical map to the reader.

Workflow in Geoport

In order to allow different functionality, we decided to implement two modes of op-
eration of Geoport on two different network addresses. One mode allowed the user to 
control placement of field recordings on the map. In this mode, GPS information is 
used to centre the map on the device only and the geographical coordinates for data 
recording are captured where the user taps to insert a new data point. A second mode 
had no option for user interaction except from placement of the mapping device itself 
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(smartphone or tablet) at the position of the point of interest. In this mode the geo-
graphical coordinates for data recording are taken directly from the GPS when a new 
data point is recorded. The former mode is desirable when positions of interest are dif-
ficult to access, e.g. in wetlands (bogs, lakes etc), while the benefit of the latter mode is 
that data are collected where the device is located.

A mapping session with the Geoport Web application initiates by starting up an 
Internet browser on the tablet or smartphone and then by entering the Web address. 
While there is no need for manual installation beforehand like for native applications, 
successful loading of the application requires network connection. After loading the 
application the user is asked to allow sharing of the geographical position. This is an 
integrated part of the W3C-geolocation specification to protect privacy. The user can 
respond to the request either by sharing the geographical location information once 
for the actual application session or for future application sessions or to not share the 
location information (for which the latter option prohibits the application from pro-
ceeding into a mapping session). In the mapping session previously registered data is 
shown by Style Layer Descriptors (SLD) on top of a background map (Fig. 1A) that 
could be switched between topographic or aerial imagery (orthophoto). The previously 
collected data shown in the map is coming directly as WFS data from the same data 
source as the data collection is operating. Background maps are delivered over a WMS 
service. To record new data, the user taps the “+” button which brings up a user dialog 
with predefined menu options for “type of registration”, “quantity”, “symptom”, “ac-
tion taken” and a free text field for comments (Fig. 1B). The date and geographical 
coordinates are captured automatically from the device. The final action for the user to 
complete is to press “OK” which fires the WFS transaction. The WFS server then feeds 
back a message telling the user whether the data was safely secured at the server or not. 
The application returns to normal mapping mode at the current position.

Field use experiences

This Web application, run from a tablet device, offered several advantages for field 
data collection over handheld GPS-devices or first generation smart mobiles without 
touch screen. Tablets have much greater battery capacity than mobile phones, and the 
battery will not run out during the working day. The relatively large screen on a tablet 
also provided a better overview of data collected and map information. Fine details 
in the high quality background maps and aerial imagery provided by the Norwegian 
Mapping Authority become evident on the larger tablet screen. The detailed informa-
tion on surroundings and the good overview is helpful in the working situation. Use of 
the touch screen was also more convenient on the tablet compared to the smartphone 
because the symbols were larger and easier to tap (although this could be adjusted at 
the expense of visible map information).

Geoport can in principle be used anywhere in the world. It can be configured to 
use any background map layers as long as they are available over the WMS standard 



Trond Rafoss et al.  /  NeoBiota 18: 119–130 (2013)126

or the other Internet-based map distribution formats supported by the OpenLayers 
library. It has been tested in various parts of the world when configured to use map 
layers offered by Google’s Google Maps service. For use in Norway, we chose to use 
the map services offered by the Land Registry and Cadastre (STATKART) as they of-
fer the highest quality maps and aerial imagery for Norway. Geoport is not publically 
accessible as it is now distributed as a commercial product from the private company 
Powel based in Norway. However, the software on which Geoport is based, OpenLay-
ers, is publically accessible as it is published as an “open source” software library at 
http://openlayers.org.

The greatest use of Geoport so far has been in the on-going nation-wide survey and 
eradication campaign in Norway against the plant pathogenic bacterium Erwinia am‑
ylovora which causes fire blight in pears, apples and some other members of the family 
Rosaceae (Rafoss et al. 2010). In 2012, a total of 15,458 host plant locations were 
inspected and mapped/remapped, distributed in 13 counties and 100 municipalities of 
Norway (Melbøe et al. 2013). In the survey all host plants were checked for symptoms 
of fire blight. The disease has not yet spread to the main fruit growing areas of Norway. 
The action taken depends upon which of the three zone status declared: “eradication 
zone”; “observation zone” or “protected zone”. An eradication zone is declared any-
where fire blight has been detected and all diseased plants are removed. As a preventive 
measure the most susceptible host plants are also removed. In the observation zone fire 
blight has not yet been detected. The observation zone borders the eradication zone, 
and the surveillance activity is systematic and extensive. In the protected zone, fire 
blight has not been detected and surveillance in this zone is at random.

The geoport application has also been successfully used at a smaller scale to register 
vascular invasive plants in Norway and to record data in agricultural fields in India.

Future standardization of geospatial pest risk analysis procedures and the Open-
GIS® Web Processing Service

In the context of risk assessment and risk management of pests, geospatial informa-
tion standards that can facilitate development of new knowledge from collected spe-
cies occurrence data should be of high interest. The various approaches and algorithms 
developed to project whether species can establish and spread into novel areas based 
on the species’ current distributions (see Elith and Leathwick 2009; Austin 2007 for 
a couple of reviews) are increasingly being compared (Elith et al. 2006; Dupin et al. 
2011) or used in combination (Smolik et al. 2010). Furthermore, requests for early 
detection of emerging risks (EFSA 2011) as well as more robust predictions of pest 
establishment potential for novel areas can be expected. Automatic execution of spe-
cies distribution models when new data are collected and multi-model operations, 
respectively, are approaches that could address these two needs. However, there is 
currently no existing service to tackle these challenges. This is where the OpenGIS® 
Web Processing Service (WPS) can play a role as a suitable standardization initiative. 
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According to the specification of OpenGIS® Web Processing Service edited by Schut 
(2007): “WPS defines a standardized interface that facilitates the publishing of geospa‑
tial processes, and the discovery of and binding to those processes by clients. “Processes” 
include any algorithm, calculation or model that operates on spatially referenced data. 
“Publishing” means making available machine‑readable binding information as well as 
human readable metadata that allows service discovery and use. A WPS can be configured 
to offer any sort of GIS functionality to clients across a network, including access to pre‑
programmed calculations and/or computation models that operate on spatially referenced 
data. A WPS may offer calculations as simple as subtracting one set of spatially referenced 
numbers from another (e.g., determining the difference in influenza cases between two 
different seasons), or as complicated as a global climate change model. The data required 
by the WPS can be delivered across a network, or available at the server. This interface 
specification provides mechanisms to identify the spatially referenced data required by 
the calculation, initiate the calculation, and manage the output from the calculation so 
that the client can access it”. Based on this definition, the WPS standard should have 
a potential to act as a framework for future standardization of the various mode-
lling approaches applied to predict the potential for pest establishment and spread. 
Analysis of geospatial data is commonly associated with some technical burden to 
handle coordinate systems and projections properly. Further technical complexity is 
included when the time dimension is added to the analysis of species occurrence data. 
If standards are used and supported by the tools for analysis and prediction of species 
distribution, the management and processing of such data could be eased, which will 
allow the biologist or pest risk analyst to concentrate more on advancing the science 
and less on overcoming technical barriers.

Taking action - chaining of Web services

An earlier Norwegian study on the use of standardized information technology for 
risk management of pests, demonstrated the potential for chaining of Web-services 
for automatic warning messaging to be sent to potentially affected farmers and other 
stakeholders, based on events registered into a Web-client developed for the desktop 
office computer (Gyland et al. 2007). With the current tool for smartphones and tablet 
computers, this system is now in principle available for use from the field.

In a risk assessment context, server side routine checks could be set up on the 
in-coming pest data that could trigger pest risk analysis, or re-analysis, when the new 
data fulfil certain criteria identifying a potential emerging risk. The new abilities to 
constantly update field data could generate potential for a new level of immediacy not 
previously seen in the process of pest risk  modelling. In order for this to be a new fea-
ture of the pest risk assessment process, risk assessment routines must be dynamically 
linked to the species presence/absence databases in a way that re-analysis could easily 
be invoked or even automatically triggered when new data are accumulated. If species 
distribution models were available as WPS services, we might experience similar effects 
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of lowered effort needs following from of standardization as reported for field data col-
lection in this article and by Rafoss et al. (2010).

Chaining (linking) species distribution models to species distribution databases by 
standards support may also further facilitate the step from assessment to management. 
Pest risk management procedures, e.g. emergency warnings and contingency plans, 
could be held up-to-date from risk assessment model based knowledge on range expan-
sion of pests and associated scientific advice.

discussion

There is little doubt that the current processes of globalization of trade in agricultural 
commodities and climate change are speeding up the rate of change in both natu-
ral- and agro-ecosystems. The risks emerging from these changes to food security and 
biodiversity are well documented. The role of technology in mitigating these risks 
needs as a general topic is beyond scope of this paper, but our study shows how tech-
nology can aid in keeping track of these changes and how principles of standardization 
can reduce the effort needed to put together efficient tools to track and potentially 
eradicate pests. Most of the mapping software coming with smartphones and tablets 
today readily allows field data collection. However, these tools normally allows little 
customization and standards support, even in their accompanying APIs that are offered 
to give more flexibility. Typically these applications cannot be customized to capture 
desired attributes and not configured to operate against user-defined data stores. The 
amount of information that should be collected while in the field is another interesting 
aspect that deserves discussion. On one hand, ideally it should handle all the informa-
tion fields that are required for a biodiversity record according to the biodiversity data 
standard “Darwin Core”, e.g. see Wieczorek et al. (2012) for a description. Many parts 
of that standard can actually be effectively handled by metadata settings on the data-
base side (e.g., information about the identity of the registering organization and the 
person responsible for species identification). On the other hand, the biodiversity data 
standards are created from a nature conservation perspective and may therefore not 
contain all information elements that are of interest for pest risk management, such as 
“symptoms” or “action taken”.

Another aspect that is highly relevant from a pest risk assessment perspective is 
the use of such tools to document true absence of species. In combination with a 
robust predefined sampling strategy, the tool described in this paper should have a 
great potential to improve the availability of true absence data that generally are scarce. 
Combining the predefined sampling strategy with citizen science is another inter-
esting opportunity that potentially could generate high interest and high utility for 
pest risk assessment and management. Scientists could take advantage of the fact that 
smartphones and tablets lend themselves to provide guidance to the citizen science by 
combining text and multimedia and thereby improve the quality of the information 
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collected by the public. This could be one way to alleviate the general scarcity of true 
absence data by use of modern technology and society involvement.

For the future we would like to see expansion of functionality to define new data 
sources from the field by having a user interface that automatically configures and set 
up new remote data sources that can be initiated to receive field data. At present, func-
tions that allow creation of new data stores are not covered by any of the standards for 
geospatial information. We would also like to see good functionality to handle absence 
data for species distribution mapping.

Conclusion

Smartphones and tablets are now readily available and their costs are going down. 
Based on an open source JavaScript library and utilization of open standards for geo-
spatial information, the Geoport Web-application offers a platform independent tool 
for field data collection with a great potential to fight the risks posed by pests to food 
security and biodiversity. As location based technology and informatics help to sim-
plify the collection of pest data, we recommend that pest risk analysts should make 
greater use of innovations in geospatial information technology and standards. Species 
distribution models should be linked to species distribution databases, e.g. as chained 
WPS services that could be triggered by new pest data occurrences according to certain 
criteria and thereby warn about potentially emerging risks. Detection of emerging risks 
at an early stage by automatic triggering of prediction algorithms when a species appear 
outside its currently known distribution range can allow for earlier action and thereby 
reducing risks from pests.
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Abstract
Climate change may alter the distribution and activity of native and alien pathogens that infect trees and, 
in severe cases, cause tree death. In this study, potential future changes in climate suitability are investigat-
ed for three forest pathogens that occur in western North America: the native Arceuthobium tsugense subsp 
tsugense, hemlock dwarf mistletoe, and two alien invasive species, Dothistroma septosporum, the cause of 
red band needle blight or Dothistroma needle blight, and Phytophthora ramorum, the cause of sudden oak 
death or ramorum blight. Specifically, the software CLIMEX is used to calculate Cold-Stress, Heat-Stress, 
and Dry-Stress indices for each pathogen in 98,224 grid cells in North America. Downscaled climate 
projections from the general circulation models CGCM1, CSIROMk2, and HadCM3 drive forecasts for 
2020, 2050 and 2080. These climate projections are then analyzed to forecast shifts in the geographic ex-
tent of abiotic stresses that are severe enough to directly kill pathogen propagules and prevent year-round 
establishment of these pathogens. Cold stress currently has a major impact on climate suitability for all 
three pathogens; heat stress is likely to become more significant in the future. I forecast that the geographic 
extent of cold stress will decline from its current levels by a constant 5% (± 1%) of all grid cells in each 
30-yr projection horizon for all three pathogens. Forecasts suggest the extent of heat stress will increase 
concurrently by 4% (± 1%) in each 30-yr projection horizon. Drought stress shows no consistent trend 
over time. No disproportionate effect of climate change on the two alien invasive pathogens over the na-
tive is forecasted. These results suggest that forecasts of future climate suitability for pathogens based on 
historical climate normals are accurate for less than 30 yrs. Adaptive management strategies in forestry will 
be needed to respond as these changes unfold.
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Introduction

Trees play pivotal roles in global carbon cycles. They remove significant amounts of 
carbon from the atmosphere annually and sequester fixed carbon for long periods (Bo-
nan 2008; Chazdon 2008). Tree diseases can interfere with these processes. Disease, 
i.e., abnormal physiological function, in plants is the consequence of the interaction 
of a virulent pathogen with a susceptible host and a conducive environment. Forest 
health protection is a key strategy to adapt to climate change (e.g., Spittlehouse and 
Stewart 2003) and to ameliorate atmospheric carbon levels (Canadell and Raupach 
2008; Nabuurs et al. 2007).

Climate change portends significant shifts in the structure and function of forests. 
In particular, ecological niche models for a number of tree species suggest future areas of 
climatic suitability will shift polewards in response to changes in temperature and mois-
ture (Iverson et al. 2008; McKenney et al. 2011). For many species in general, dispersal 
capacity, demographic stochasticity, and cold-induced mortality are likely to dominate 
population processes at the leading, or expanding, edge of the range shift (Hampe and 
Petit 2005). At the rear, or contracting, edge, drought stress and genetic drift are likely 
to be among the dominant processes (Hampe and Petit 2005). Severe heat and drought 
events in western North America and elsewhere in the world already may have contrib-
uted to widespread tree mortality (Allen et al. 2010; van Mantgem et al. 2009).

Though climate change may be the ultimate cause of tree death, the proximate 
cause may be the activity of insects and diseases (Sturrock et al. 2011). Just as trees have 
specific temperature and moisture requirements, so do most pathogens. Qualitative 
assessments suggest that many forest diseases whose dynamics are directly governed 
by weather (e.g., Phytophthora root rot, Dothistroma needle blight, or Swiss needle 
cast) will become more severe if climate becomes warmer and wetter and less severe if 
conditions are warmer and drier (Kliejunas 2011; Sturrock et al. 2011). In contrast, 
diseases whose dynamics are mediated primarily by host condition (e.g., Armillaria 
root disease, Botryosphaeria canker, or pitch canker) will worsen if conditions become 
warmer and drier and will generally be unaffected if climate is warmer and wetter 
(Kliejunas 2011; Sturrock et al. 2011). Such qualitative assessments acknowledge sub-
stantial uncertainty as a result, in part, of a poor understanding of the epidemiology of 
many diseases, an inexact course of future climate change, and regional variation in the 
pattern and extent of climate changes (Boland et al. 2004; Dukes et al. 2009; Hepting 
1963; Sturrock et al. 2011).

A general concern about the interaction of climate change and invasive alien spe-
cies continues to grow (Driscoll et al. 2012; Dukes and Mooney 1999; Smith et al. 
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2012). Many invasive species are known to have broad environmental tolerances and 
high dispersal capacity. As a result, alien species effectively may be “pre-adapted” to 
future climate conditions and poised to dominate native species (Dukes and Mooney 
1999). The potential significance of climate change for invasive alien pathogens of trees 
remains to be tested.

Pest risk maps illustrate how the likelihood and consequence of invasion by an 
alien species varies spatially within an area of concern (Venette et al. 2010). For many 
insects, weeds, and pathogens, this variation is likely to be driven, in part, by local and 
regional differences in temperature and precipitation. Some pest risk maps focus on 
an analysis of climatic suitability to characterize where an invasive alien species might 
become established if it were to arrive in an area, relying on the logical argument that 
there will be no impact if there is no establishment. If the forecast is driven by climatic 
normals, the resulting pest risk map will only be relevant in the future if temperature 
and moisture continue to fluctuate as they have for the previous 30 years. Pest risk 
maps would be substantially improved if they incorporated effects of climate change 
(Venette et al. 2010).

A number of analysts have incorporated climate change into forecasts of future cli-
mate suitability for invasive alien species (e.g. Baker et al. 2000; Desprez-Loustau et al. 
2007; Watt et al. 2009). The common approach is to gather information about known 
geographic occurrences and absences of a species and to integrate these points with a 
database of current climactic norms. Climatological dimensions of the ecological niche 
are inferred from these data, and this inference is compared with downscaled output 
from general circulation models to determine if an area might be climatically suitable 
for an alien species in the future.

The purpose of this study was to compare the potential effects of future climate 
change on population stresses experienced by three forest pathogens: Arceuthobium tsu‑
gense (Rosendahl) G.N. Jones subsp tsugense, western hemlock dwarf mistletoe, hereaf-
ter simply A. tsugense; Dothistroma septosporum (Dorog.) Morelet, the cause of Dothis-
troma (or red band) needle blight; and Phytophthora ramorum Werres, de Cock & Man 
in’t Veld, the cause of sudden oak death and ramorum blight. Phytophthora ramorum 
is an oomycete that can infect more than 100 plant species and is new to Europe and 
western North America (Rizzo et al. 2005). The geographic origins of the pathogen 
remain unknown (Grunwald et al. 2012). As of 2013, the pathogen was established 
in North America in southwest Oregon (Curry Co.) and northwestern California (13 
counties) and recovered from streams in Mississippi, Alabama, Florida, Georgia, and 
North Carolina. Dothistroma septosporum is a fungus with a cosmopolitan distribution 
and generally occurs wherever its hosts, several pine species (Pinus spp.), occur (Farr 
et al. 1995), though a particularly severe epidemic is occurring in British Columbia 
(Woods et al. 2005). The pathogen may be native to high elevations in Central Amer-
ica (Evans 1984) or the Himalayas (Evans 1984; Ivory 1994). Arceuthobium tsugense 
is a parasitic plant that is native to western North America, specifically western Brit-
ish Columbia, Washington state, Oregon, and northern California (Hawksworth and 
Wiens 1996). This mistletoe commonly infects western hemlock, Tsuga heterophylla 
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(Hawksworth and Wiens 1996). Under appropriate conditions, each of these patho-
gens can kill its host. I hypothesize that if native species tend to be more adapted to 
specific environmental conditions than alien invasive species, future climate-induced 
stresses should be more severe in North America for the native A. tsugense than on 
either alien species, D. septosporum or P. ramorum. I further hypothesize that different 
general circulation models should yield equivalent estimates of climate induced-stress. 
Abiotic stresses particularly those resulting from cold, heat, and drought, that act di-
rectly on these pathogens are the focus of this paper because these stresses are likely to 
dictate climatic bounds on the occurrence of these pathogens.

Materials and methods

Climate data. Climate normals and output from general circulation models downscaled 
to 10 arc-minutes were obtained from Worldclim.org, specifically mean monthly min-
imum temperature, maximum temperature, and precipitation. Downscaling had been 
performed using ANUSPLIN (Hijmans et al. 2005). At a resolution of 10 arc-minutes, 
each grid was approximately 18.6 × 18.6 km at the equator. I obtained climate data for 
four projection horizons – current, 2020, 2050, and 2080 – from three general circula-
tion models – CGCM1, CSIROMk2, and HadCM3– under emission scenario b2a. 
This scenario assumes a low increase in greenhouse gas emissions with a corresponding 
increase in global average temperature of approximately 2°C by 2080. This change is 
less than changes suggested by other emission scenarios, but future climate is expected 
to change by at least this much. In total, data were procured for ten climate projec-
tions, i.e., three general circulation models x three projection horizons + current con-
ditions. Current data primarily reflected the 30-yr climate normal from 1961–1990, 
though in some locations it may have reflected the period from 1950–2000 (Hijmans 
et al. 2005). There were 584,720 grid cells worldwide.

I restricted my analysis to North America, the only continent on which all three 
pathogens co-occur. Within the climate data sets, I functionally defined North Amer-
ica as those grid cells with centers occurring within the box with a northwest corner 
at 170°W and 80°N and a southeast corner at 50°W and 12°N. Individual grid cells 
were excluded from the analysis if projected minimum temperature was greater than 
the maximum temperature or if some climate data were missing. This standard ensured 
that exactly the same areas of North America were compared over time and left 98,224 
grid cells for the continent. Data files were processed to be compatible with CLIMEX 
ver 2.0 (Hearne Scientific Software, South Yarra, Australia).

Estimation of abiotic stresses acting on pathogens. The “Compare Locations” feature 
of CLIMEX ver 2.0 was used to forecast physiological stresses experienced by A. tsug‑
ense, D. septosporum, and P. ramorum in response to extreme cold, heat, drought, and 
wetness now and in the future. CLIMEX calculated values for respective stress indices 
when temperatures or moistures exceeded species-specific thresholds. Stress also ac-
cumulated at species-specific rates. The final Cold-Stress, Heat-Stress, Dry-Stress, and 
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Wet-Stress indices potentially varied from 0 to 999. Values of 0 indicated no stress, 
and values of 100 indicated complete inoculum mortality from an abiotic agent. Val-
ues greater than 100 reflected severely stressful conditions (Sutherst et al. 2004). Grid 
cells with a stress index >99 were considered unsuitable for the year-round persistence  
of that pathogen. Sutherst and Maywald (1985) and Sutherst et al. (2004) provided 
specific formulas and details for the calculation of stress indices.

CLIMEX parameters for each species are reported in Table 1. CLIMEX parameters 
for P. ramorum were taken from Venette and Cohen (2006). Parameters for A. tsug‑
ense were developed through an iterative geographic fitting process initially described 
by Sutherst and Maywald (1985). The process began with a generic template for a 
temperate species. Geographic plots of CLIMEX indices were compared with the ac-
tual distribution reported by Hawksworth and Wiens (1996). I recursively modified 
CLIMEX parameters and compared with the known distribution until a qualitatively 
satisfactory fit was found.

CLIMEX parameters for D. septosporum were obtained from Watt et al. (2009) and 
modified slightly to reconcile with extant literature about the effect of heat on conidia 
viability. Gibson (1972) reported that conidia of what would now be recognized as D. 
septosporum could survive 9 wk at 30°C but only “several days” of dry heat at 35°C. I pre-
sumed that “several days” meant 6 days. Calculations based on these estimates indicated 
that heat stress would begin to accrue at 29.9°C, similar to the value from Watt et al. 
(2009), but the rate of stress accumulation would be 0.247 wk-1. The modified param-
eter set qualitatively fit the distribution of Dothistroma reported by Watt et al. (2009).

Statistical analyses. All statistical analysis was performed in SAS 9.2 (SAS Institute, 
Cary, NC). Although individual grid cells are the observational units in this study, each 
observational unit is not independent in space. Thus, analyses focused on the propor-

Table 1. CLIMEX stress parameters for three forest pathogens.

Index Parameter Arceuthobium 
tsugense

Dothistroma 
septosporum

Phytophthora 
ramorum

Cold stress TTCS=temperature threshold (°C) -3.9 -30 -
THCS=stress accumulation rate (wk-1) -0.025 -0.05 -
DTCS=degree-day threshold - - 15
DHCS=stress accumulation rate (wk-1) - - -0.0001

Heat stress TTHS=temperature threshold (°C) 22 29.9 30
THHS=stress accumulation rate (wk-1) 0.001 0.247 0.005

Dry stress SMDS=moisture threshold† 0.3 0.10 0.2
HDS=stress accumulation rate (wk-1) -0.015 -0.005 -0.005

Wet stress SMWS=moisture threshold† 2.5 - 2.5
HWS=stress accumulation rate (wk-1) 0.002 - 0.002

Hot-wet 
stress

TTHW=temperature threshold (°C) - 28°C -
MTHW=moisture threshold† - 1 -
PHW=stress accumulation rate (wk-1) - 0.025 -

†, Moisture is expressed as a proportion of moisture holding capacity with values of 1 equal to saturation. 
Values > 1 reflect flooded conditions.
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tions of grid cells in North America in which CLIMEX indices of cold stress, heat 
stress, wet stress or drought stress were >99. A grid cell that met one of these criteria 
was projected to be inhospitable for the year-round presence of the pathogen. The em-
phasis on grid cells with stress >99 ignores cases in which an abiotic agent might cause 
partial mortality of the population, but allows the analysis to focus on clear potential 
shifts in the geographic range in which a pathogen might be forecast to persist year-
round. I refer to these proportions as the extent of stress. – Wet stress in North America 
was always 0 for each of the pathogens under the current and future climate, so wet 
stress was not analyzed statistically.

The extent of each stress from 2020 to 2080 was found to be normally distrib-
uted (Univariate procedure in SAS 9.2) and was analyzed first with repeated measures 
analysis of variance (Mixed procedure in SAS 9.2). General circulation model (n=3) 
and year (n=3) were included as main effects with a first-order auto regressive term to 
account for temporal covariance in the data. The experimental design did not allow 
for the testing of an interaction between year and general circulation model. Differ-
ences among forecasts for 2020, 2050, and 2080 were estimated using Tukey’s multiple 
comparison test of least-squares means with α = 0.05. Two-tailed t-tests for the differ-
ence between a population mean and a hypothesized population mean to compare 
results from 2020, 2050, and 2080, the population means, with results for the current 
climate, the hypothesized population mean, because no statistical sources of variation 
existed for stress estimates based on current climate. A Bonferroni-adjustment of α was 
applied to correct for multiple comparisons and ensure an overall α = 0.05.

To compare changes in the extent of each stress over time among pathogens, I used 
mixed model analysis for linear regression (Mixed procedure in SAS 9.2). A first-order 
autoregressive error structure was used to account for autocorrelation in observations 
over time. Factors in the regression were general circulation model (n=4, now includ-
ing current), pathogen (n=3), and time (n=4). Time was measured in 30-yr projection 
horizons, with 0 corresponding to 1990, 1 corresponding to 2020, and so on. All 
observations from the same levels of each general circulation model and pathogen 
effectively represent a single subject. The analysis assumes independence of observa-
tions from different subjects. Degrees of freedom were determined using the Kenward-
Rogers approach. Paired contrasts were used to test for different intercepts and slopes 
among regression lines for each pathogen. A Bonferroni-adjustment of α was applied 
to correct for multiple comparisons and ensure an overall α = 0.05.

All maps were created in ArcMap 9.3 (ESRI, Redlands, CA). For each stress index 
at each projection horizon, a grid cell is assigned the median stress value forecasted 
from the three general circulation models.

Results

Effects of climate change on stress projections for each pathogen. CLIMEX models driven 
by downscaled output from general circulation models suggest the geographic extent 
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of cold stress for A. tsugense will diminish in time (df = 2,4; F=24.52; P=0.006) while 
the extent of heat stress will increase (df = 2,4; F=103.22; P<0.001). The extent of 
drought stress is projected to be greater than it is currently, but no different from 2020 
through 2080 (df = 2,4; F=1.13; P=0.408). Approximately 78.7% of grid cells are 
currently too cold for A. tsugense to persist (Fig. 1A). These cells generally fall north of 
37°N latitude but not along the East or West Coasts (Fig. 2). The extent of cold stress 
will be reduced by 2020 (Fig. 1A), then generally occurring north of 39°N latitude , re-
main relatively unchanged through 2050 and again decline by 2080, when cold stress 
will generally occur north of 40°N latitude (Fig. 2). Heat stress currently affects 23.2% 
of grid cells (Fig. 1A), generally south of 42°N latitude (Fig. 2). This stress will increase 
to 30.6% in 2020 (Fig. 1A), generally south of 43°N latitude (Fig. 2), and continue 
to increase by an average of 3% of all grid cells in each subsequent 30-yr projection 
horizon through 2080 (Fig. 1A), by which time heat stress is projected to be severe 
throughout most of Mexico and the contiguous United States (Fig. 2). Drought stress 
for A. tsugense currently affects 47.9% of all grid cells in North America, generally west 
of 96° W longitude (Fig. 2). This extent will increase to approximately 50.3% by 2020 
and remain at this level through 2080 (Fig. 1A).

For D. septosporum, the future extent of cold stress in North America will diminish 
through time (df = 2,4; F=59.12; P=0.001) while the future extent of heat stress will 
increase (df = 2,4; F=19.35; P=0.009); forecasts suggest the extent of drought stress for 
this pathogen will not change (df = 2,4; F=1.75; P=0.284). Currently, 19.3% of grid cells 
are inhospitable to D. septosporum because of cold, greater than in any future 30-year 
projection horizon for this pathogen (Fig. 1B). These cells generally occur north of 62°N 
latitude (Fig. 3). In each subsequent projection horizon, about 5.0% of all grid cells will 
lose cold stress, so by 2080, only 4.2% of grid cells will be too cold for D. septosporum to 
remain viable year-round (Fig. 1B). These cells are projected to occur in northern Canada 
and Alaska (Fig. 3). Heat stress currently affects 18.4% of grid cells, less than in any future 
projection horizon (Fig. 1B), grid cells with a Heat Stress index > 99 occur generally south 

Figure 1. Proportion of North American grid cells with CLIMEX stress indices >99 over time for A Ar‑
ceuthobium tsugense B Dothistroma septosporum and C Phytophthora ramorum. For each species, values 
for a stress with the same letter are not significantly different at α = 0.05. Lines are predicted values from 
regression models described in Table 3. LSSE, least-squares standard error.
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Figure 2. CLIMEX stress indices over time for Arceuthobium tsugense in North America.
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of 37°N latitude (Fig. 3). The proportion of grid cells with heat stress will increase to 
29.0% by 2020 and by an additional 3.8% of all grid cells in each subsequent projection 
horizon through 2080. By this time heat stress will extend throughout Mexico and the 
contiguous United States, except at high elevations and along the Pacific coast (Fig. 3). 
Drought stress is expected to affect approximately 1.3% of all grid cells now and through 
2080, primarily in Baja California, Mexico and the desert Southwest, USA (Fig. 3).

For P. ramorum, the future geographic extent of cold stress will decline over time 
(df = 2,4; F=93.57; P<0.001) while the extent of heat stress will increase (df = 2,4; 
F=19.04; P=0.009). The extent of drought stress is not projected to change (df = 2,4; 
F=0.54; P=0.619). Currently, 31.9% of grid cells are too cold to maintain viable popu-
lations of P. ramorum year-round. These cells occur at high elevations and in northern 
portions of Canada and Alaska (Fig. 4). This extent of cold stress is forecasted to re-
main effectively unchanged through 2020. Then, the extent of cold stress will decline 
by 4-5% of grid cells in each subsequent 30-year projection horizon (Fig. 1C). By 
2080, grid cells with a Cold Stress index > 99, will occur primarily in northern Lab-
rador, northern Quebec, the Northwest Territories, the Yukon Territory, and northern 
Alaska (Fig. 4). Heat stress currently affects 11.5% of grid cells (Fig. 1C), generally 
south of 33°N latitude (Fig. 4). By 2020, the extent of heat stress is projected to in-
crease to 18.4% of all grid cells and to continue to increase by approximately 4% of 
all grid cells in each subsequent projection horizon. By 2080, grid cells with a Heat 
Stress index > 99 will occur up to approximately 44°N latitude, except at high eleva-
tions (Fig. 4). Drought stress is expected to affect approximately 13% of all grid cells 
now and through 2080 (Fig. 1C), acting sporadically west of 99°W longitude (Fig. 4).

Effects of climate change on stress projections among pathogens. The three pathogens 
differed in the extent to which cold stress might currently constrain climate suitability 
for each species (df = 1,12; F>34.38; P<0.001 for three contrasts). The current extent 
of cold stress for A. tsugense is significantly greater than for P. ramorum, which itself 
has a greater extent of cold stress than D. septosporum (Table 3). The constant rate of 
change in the extent of cold stress over time was significantly less than 0 (Type 1 test 
of fixed effect of slope: df = 3,6.83; F=22.90; P<0.001), but did not differ among the 
three pathogens (df = 1,6.83; F<2.90; P≥0.134 for three contrasts).

The extent to which heat stress might currently limit climate suitability for A. tsu‑
gense or D. septosporum was greater than for P. ramorum (Table 3; df = 1,12.2; F>12.2; 
P≤0.001 for two contrasts), but the extent of heat stress that might currently act on 
A. tsugense was not different from that extent for D. septosporum (df = 1,12.2; F=1.74; 
P=0.211). The constant rate of change in the extent of heat stress over time was sig-
nificantly greater than 0 (Type 1 test of fixed effect of slope: df = 3,18.8; F=45.30; 
P<0.001), but did not differ among the three pathogens (Table 3; df = 1,18.8; F<1.32; 
P≥0.265 for three contrasts).

The three pathogens differed in the extent to which drought stress might currently 
limit climate suitability of each species (df = 1,18.8; F>18.8; P<0.001 for three con-
trasts). The extent of drought stress was greater for A. tsugense than P. ramorum, which 
in turn had a greater extent of drought stress than D. septosporum. The constant rate of 
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Figure 3. CLIMEX stress indices over time for Dothistroma septosporum in North America.
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change in the extent of heat stress over time did not differ among the three pathogens 
(df = 1,23.8; F≤1.65; P≥0.361 for three contrasts) and was not different from 0 (Type 
1 test of fixed effect of slope: df=3,23.8; F=0.61; P=0.614).

Effects of different general circulation models on stress projections for each pathogen. 
For A. tsugense, different general circulation models yielded different estimates of the 
future extent of cold stress (df = 2,4; F=13.57; P=0.016), heat stress (df = 2,4; F=12.52; 
P=0.019), and drought stress (df = 2,4; F=12.81; P=0.018). HadCM3 gave a greater 
extent of cold stress than CGCM1 or CSIROMK2; the extent of cold stress for A. 
tsugense forecasted from CGCM1 and CSIROMK2 were similar (Table 2). CGCM1 
gave a lesser extent of heat stress than CSIROMk2 or HadCM3; the extent of heat 
stress from CSIROMk2 and HadCM3 were similar. Forecasts of the extent of drought 
stress based on CGCM1 were greater than HadCM3, but such forecasts based on 
CSIROMk2 were not different from either of the other general circulation models.

Different general circulation models yielded different estimates of the extent of 
cold stress for D. septosporum (df = 2,4; F=22.08; P=0.007) and P. ramorum (df = 2,4; 
F=93.57; P<0.001). For both pathogens, CSIROMk2 climate projections gave lower 
forecasts of the extent of cold stress than did CGCM1 or HadCM3 (Table 2). Though 
different general circulation models gave different estimates of the extent heat stress 
for D. septosporum (df = 2,4; F=9.30; P=0.031), they did not differ for P. ramorum 
(df = 2,4; F=5.83; P=0.065). For D. septosporum, the extent of heat stress based on 
CSIROMk2 was greater than the extent based on CGCM1; the projected extent of 
heat stress based on HadCM3 was not different from the other two general circulation 
models (Table 2). Estimates of the future extent of drought stress did not differ among 
general circulation models for D. septosporum (df = 2,4; F=4.47; P=0.102) or P. ramo‑
rum (df = 2,4; F=1.65; P=0.300).

Table 2. Effect of general circulation models on extent of forecasted abiotic stresses for three forest 
pathogens†.

Species General 
circulation model

Cold stress 
(%±LSSE)‡

Heat stress 
(%±LSSE)

Drought stress
(%±LSSE)

Arceuthobium 
tsugense

CGCM1 71.6±0.6 A 32.3±0.3 A 52.5±0.6 A
CSIROMk2 70.8±0.6 A 34.0±0.3 B 50.4±0.6 AB
HadCM3 74.7±0.6 B 34.2±0.3 B 48.0±0.6 B

Dothistroma 
septosporum

CGCM1 9.7±0.6 A 30.0±0.9 A 1.1±0.1 A
CSIROMk2 6.2±0.6 B 35.0±0.9 B 1.4±0.1 A
HadCM3 12.1±0.6 A 33.6±0.9 AB 1.4±0.1 A

Phytophthora 
ramorum

CGCM1 29.6±0.5 A 20.0±0.9 A 14.1±0.6 A
CSIROMk2 21.8±0.5 B 22.3±0.9 A 12.7±0.6 A
HadCM3 29.8±0.5 A 24.2±0.9 A 13.1±0.6 A

†, Extent is measured as the percentage (elsewhere in this manuscript, proportion) of 98,224 grid cells in 
North America with a CLIMEX stress index > 99. Values represent the least-squares mean of three projec-
tion horizons: 2020; 2050; and 2080. Values for a species within a column followed by the same letter are 
not significantly different at α=0.05.
‡, least squares standard error.
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discussion

These models suggest that the geographic extent of heat stress will increase, cold stress 
will decrease, and drought stress will remain constant throughout North America for all 
three forest pathogens. Rates of change were measured by the slopes of regression lines 
relating the extent of stress to time. The fact that the rates of change were the same for 
each species was a surprise (Table 3). These species have different biological characteris-
tics, which are reflected partially in the differences in CLIMEX parameters among spe-
cies (Table 1). The different CLIMEX parameter estimates led to substantially different 
forecasts of the current extent of cold stress, heat stress, and drought stress among the 
pathogens (Table 3). The reason for the similarity in the rate of change among patho-
gens for each stress remains unknown and will become the focus of future investigations.

CLIMEX parameters for these three pathogens are generally consistent with the 
notion that alien species have broader climatic tolerances than native species. The dif-
ferences between the temperature thresholds for the onset of cold stress (TTCS) and 
heat stress (TTHS) and between the moisture thresholds for the onset of dry stress 
(SMDS) and wet stress (SMWS) provide a measure of the breadth of temperature 
and moisture tolerances, respectively. In general, the native A. tsugense begins to ex-
perience heat stress when temperatures are cooler, cold stress when temperatures are 
warmer, and dry stress when soils are wetter than either alien species does. Different 
mechanisms of wet stress for D. septosporum and cold stress for P. ramorum complicate 
comparisons to the other two species.

With respect to my first hypothesis, I forecast that the native pathogen A. tsugense 
will experience more direct abiotic stress in the future than either of the alien patho-
gens (Fig. 1). This future difference, though, stems from the substantially greater ex-
tent of abiotic stresses currently experienced by A. tsugense than either alien pathogen 

Table 3. Regression results for the proportion of North American grid cells with CLIMEX stress indices 
>99 over time†.

Stress Species Intercept (±LSSE)‡ Slope (±LSSE)
Cold Arceuthobium tsugense 0.78±0.02 A -0.03±0.01 A

Dothistroma septosporum 0.19±0.02 C -0.05±0.01 A
Phytophthora ramorum 0.35±0.02 B -0.05±0.01 A

Heat Arceuthobium tsugense 0.26±0.02 A 0.03±0.01 A
Dothistroma septosporum 0.23±0.02 A 0.04±0.01 A
Phytophthora ramorum 0.14±0.02 B 0.04±0.01 A

Drought Arceuthobium tsugense 0.49±0.01 A < -0.01±0.004 A
Dothistroma septosporum 0.01±0.01 C <0.01±0.004 A
Phytophthora ramorum 0.14±0.01 B < -0.01±0.004 A

†, Stress indices were calculated in CLIMEX, and values > 99 indicate locations where a species is pro-
jected not to persist year-round due to that abiotic stress. Values for a stress within a column followed by 
the same letter are not significantly different at α = 0.05.
‡, least-squares standard error.
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considered in this study. Future climate conditions do not disproportionately affect the 
rate of change in the extent of stress experienced by the native pathogen over the two 
alien species. Thus, I cannot conclude that climate change is creating greater areas of 
suitable climate for alien pathogens than for native pathogens.

My results suggest that cold stress currently is having a substantial effect on 
climatically suitable areas for A. tsugense, D. septosporum, and P. ramorum in North 
America. Cold stresses for A. tsugense and P. ramorum currently extend over a greater 
area than heat stress or drought stress (Fig. 1A, C), and for D. septosporum, the ex-
tent of cold stress and heat stress are effectively the same (Fig. 1B). Cold is likely to 
remain the most extensive abiotic stress for A. tsugense through 2080 (Fig. 1A) and 
for P. ramorum through approximately 2065 (Fig. 1C). For D. septosporum, how-
ever, cold stress will affect a smaller proportion of North America than heat stress 
by 2020. These results would support the value of additional research on the effects 
of cold temperatures on inoculum viability over time, especially for A. tsugense and 
P. ramorum.

With respect to the second hypothesis, I found that general circulation models 
differed in the extent of abiotic stress projected for each pathogen. These patterns were 
not always consistent among pathogens. For example, forecasts of cold stress from 
HadCM3 were significantly greater than from CGCM1 or CSIROMk2 for A. tsugense. 
For D. septosporum and P. ramorum, CSIROMk2-based forecasts suggested less cold 
stress than either of the other two general circulation models (Table 2). These results 
point to the value of considering multiple general circulation models when developing 
forecasts of where abiotic stresses might affect particular pathogens.

Climate change is likely to affect more than just the potential magnitude of abi-
otic stresses that act on these pathogens. Climate change may also directly affect the 
duration of temperature and moisture conditions that would be suitable or optimal 
for pathogen growth (Boland et al. 2004). Climate change may also indirectly af-
fect the course of a plant-disease epidemic by altering the susceptibility of the host 
(Boland et al. 2004; Dukes et al. 2009; Hepting 1963; Sturrock et al. 2011). Trees 
under drought stress, for example, become more susceptible to infection by foliar 
pathogens than non-stressed trees (Jactel et al. 2012). Climate change may also alter 
the synchrony between inoculum production and the availability of sensitive plant 
tissues for infection (reviewed in Garrett et al. 2006). Nevertheless, the focus on 
direct abiotic stress that might act on forest diseases in the future is a reasonable 
first step. Such forecasts describe where pathogens are likely to occur year-round in 
the future and are useful, though imperfect, predictors of potential future impact 
(Boland et al. 2004).

Management decisions in agroforestry and perennial cropping systems span dec-
ades, and decisions made today rely on assumptions about future productivity and 
marketability of a crop. For example, the decision about which species or genetic lines 
to plant at a site is a management choice with ramifications potentially for the next 
30 to 100 years (Pearse 1967). If trees are managed for carbon sequestration, rotations 
of 120 years might be optimal (Liski et al. 2001). In the past, managers might have 
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Figure 4. CLIMEX stress indices over time for Phytophthora ramorum in North America.
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assumed that the environment would remain relatively stable over the lifetime of the 
crop. With this assumption, standard tree growth and mortality curves would yield 
suitably reliable forecasts of future harvests at different points in time (Dale et al. 
1985). Minor losses of trees from pest and pathogen activity might be acceptable to 
some people, and outbreaks could be viewed as undesirable but not unforeseen events. 
Amidst growing evidence of a changing climate, managers are being encouraged to 
implement adaptive management strategies before the full effects of climate change 
manifest to improve the likelihood of meeting desired objectives (Spittlehouse and 
Stewart 2003). After tree planting has occurred, adaptive management options for 
forest health protection include removing diseased trees, thinning stands, applying 
pesticides, or shortening rotation length.

Pest risk maps that incorporate the effects of climate change should help land 
managers with longer-term planning activities and shorter-term management choices. 
For example, the maps developed as part of this project illustrate where abiotic stresses 
might exclude, or conversely might not exclude, three economically significant patho-
gens over time. So, these maps could be useful to decide whether trees with resistance 
to these pathogens should be planted, or if susceptible trees have already been planted, 
when to begin disease surveys. An additional benefit of these maps is that they capture 
complex dynamics (Figs 2–4). For example, while the total area that is at least marginal 
for D. septosporum is shrinking in North America, the area that is highly suitable is in-
creasing (data not shown). So at a continental scale, climate change may be ameliorat-
ing some of the effects of this pathogen, but at a local or regional scale, climate change 
may be intensifying its effects. Qualitative characterizations of the effects of climate 
change are sensitive to the scales at which the assessments are made.

Forecasts of future disease activity based on climate normals will have limited util-
ity over time. We found significant changes in abiotic stresses acting on each pathogen 
in each 30 yr projection horizon (Fig. 1). Our results suggest that models based on 
climate normals are likely to be useful for less than 30 yr.

CLIMEX focuses on abiotic drivers of population growth and death for ecto-
thermic species. A benefit of this approach is that parameters have direct relevance to 
mechanisms underlying population change. Parameters estimated through inductive 
procedures, i.e., derived from known occurrences of a species, can suffer from some 
of the same limitations as other inductive species distribution models with respect to 
the vagaries of presence or absence records (Venette et al. 2010). But, unlike some 
other species distribution models, CLIMEX parameter estimates can be evaluated 
against extant literature on the autecology of the species or tested with appropriately 
designed experiments. A potential limitation of most species distribution models is 
that they fail to account for longer-term adaptation of a species to its environment, 
e.g. natural selection for drought or cold tolerance (Morey et al. 2013). More work 
is needed to account for additional sources of uncertainty in projections of the effects 
of climate change on the distribution and activity of forest pathogens and to express 
this uncertainty in ways that can be formally incorporated into decision-making 
processes.
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Conclusions

Cold stress is likely to preclude the year-round establishment of A. tsugense, D. septo‑
sporum, and P. ramorum in many areas within North America.

With future climate change, the geographic extent of cold stress will diminish 
and allow for some northward movement in the range of climate suitability for these 
pathogens, but heat stress will increase and move southern range limits further north. 
Drought stress seems likely to act sporadically and not drive systematic changes the 
way temperature will.

The geographic extent of future cold stress, heat stress, and drought stress are fore-
casted to change at the same rate for the alien invasive pathogens D. septosporum and 
P. ramorum and the native pathogen A. tsugense. Future differences in the extent of 
abiotic stresses are the result of current differences.

The general circulation models CGCM1, CSIROMk2, and HadCM3 occasionally 
yielded different forecasts of the extent of stress for one of the three forest pathogens.

Forecasts of future pathogen occurrence or activity based on historical climate are 
meaningful for less than 30 yrs, less than the time horizon for many decisions in for-
estry.

Adaptive management strategies are needed for resource managers to remain re-
sponsive to realized future changes in the distribution and activity of forest pathogens. 
Pest risk maps that depict forecasts of these changes should provide useful guidance but 
are constrained by several sources of uncertainty.
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We artificially selected for increased freeze tolerance in the invasive light brown apple moth. 
Our results suggest that, by not accounting for adaptation to cold, current models of poten‑
tial geographic distributions could underestimate the areas at risk of exposure to this species.

Forecasting future distributions of invasive insects is important for many manage-
ment and regulatory decisions. However, numerous challenges exist in creating accu-
rate, biologically relevant models and maps that are meaningful over time (Venette et 
al. 2010). In particular, no models currently account for the potential of an invasive 
species to adapt to a new environment. In fact, demographic models in invasion bi-
ology commonly treat species as “homogenous immutable entities” (Lee 2002). For 
invasions by alien species in North America, adaptation to cold temperature may be 
especially important at northern latitudes or high elevations; cold often prevents spe-
cies from surviving year round (Huey 2010, Venette 2013). For example, cold is likely 
to constrain the future distribution of the light brown apple moth, Epiphyas postvittana 
(Walker), a recent insect invader to North America. No model for E. postvittana cur-
rently accounts for the possibility of evolution of increased cold tolerance. The objec-
tive of this study was to determine if it was possible to artificially select for increased 
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cold tolerance in this species, and if so, to begin exploring the subsequent geographical 
repercussions. Epiphyas postvittana is considered to be predominately freeze intolerant 
during its purported overwintering stage, the late instar larva (Burgi and Mills 2010), 
but preliminary data suggests that a small proportion of the population may also be 
freeze tolerant (Venette unpublished data). This phenomenon could be considered at 
least “partial freeze tolerance” (Sinclair 1999), and enabled freezing to act as a strong 
selection pressure for enhanced cold tolerance in our study.

Epiphyas postvittana eggs were obtained from USDA-APHIS (permit 
P526P-11-03713). All subsequent rearing and experimentation was conducted in a 
Biosafety Level 2 Containment Facility in St. Paul, MN. Eggs were held at 23°C, 
60% RH, and resulting neonates were reared on artificial bean diet until late instars. 
We cooled 4-6th instars (verified through head capsule measurement; Danthanarayana 
1975) individually inside gelatin capsules at ~1°C/min to their supercooling point in-
side a -80°C freezer (modified from Carrillo et al. 2004). Once freezing occurred, lar-
vae were immediately returned to 23°C and given fresh diet. Mortality was measured as 
failure to eclose. Surviving moths were randomly mated in 0.47L (16 fluid oz) contain-
ers with 1-3 individuals of each sex. Randomly selected offspring were subsequently 
reared and supercooled as previously described. This procedure was repeated for nine 
generations. A minimum of 102 larvae were supercooled in each generation. A control 
population was maintained simultaneously and identically, save exposure to freezing.

Survival following freezing after nine generations was compared between the selected 
and control populations using non-parametric cumulative incidence functions (CIF) in 
SAS 9.3 (SAS Institute, Cary, N.C.) to address competing risk (Satagopan et al. 2004). 
The competing risk was any individual that froze and survived. These estimates were then 
used to calculate the temperature required to kill 50% (LT50) of each population.

We used NAPPFAST (Magarey et al. 2009) to map where temperatures might fall 
below the LT50 of the selected or control populations. For each 10 × 10km grid cell, 
NAPPFAST calculated the proportion of the last 10 years in which the lowest tem-
perature of the year was colder than the LT50 for each population. We ran the model 
with 3-D interpolated climate data.

After only nine generations of selection, the probability of survival following freez-
ing was significantly (α=0.1) greater for the selected population than the unselected 
control (Fig. 1; P= 0.078, df=1, χ2 =3.11). The LT50 for the unselected and selected 
populations were estimated to be –16.5°C and –19.0°C, respectively.

Figure 2 illustrates the geographic significance of a putative increase in cold toler-
ance for E. postvittana. Dark blue areas indicate the most dramatic effect of cold, where 
the LT50 was reached in 9-10 of the 10 years modeled. Cold was sufficient to exclude E. 
postvittana in many northern areas (e.g., Minnesota, the Dakotas, Wyoming, and much 
of Canada) using either the unselected (Fig. 2a) or selected (Fig. 2b) model. However, 
for other mid-western, eastern, and southern states, there was an overall reduction in 
the number of years where the LT50 was reached when using the selected population; 
the light blue to dark green colors shifted north. For example, the unselected model 
projected that nearly all of Michigan would reach the LT50 during 90–100% (dark 
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Figure 1. Cumulative incidence of mortality of E. postvittana late instars with (n=179) and without 
(n=109) nine generations of artificial selection for increased cold tolerance.

blue) of the years modeled. In contrast, the selected model projected that most of the 
state would only reach the threshold between 50 to 80% of the modeled years (light 
blue and white). Similarly, western states (e.g., Nevada and Idaho) showed an eastward 
shift in the number of years that temperatures did not reach the LT50.

Current risk maps that exist for E. postvittana (e.g., Fowler et al. 2009, Gutierrez et 
al. 2010, Lozier and Mills 2011), acknowledge the importance of cold in shaping this 
species’ potential U.S. range. However, the parameter(s) used to describe cold toler-
ance is/are assumed to be static. If natural selection follows a pattern similar to what 
our research suggests, within a relatively short period, current models may underesti-
mate the risk of E. postvittana exposure in some areas in the future.

Uncertainty is inherent in pest risk models and contending with it is an ongoing 
area of research (Venette et al. 2010). Our study attempted to address the uncertainty 
related to the potential of a species to adapt to a cold environment and highlighted 
the geographic consequences if adaptation to cold is not considered. However, other 
sources of uncertainty still remain and are important future directions of this work. For 
example, the time of year may influence the effectiveness of selection on E. postvittana, 
assuming multi-voltinism and a randomly mating population. Selection is only likely 
to increase cold tolerance when there is a strong pressure (winter). But if there is any 
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Figure 2. The frequency of years (2003–2012) in which temperatures fell below the threshold required 
to cause 50% mortality (LT50) of E. postvittana in North America: a without selection, and b after nine 
generations of selection for increased freeze tolerance. Dark blue indicates where the LT50 was reached 
in 9–10 of the 10 years, dark green indicates where the LT50 was never reached during the 10-yr period.
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trade-off between increased cold tolerance and fitness (see Watson and Hoffman 1996, 
Huey 2010), cold adapted individuals may be selected against during months when 
selection pressure is reduced (summer). Similarly, particularly for a highly polyphagous 
insect like E. postvittana, host plant variability could also affect cold tolerance measures 
(e.g., Liu et al. 2009). Understanding the relationship between cold tolerance and 
these additional factors will undoubtedly continue to further enhance the accuracy and 
ultimate utility of pest risk mapping tools.
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Abstract
Quantitative models have several advantages compared to qualitative methods for pest risk assessments 
(PRA). Quantitative models do not require the definition of categorical ratings and can be used to com-
pute numerical probabilities of entry and establishment, and to quantify spread and impact. These models 
are powerful tools, but they include several sources of uncertainty that need to be taken into account by 
risk assessors and communicated to decision makers. Uncertainty analysis (UA) and sensitivity analysis 
(SA) are useful for analyzing uncertainty in models used in PRA, and are becoming more popular. How-
ever, these techniques should be applied with caution because several factors may influence their results. 
In this paper, a brief overview of methods of UA and SA are given. As well, a series of practical rules are 
defined that can be followed by risk assessors to improve the reliability of UA and SA results. These rules 
are illustrated in a case study based on the infection model of Magarey et al. (2005) where the results of 
UA and SA are shown to be highly dependent on the assumptions made on the probability distribution 
of the model inputs.
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Introduction

Different types of mathematical models are commonly used for pest risk analysis. Some 
models are used for calculating probability of entry (e.g., Roberts et al. 1998). Others 
are used to estimate pest establishment potential (e.g., Dupin et al. 2011; Phillips et 
al. 2006, Roura-Pascual et al. 2009; Sutherst 2003; Webber et al. 2011; Young et al. 
1999). Models are also used to model spread (e.g. Pitt et al. 2010, Robinet et al. 2012) 
or pest impacts under different scenarios (e.g., Stansbury et al. 2002, Cook et al. 2012; 
Kriticos et al. 2013). These models are powerful tools, but they include several sources 
of uncertainty that need to be taken into account by risk assessors and communicated to 
decision makers, namely uncertainty associated with input variables, parameter values 
estimated from expert knowledge, parameter values estimated from data, and equations, 
for example, uncertainty about the best equation to use for a given model application.

Uncertainty and sensitivity analysis are two techniques for evaluating models. Al-
though both techniques are often mixed together, they each have a different purpose. 
Uncertainty analysis (UA) comprises a quantitative evaluation of uncertainty in model 
components, such as the input variables and parameters for a given situation, to de-
termine an uncertainty distribution for each output variable rather than a single value 
(Monod et al. 2006; Vose 2000, de Rocquigny et al. 2008). Uncertainty in input vari-
ables and parameters is usually described using probability distributions. The objective 
of an uncertainty analysis is to study the consequence of uncertainty by computing a 
probability distribution on model output from the set of probability distributions on 
model inputs. UA aims to answer the following question, “what is the uncertainty as-
sociated with the output resulting from the uncertainty associated with the inputs?”

The use of formal uncertainty analysis was recently considered as one of the most 
important accomplishments in risk analysis since the 1980s (Greenberg et al. 2012). 
Uncertainty analysis allows one to take uncertainty into account when calculating an 
output variable of interest (e.g., number of spores entering in a given area, Peterson et 
al. 2009). Uncertainty analysis should be a key component of model-based risk analy-
sis because it provides risk assessors and decision makers with information about the 
accuracy of model outputs.

The main purpose of sensitivity analysis (SA) is to determine how sensitive the 
output of a model is with respect to elements of the model subject to uncertainty. 
The objective of a sensitivity analysis is to rank uncertain inputs according to their 
influence on the output. Sensitivity analysis can be seen as an extension of uncertainty 
analysis. Its purpose is to answer the following question “What are the most important 
uncertain inputs?”. Sometimes, SA is also used for a more general purpose such as to 
understand how the model behaves when some input or parameter values are changed.

Uncertainty and sensitivity analysis are becoming more popular, especially due to de-
velopment of Bayesian methods and of specialized software and packages (e.g., the sensi-
tivity package of R). However, these techniques should be applied with caution because 
several factors may influence their results (de Rocquilly et al. 2008; Saltelli et al. 2008) such 
that in some cases, the validity of conclusions derived from UA or SA may be limited. In 



Uncertainty and sensitivity analysis in quantitative pest risk assessments... 159

this paper, a brief overview of methods of UA and SA are given. Then, a series of practical 
rules that can be followed by risk assessors to improve the reliability of UA and SA results 
are defined. These rules are illustrated with the infection model of Magarey et al. (2005).

Brief overview of methods for uncertainty and sensitivity analysis

For some simple models, it is possible to calculate the exact probability distribution of 
the model output from the probability distributions of the uncertain input variables 
and/or parameters. However, in most cases, it is not possible to calculate the prob-
ability distribution analytically and other methods should be used. One method is to 
linearise the model from its derivatives in other words the derivatives of the model out-
put with respect to its inputs and parameters. If the uncertain factors are all assumed 
normally distributed, then it is possible to estimate the probability distribution of the 
linearised model analytically which is a normal distribution whose mean and variance 
are functions of the means and variances of the uncertain factors. A limitation of this 
method is that its application is restricted to the cases where the uncertain factors are in 
fact normally distributed. It is sometimes more appropriate to use other distributions, 
especially when the random variables are discrete or when they are bounded. Another 
limitation is that this method can be unreliable when the linear approximation is not 
accurate. For these reasons, the use of a four-step method, based on Monte Carlo simu-
lations, adapted from de Rocquilly et al. (2008), described below is recommended.

A four-step method for uncertainty analysis

Step 1. Define probability distributions for the uncertain model inputs and parameters
The uncertainty about a quantity of interest is frequently described by defining this 

quantity as a random variable. Uncertainty about model parameter/input values can be 
described using different types of probability distributions. The uniform distribution, 
which gives equal weight to each value within the uncertainty range, is commonly 
used when the main objective is to understand model behaviour, but more flexible 
probability distributions are sometimes needed to represent the input and parameter 
uncertainty. When the model input corresponds to a discrete variable, for example, 
the number of imported consignments, or number of successful incursions, discrete 
probability distributions such as the Poisson are often appropriate (e.g., Yen et al. 
2010). Among continuous distributions, the well-known Gaussian distribution is of-
ten convenient, since it requires only the specification of a mean value and a standard 
deviation. It is often replaced by the truncated Gaussian distribution, triangular, or by 
beta distributions, which give upper and lower bounds to the possible values (e.g., Pe-
terson et al. 2009; Yen et al. 2010). When the distribution should be asymmetric, for 
example, when input factors are likely to be near zero, log-normal, triangular, or beta 
distributions offer a large range of possibilities (e.g., Peterson et al. 2009). When the 
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input variables and parameters are not independent, it is sometimes possible to define 
multidimensional probability distributions, for example, the multidimensional Gauss-
ian distribution, with non-zero covariances. Probability distributions can be derived 
from expert knowledge and/or from experimental data. Frequentist statistical methods 
can be used to estimate standard deviations and confidence intervals reflecting uncer-
tainty due to measurement errors and data sampling procedures. Bayesian statistics 
offer a variety of methods and algorithms to calculate probability distributions by com-
bining expert knowledge and data (e.g., Makowski et al. 2010; Makowski et al. 2011).

In some cases, it is difficult to define reliable probability distributions for all uncer-
tain model inputs, i.e., probability distributions correctly reflecting the current state of 
knowledge about input values based on available data and expert knowledge. In such 
cases, it is useful to define several probability distributions and, when possible, to run 
the analysis for all of them and to compare the results. This method is illustrated in the 
example below. When the computation time is too long or when it is not possible to 
run the analysis several times with different distributions, it is important to present the 
assumptions explicitly, and to acknowledge that the results of the analysis may have 
been different if other probability distributions had been defined.

Step 2. Generate values from the distributions defined at step 1
Simple random sampling is a popular method for generating a representative sample 

from probability distributions. This sampling strategy provides unbiased estimates of 
the expectation and variance of random variables. Other sampling techniques like Latin 
hypercube can also be used, especially when the number of variables is large. It is also 
possible to generate combinations of values of uncertain factors by using experimental 
designs, for example, complete factorial designs. The latter technique was used by the 
European Food Safety Authority (EFSA) (2008) to combine estimated minimum, maxi-
mum, and most likely values of several uncertain input factors. The choice of the sample 
size, N, is critical as the reliability of the results of the analysis depends on it. The use of 
a small N value may lead to inaccurate estimated mean, variance, or quantiles because all 
of the space defined by the uncertain inputs or parameters may not be sampled, such that 
the resulting approximation of the probability distribution of the model output may be 
inaccurate. On the other hand, the use of a very high N value will lead to a large number 
of model simulations that may be time consuming without adding new information. The 
choice of the value of N is thus a compromise between computation time and accuracy.

Step 3. Compute the model output(s) for each generated input set
Once the parameter/input values have been generated, the next step consists of 

running the model for each unique set of parameter/input values. For example, if 
N was set equal to 100, the model must be run 100 times leading to 100 values per 
output variable. This step may be difficult when computation of model output is time-
consuming and, with some very complex models, the value of N must be set equal to 
a small value due to computation time constraints. This third step will be easier with 
more simple and less computationally intensive models.
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Step 4. Describe the distributions of the model outputs
The distribution of the model output values generated at step 3 can be described 

and summarized in a number of ways. It is possible to present the distribution graph-
ically using, for example, scatterplots, histograms, density plots. It is also useful to 
summarize the distribution of the model output values by its mean, median, stand-
ard deviation, and quantile values. All these techniques have been applied in several 
quantitative risk assessments (e.g., Koch et al. 2009; Peterson et al. 2009; Makowski 
and Mittinty 2010). When several outputs are considered, it is often useful to study 
the relationship between different outputs using scatterplots and correlation coef-
ficients.

Methods of sensitivity analysis

Sensitivity analysis can be seen as an extension of uncertainty analysis. It comprises 
computing sensitivity indices to rank uncertain input variables or parameters accord-
ing to their influence on the model output. Two types of sensitivity analysis are usu-
ally distinguished: local sensitivity analysis and global sensitivity analysis (Saltelli et al. 
2000). Local SA focuses on the local impact of uncertain quantities on model outputs, 
and is carried out by computing partial derivatives of the output variables with respect 
to the inputs/parameter values. With this method, the uncertain quantities are allowed 
to vary within small intervals around nominal values, but these intervals are not related 
to the uncertainty ranges of the uncertain model inputs and parameters. Contrary to 
local SA, global SA considers the full domain of uncertainty of the uncertain model 
quantities (Saltelli et al. 2008). In global SA, the uncertain inputs and parameters are 
allowed to vary independently within their whole range of variation.

A sensitivity index is a measure of the influence of an uncertain quantity on a 
model output variable. Model inputs and parameters whose values have a strong 
effect on the model are characterized by high sensitivity indices. Less influential 
quantities are characterized by low sensitivity indices. Thus, sensitivity indices can 
be used to rank uncertain inputs and parameters, and identify those that deserve 
more accurate measurements or estimation. A large number of global SA methods 
are available, for example, ANOVA, correlation between input factors and model 
outputs, methods based on Fourier series, and methods based on Monte Carlo simu-
lations (Saltelli et al. 2000). Sensitivity indices can be computed using statistical 
software (e.g., the package sensitivity of the statistical software R http://cran.r-pro-
ject.org/web/packages/sensitivity/index.html) or more specialized software such as 
Simlab (http://simlab.jrc.ec.europa.eu/), @Risk, or Crystalball. @Risk and Crystal-
ball can be used with spreadsheet software and include user-friendly interfaces. With 
all analyses, users will have to define the probability distributions of the uncertain 
input variables and parameters or, at least, their possible ranges of variation. The 
users will also have to define the values of some tuning parameters, as shown in the 
example below.
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Example

In this section, we present a simple example to show how uncertainty and sensitivity 
analysis can be used in practice. We consider the simple generic infection model for 
foliar fungal plant pathogens defined by Magarey et al. (2005):

W = min Wmax , Wmin

g(T )
and

g(T ) =
Tmax −T

Tmax −Topt

T −Tmin

Topt −Tmin

(Topt−Tmin )/(Tmax−Topt )

 if min maxT T T≤ ≤  and zero otherwise

where T is the mean temperature during wetness period (°C), W is the wetness dura-
tion required to achieve a critical disease intensity (5% disease severity or 20% disease 
incidence) at temperature T. The model output is W and it is computed as a function 
of the input T. Tmin, Topt, Tmax are minimum, optimal, and maximum temperature for 
infection respectively, Wmin and Wmax are minimum and maximum possible wetness 
duration requirement for critical disease intensity respectively. This model was used to 
compute the wetness duration requirement as a function of the temperature for many 
species and was included in a disease forecast system (Magarey et al. 2005, 2007).

Tmin, Topt, Tmax, Wmin and Wmax are five species-dependent parameters whose val-
ues were estimated from experimental data and expert knowledge for different foliar 
pathogens (e.g., Magarey et al. 2005; EFSA 2008). However, for some species, these 
parameters are uncertain due to the limited availability of data (Magarey et al. 2005), 
and in such cases, it is important to perform uncertainty and sensitivity analysis.

In this case study, uncertainty and sensitivity analysis techniques were applied to 
the model defined above for infection of citrus by the fungal pathogen Guignardia 
citricarpa Kiely. According to EFSA (2008), the parameter values are uncertain for this 
pathogen. The uncertainty ranges considered in this case study for these parameters are 
presented in Table 1. All computations were done using R (http://cran.r-project.org) 
and the code is available on request.

Three series of probability distributions were defined from Table 1:

i. Independent uniform distributions (with lower and upper bounds set equal to 
the values reported in Table 1)

ii. Independent triangular distributions (with lower and upper bounds set equal 
to the values reported in Table 1, and the most likely values set equal to the 
medians of the uncertain ranges)

iii. Triangular distributions with positive correlation between Tmin and Topt. Values of 
Tmin were first sampled from the triangular distribution defined in ii. Values of Topt 
were then generated by adding values sampled from a uniform distribution (14, 
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16) to the values of Tmin. With this method, Topt values were always higher than 
24°C and lower than 31°C, and were correlated to Tmin. The parameter Topt does 
not follow a triangular distribution anymore, but the other parameters are still 
distributed according to the triangular distributions defined in ii.

These probability distributions were based on the same information; the lower and 
upper bounds defined for each model parameter in Table 1. Nonetheless, these distri-
butions describe uncertainty in different ways; the triangular distribution gives higher 
weights to values located in the middle of the range, and the last distribution considers 
that two parameters out of five are not independent.

An uncertainty analysis was performed by generating N=1,000 parameter values 
from the three probability distributions defined above successively. Results are pre-
sented in Figures 1 (probability distribution i), 2 (probability distribution ii), and 3 
(probability distribution iii). The sampled parameter values are more concentrated 
in the central parts of their uncertainty ranges with the independent triangular dis-
tributions (Figure 2) than with the independent uniform distributions (Figure 1). 
Figure 3 clearly shows that, with distribution iii, Tmin and Topt were positively corre-
lated. The 99%, 90% 10% and 1% percentiles and mean values of the model output 
W reported for different temperatures show that, with all probability distributions, 
uncertainty about fungus wetness duration requirement is quite small if the tem-
perature is close to 27–28 °C, but much larger for temperature below 25 or above 
32 (Figures 1–3). Uncertainty about the wetness duration requirement is reduced 
with the triangular distribution (Figure 2) compared to the uniform (Figure 1).

A sensitivity analysis was performed using the Morris method to identify the most 
influential parameters of the model. The method of Morris is frequently used to quick-
ly screen among all uncertain inputs (Saltelli et al. 2000; Monod et al. 2006; Morris 
1991). The main steps of the method are:

• Define a design by combining k values of the p uncertain parameters
• Add a small incremental step Δ to one uncertain parameter zi
• Compute an “elementary effect” defined by 

Table 1. Uncertainty ranges of the five model parameters for Guignardia citricarpa Kiely

Parameter Lower bound Upper bound

Tmin (°C) 10 15

Topt (°C) 25 30

Tmax (°C) 32 35

Wmin (h) 12 14

Wmax (h) 35 48
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Figure 1. Results of an uncertainty analysis performed with 1,000 Monte Carlo simulations. The up-
per graphics show the values of four model parameters sampled from uniform distributions. The lower 
graphics show the resulting distribution of model outputs, their means (think black line), 10 and 90% 
percentiles (dashed lines), and 5 and 95% percentiles (dotted lines).

where y() is the model function and z1, ..., zp are the p uncertain parameters
• Repeat the procedure several times for all uncertain parameters
• Compute the mean and variance of elementary effects from r replicates. A 

high mean indicates a parameter with an important influence on the output. 
A high variance shows that the elementary effect is highly dependent on the 
value of the uncertain parameter. It indicates either a parameter interacting 
with another parameter or indicates a parameter whose effect is non-linear. 
The tuning parameters of the Morris method were set equal to the following 
values: k=4, p=5, Δ=2, and r=100. The lower and upper bounds of the model 
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Figure 2. Results of an uncertainty analysis performed with 1,000 Monte Carlo simulations. The upper 
graphics show the values of four model parameters sampled from independent triangle distributions. The 
lower graphics show the resulting distribution of model outputs, their means (think black line), 10 and 
90% percentiles (dashed lines), and 5 and 95% percentiles (dotted lines).

parameters were set equal to the values reported in Table 1. Note that it was 
implicitly assumed here that the uncertain model parameters were uniformly 
distributed.

Figure 4 shows the mean and the standard deviation of the elementary effect 
computed using k=4, p=5, Δ=2, and r=100. Results show that the two most influ-
ential parameters are Tmax and Topt. The high standard deviations obtained for both 
parameters reveals the existence of either strong nonlinear effects or strong interac-
tions between the two parameters. This result shows that the effects of a change of 
Tmax and Topt on wetness duration requirements depend on the values of these pa-
rameters (non linearity) and/or on the values of the other parameters of the model 
(interaction).
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Practical rules

Five rules are presented below to improve the reliability of uncertainty and sensitivity 
analysis.

Rule 1: Be transparent about assumptions and methods

In some cases, conclusions of UA and SA depend on assumptions made on probabil-
ity distributions of uncertain model inputs. Results may also depend on the selected 
method used to perform UA or SA. Ranking of parameters obtained by SA may thus 

Figure 3. Results of an uncertainty analysis performed with 1,000 Monte Carlo simulations. The 
upper graphics show the values of four model parameters sampled from triangle distributions assu- 
ming a positive correlation between Tmin and Topt. The lower graphics show the resulting distribution of 
model outputs, their means (think black line), 10 and 90% percentiles (dashed lines), and 5 and 95% 
percentiles (dotted lines).
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depend on the method used to compute sensitivity indices. For these reasons, it is im-
portant to be transparent about assumptions made on probability distributions and to 
present in detail the methods used for UA/SA.

Rule 2: Define precisely the model output of interest

Figures 1–3 show that the uncertainty range depends highly on the temperature T. In 
this example, the uncertainty level can be considered as very low or very high depend-
ing on the model output; simulated wetness duration requirements were characterized 
by low uncertainty levels for temperatures around 27 °C but by high uncertainty levels 
for more extreme temperatures. This example shows that the conclusions obtained for 
a given output may not be valid for others.

Rule 3: Assess the accuracy of the estimates

The accuracy of the estimated mean, variance, and quantiles of the probability distri-
bution of the model output depends on the number of simulations. Figure 4 shows 
the 99%, 90%, 50%, 10%, and 1% percentiles of wetness duration requirements esti-
mated using different numbers of simulations from 10 to 2 000 for T=25 °C. Estimates 
of the 99% percentiles of model output W were highly unstable when the number 
of simulations was lower than 500. In this example, at least 1 000 simulations were 
required to obtain accurate estimate of the 99% percentile. This result shows that it 
is important to check that a sufficiently high number of simulations were used in all 
analysis. The stability of the computed quantities can be assessed either graphically, or 
by computing variances, confidence intervals either analytically or by using nonpara-
metric techniques (e.g., bootstrapping) (Saltelli et al. 2008).

Rule 4: Assess the robustness of results to distribution assumptions

Another important point to keep in mind is that results of uncertainty analysis may 
depend on distribution assumptions. Table 2 shows the values of the median, 95% and 
99% percentiles obtained with N=10 000 Monte Carlo simulations for T=25 °C using 
the three different types of probability distributions described above. The 99% percen-
tiles obtained with the three distributions were quite different. The 99% percentile was 
equal to 39.61 h with independent uniform distributions, but the same percentile was 
lower with the two other distributions, especially with distribution ii. This example 
illustrates the importance of assessing the robustness of results to assumptions made 
on probability distributions. The first step of the uncertainty analysis method specified 
above (Step 1: Define probability distributions for the uncertain model inputs and 
parameters) is a key step, and it is important to use all available information to derive 
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reliable probability distributions reflecting correctly the current state of knowledge. 
Although this step is often difficult, the recent development of methods of expert 
elicitation and of Bayesian techniques offer new possibilities (Makowski et al. 2010; 
Makowski et al. 2011).

Rule 5: Be aware of the capabilities of different sensitivity analysis techniques and, 
when possible, compare results

As mentioned above, several methods are available for uncertainty analysis and, even 
more, for sensitivity analysis. All methods do not have the same capabilities. For ex-
ample, the Morris method illustrated in Figure 4 is an SA method that can be used to 
screen quickly among all uncertain inputs. However, this method cannot be used to 
distinguish between interaction and nonlinear effects, and other techniques for exam-
ple Fourier amplitude sensitivity testing (FAST) and ANOVA should be applied when 
a precise analysis of interactions between model inputs is required.

Table 2. Estimated median, 95%, and 99% percentiles of wetness duration requirements (hours) ob-
tained under three different assumptions of probability distributions (N=10,000)

Prob. distribution Median 95% 99%
i. Uniform 14.52 27.75 39.61
ii. Triangular 14.51 20.82 26.20
iii. Triangular + correlation 14.44 23.35 32.38

Figure 4. Results of the Morris method.
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Conclusion

This paper shows that several factors may influence the results of uncertainty and 
sensitivity analysis, especially the assumptions made about the probability distribu-
tions of the uncertain model inputs and parameters, the number of simulations 
performed with the model, and the type of model output analyzed by the risk asses-
sor. Due to the influence of each of these factors, the validity of the conclusions of 
an uncertainty or sensitivity analysis may be limited. Practical rules were presented 
and illustrated in this paper in order to improve the reliability of uncertainty and 
sensitivity analyses.
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Abstract
Most modes of human-mediated dispersal of invasive species are directional and vector-based. Classical 
spatial spread models usually depend on probabilistic dispersal kernels that emphasize distance over direc-
tion and have limited ability to depict rare but influential long-distance dispersal events. These aspects 
are problematic if such models are used to estimate invasion risk. Alternatively, a geographic network 
model may be better at estimating the typically low likelihoods associated with human-mediated dispersal 
events, but it should also provide a reasonable account of uncertainties that could affect perception of its 
risk estimates. We developed a network model that assesses the likelihood of dispersal of invasive forest 
pests in camper-transported firewood in North America. We built the model using data from the U.S. 
National Recreation Reservation Service, which document visitor travel between populated places and 
federal campgrounds across the U.S. and Canada. The study area is depicted as a set of coarse-resolution 
map units. Based on repeated simulations, the model estimates the probability that each unit is a possible 
origin and destination for firewood-facilitated forest pest invasions. We generated output maps that sum-
marise, for each U.S. state and Canadian province, where (outside the state or province) a camper-trans-
ported forest pest likely originated. Treating these output maps as a set of baseline scenarios, we explored 
the sensitivity of these “origin risk” estimates to additive and multiplicative errors in the probabilities of 
pest transmission between locations, as well as random changes in the structure of the underlying travel 
network. We found the patterns of change in the origin risk estimates due to these alterations to be con-
sistent across all states and provinces. This indicates that the network model behaves predictably in the 
presence of uncertainties, allowing future work to focus on closing knowledge gaps or more sophisticated 
treatments of the impact of uncertainty on model outputs.
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Introduction

The spread of invasive alien species is largely facilitated by human activities such as 
trade and travel (Sakai et al. 2001; Horan et al. 2002; Hulme et al. 2008). Thus, reli-
able estimates of spread rates and patterns for these species depend upon the adequate 
representation of human movement in particular social and economic contexts (Kel-
ler et al. 2008; Wilson et al. 2009). Fundamentally, most modes of human-mediated 
dispersal are directional and vector-based, in the sense that they involve species trans-
port by some physical agent, activity, or mechanism along defined routes connecting 
discrete locations (Carlton and Ruiz 2003). Classical two-dimensional spatial spread 
models usually depict spread as a diffusion or  travelling wave process involving one 
or more dispersal kernels (Andow et al. 1990; Hastings 1996; Sharov and Liebhold 
1998; Lewis and Pacala 2000). In these kernels, the probability of dispersal from one 
location to another is a function of the distance, rather than the direction, between 
them (Nathan 2006). Furthermore, while fat-tailed dispersal kernels (i.e., kernels 
where the dispersal probability declines slowly with distance) may provide more ac-
curate depiction of long-distance dispersal, they are difficult to fit empirically because 
data describing long-distance dispersal events are typically rare (Nathan et al. 2003; 
Hastings et al. 2005). These two aspects – an emphasis on distance over direction and 
the challenge of adequately characterizing long-distance dispersal – are noteworthy 
limitations when classical spread models are subsequently used to assess invasion risks 
(e.g., to forecast which locations in an area of interest are most likely to be invaded 
within a specified time horizon).

However, there has been increased recognition of the utility of network-based 
modelling approaches to depict human-mediated dispersal of invasive species (Hulme 
2009). Such models, which describe a species’ movement via vectors, or links, between 
a set of interconnected nodes, have been perhaps most commonly applied for invad-
ers of marine environments (e.g., Floerl et al. 2009), but also to depict the movement 
of invasive organisms through national- and global-scale commercial trade networks 
(Harwood et al. 2010; Kaluza et al. 2010). A key feature of the network-based ap-
proach is that the physical distance between nodes is far less important than their 
level of connectivity (Moslonka-Lefebvre et al. 2011); basically, the amount of move-
ment along a vector between two nodes replaces the vector’s length as the principal, or 
sometimes only, determinant of the likelihood of spread. By downplaying distance in 
favor of connectivity, network-based models may be better suited than classical spread 
models for depicting long-distance dispersal events (e.g., the transcontinental move-
ment of an organism via shipped cargo), as long as the events occur within the context 
of the network’s underlying data structure. Yet because a network model is called on 
to estimate the often very low likelihood values associated with long-distance events, it 
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is important to characterize the uncertainties associated with these estimates, since the 
uncertainties have some influence on their interpretation. In other words, when the 
estimated risk of invasion for a given location of interest is very low, it is important to 
understand how the estimate will behave given various uncertainties in the data and 
model assumptions, since they constrain the precision and thus reliability with which 
the estimate can be interpreted by a model user (Zeckhauser and Viscusi 1990).

In North America, there is increasing concern that forest pest invasions are being 
facilitated by the transport of firewood for recreational purposes (Haack et al. 2010; 
Tobin et al. 2010; Koch et al. 2012). The concern has been particularly motivated 
by the ongoing range expansion of the highly destructive emerald ash borer (Agrilus 
planipennis Fairmaire) in the eastern U.S. and Canada, as infested firewood is con-
sidered one of the insect’s primary vectors of spread (Muirhead et al. 2006; Petrice 
and Haack 2006; Poland and McCullough 2006). Although there has been general 
research into the sociology behind recreational firewood usage in North America (see 
Jacobi et al. 2011; USDA Animal and Plant Health Inspection Service 2011), still 
little is known about geographic patterns of firewood movement by campers, and the 
implications of those patterns for invasions. In response, we developed a geographi-
cally explicit network model that assesses the likelihood of dispersal of forest pests in 
camper-transported firewood. We built the model using data from the U.S. National 
Recreation Reservation Service, which document visitor travel between the populated 
places where they reside and federal campgrounds across the U.S. and Canada. Among 
our initial objectives for this model was the ability to identify, for any location where 
a forest pest is believed to have been introduced via camper-transported firewood, the 
other location(s) from which the pest likely originated. Unfortunately, such results are 
not synoptic enough for broad-scale policy-making, which is rarely done at the level 
of individual urban areas. Therefore, we generated raster output maps that summarize, 
for individual U.S. states and Canadian provinces, where outside the target state or 
province an introduced forest pest is most likely to have originated.

Treating these output maps as a set of baseline scenarios, we explored the sensitiv-
ity of their “origin risk” estimates to errors in the probabilities of pest transmission be-
tween locations, as well as randomized removal of nodes from the underlying network. 
Here, we discuss the implications of these sources of uncertainty for the interpretation 
of the derived maps. The use of sensitivity analysis techniques to characterize the in-
fluence of uncertainty on model outputs is not unusual (Morgan and Henrion 1990; 
Helton and Davis 2002; Li and Wu 2006), although it remains relatively uncommon 
for spatially explicit analyses of invasive species risk (but see Venette and Cohen 2006; 
Koch et al. 2009). For this study, our primary objective was to demonstrate a simple 
way to identify aspects of our network model where the introduction of uncertainty 
provoked an inconsistent response across the set of output maps. This would allow 
us to determine whether any aspect of the model framework, rather than the data 
populating it, was a potentially problematic source of uncertainty. We view this as an 
essential first step in a broader analysis of uncertainty in invasive species risk maps and 
their underlying models.
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Methods

Data source

We constructed our network model using a broad-scale data set from the U.S. Na-
tional Recreation Reservation Service (NRRS), which operates an online reservation 
system for campgrounds and related facilities operated by the U.S. Forest Service, 
National Park Service, Bureau of Land Management, and other federal agencies. The 
available data spanned a period of greater than five years (January 2004-September 
2009) and documented ~7.2 million visitor reservations, including reservations from 
Canada, at campgrounds and recreational facilities throughout the continental U.S. 
Although this is a large data set, there are many public and private campgrounds 
outside the NRRS system. Hence, we assumed the data to be a representative sample 
of all camper travel.

Each reservation record documented the visitor’s origin location (i.e., by ZIP 
code or Canadian postal code), the destination campground, and the date of the visit. 
The initial processing of the NRRS data set is described in greater detail in Koch et 
al. (2012). Notably, the data did not indicate camper firewood usage, so our model 
instead depicts the general travel behaviour of all campers as documented in the data, 
a consistent proportion of whom we assumed were carrying potentially infested fire-
wood (for additional discussion regarding this proportion, see Haack et al. 2010; 
Jacobi et al. 2011; Koch et al. 2012). We should also note that we ignored the visit 
date for this study, although we acknowledge that a visit’s timing (e.g., in terms of 
a particular season) can affect the likelihood of pest emergence from firewood and 
subsequent establishment.

For each individual reservation, we calculated the geographic (Euclidean) distance 
between the visitor’s origin location (i.e., the centroid of the polygon depicting the 
visitor’s ZIP or postal code) and the destination campground. We then parsed the data 
into a set of unique pathway segments. Some data aggregation was necessary during 
this step to ensure model tractability. Conceptually, our network model is formulated 
as a first-order transition matrix (Karlin and Taylor 1975) that estimates the probabil-
ity of travel between every possible origin-destination combination. Each reservation 
record in the NRRS data represented a single trip of some specified distance between 
a pair of origin and destination locations. Altogether, the data featured >50,000 visi-
tor origin locations and >2500 destination locations, which translated to >973,000 
pairwise combinations involving at least one visitor reservation (i.e., at least one trip) 
during the study period. To build a transition matrix using this many pairwise combi-
nations was computationally impractical, so we aggregated the data at a coarse spatial 
resolution (into 16 × 16 km cells), ending up with a networked set of ~14,000 unique 
map units. These cells provided complete spatial coverage of our study area, which 
included both the continental U.S. and most of Canada.
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Model structure

Any two map cells, designated i and j, in this networked set were connected by a 
unique pathway segment, ij. Each ij had a value, mij, representing the number of trips 
from i to j documented in the aggregated NRRS data during the study time period t 
(i.e., January 2004-September 2009), and another value, mji, representing the number 
of return trips from j back to i. We constructed a matrix, M, from these mij and mji 
values. The size of the matrix was n × n, corresponding to the number of unique map 
units in the aggregated data (i.e., n = ~14,000):

 (1)

The non-diagonal elements of M were the mij and mji values for the pathway seg-
ments connecting each (i, j) pair of map cells. The diagonal elements of M, where i = 
j, were set to 0.

Based on M, we constructed a probability matrix, Pt, of camper travel (and by 
extension, transport of potentially infested firewood) along the pathway segments 
during the study period t. We assumed that the probability, pij, of travel along 
any given segment ij was linearly related to the number of trips from i to j during 
period t:

pij = mijλt, (2)

where λt is a scaling parameter. Ideally, the parameter λt would define the total likeli-
hood (i.e., over the study period t) of camper transport of pest-infested firewood from 
i to j in the pathway matrix. In fact, a precise value of λt would be necessary to estimate 
an exact probability of a pest being moved from location i to j. Our objective, however, 
was not to derive exactly estimated output probabilities, but the more conservative 
goal of testing the relative sensitivity of model outputs to changes in the inputs, such 
that the output probabilities simply serve as a relative measure of risk. For this purpose, 
we only needed λt to be sufficiently small to ensure that the sum of the pij probabilities 
in each Pt matrix row was below 1.

Each row of Pt included another variable, pi term, representing the probability that 
no camper travel (i.e., to any j) would originate at i:

 (3)
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If pi term was equal to 1 for any row, then the map cell i associated with that row did not 
serve as a point of origin in the model. This did not preclude the cell from serving as a 
potential destination j. The probability matrix Pt of camper travel along each pathway 
segment (i.e., during period t) was thus specified as follows:

 (4)

We used Pt as the basis for 2 × 106 stochastic pathway simulations of camper travel 
from each cell i to other map cells. Setting i as the origin location, the model extracted 
the vector of travel probabilities associated with i (i.e., the probabilities in row i) from 
Pt in order to simulate subsequent camper travel from i through the pathway network 
to other map cells. Briefly, in each simulation run for a given cell i, the model per-
formed a uniform random draw against the associated row of probabilities in Pt in 
order to select the next map cell defining the path of an individual trip. The simulation 
of this path continued until reaching a final destination map cell (i.e., a cell with no 
outgoing travel), or instead, when a terminal state (i.e., no further travel) was selected 
based on the pi term value. Regardless of the number of individual segments comprising 
a simulated path, we assumed that the path was completely traversed within the study 
period t. Consequently, for a given pathway segment ij, the probability of camper 
travel from location i to location j during period t was estimated as follows:

φij = Mij/M, (5)

where Mij is the number of times pathway travel from location i to j was simulated to 
occur, and M is the total number of simulations (M = 2 × 106 in this study).

Out-of-state origin risk maps

The network model permitted us to generate maps where each individual cell in the 
study area could be set as the origin or destination location of interest. While cell-specific 
maps might have value when addressing specific invasion scenarios (e.g., identifying the 
probable source locations for a single cell found to be invaded), they do not provide a 
comprehensive picture of invasion risk for use in setting management priorities. So, we 
chose to summarize the model results in a broader context. In a previous analysis of the 
NRRS data (Koch et al. 2012), we found that the majority (~53%) of camping trips 
involved travel distances of less than 100 km. However, we also found that 10% of trips 
involved distances of greater than 500 km. This is consistent with other research (Haack 
et al. 2010; Jacobi et al. 2011; USDA Animal and Plant Health Inspection Service 2011) 
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suggesting that campers frequently transport firewood across state or provincial borders. 
Furthermore, much of the regulatory decision-making with respect to invasive species, 
including the implementation of firewood restrictions to limit forest pest spread, happens 
at the state or provincial level (Filbey et al. 2002). For these reasons, we opted to develop 
model outputs that characterized those locations (i.e., map cells) outside a state or prov-
ince of interest that were most strongly linked to locations inside the state or province.

For each U.S. state and Canadian province, we generated a map where, for each cell 
i outside the target state (province), we summed the model-derived travel probabilities 
(i.e., the φij values) for all pathways between i and any destination cell j within the target 
state (province). Essentially, each map depicts the most likely external source locations 
if a firewood-transported forest pest were to be discovered within the state (province) of 
interest. (Note that for the Canadian provinces, we assume that campers returning from 
U.S. locations may be transporting forest pests, despite border biosecurity measures.) A 
principal feature of these maps is that they highlight key “bottleneck” locations where 
surveillance, awareness campaigns, or quarantine procedures have the best potential to 
be cost-effective in terms of protecting the state (province) of interest from invasion 
(Hauser and McCarthy 2009). These maps served as a set of baseline maps that we could 
then compare to the maps generated for a set of sensitivity scenarios, described below.

Sensitivity analyses

We performed sensitivity analyses to evaluate how uncertainty in key aspects of the 
network model’s structure would influence the φij probabilities estimated in the base-
line maps. The primary goal of these analyses was to assess whether uncertainties in 
any of the tested model aspects yielded a set of output maps with spatial patterns that 
departed in unexpected ways from the patterns depicted in the corresponding baseline 
maps. We adopted a Monte Carlo simulation approach (Morgan and Henrion 1990; 
Crosetto and Tarantola 2001; Li and Wu 2006) for the analyses, involving three basic 
steps: random sampling from an input distribution defined for each aspect of interest; 
repeated model runs using the randomly sampled values; and summarization of these 
results for comparison to the baseline maps.

We focused on three model aspects for this study. Our first sensitivity scenario 
tested the impact of uncertainty in the network configuration by randomly removing 
up to 30% of nodes (i.e., map cells and their associated vectors of pij probabilities) from 
the network prior to each new model run. Our second sensitivity scenario tested the 
impact of uncertainty in the scaling parameter λt (see Eq. 2). In this case, we added uni-
form random error within the range ±0.15 to λt prior to completing each new model 
run. Our final sensitivity scenario evaluated the impact of uncertainty in the pij values 
comprising Pt. To test this aspect, we added uniform random error of up to 0.01 to 
the pij values before each new model run. Ideally, we would have repeated the three 
scenarios with series of bounding values. However, because of the computational com-
plexity of this exercise, we chose a single bounding value for each sensitivity scenario 
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that, based on preliminary work with the model, we were confident would provide 
meaningful contrast to the baseline scenario.

We completed 2 × 106 pathway simulations for each sensitivity scenario. This pro-
cess yielded scenario-specific maps of the φij probabilities (see Eq. 5) for each state and 
province that we could compare to the corresponding baseline maps. For this com-
parison, we calculated and mapped the differences, in percentage terms, between the 
output probabilities under the baseline scenario and under each sensitivity scenario. 
We also calculated a Moran’s I (Moran 1950) value for each difference map. Moran’s I 
is a measure of the global (i.e., map-wide) spatial autocorrelation of values in a spatially 
referenced data set (Getis and Ord 1992; Perry et al. 2002). It ranges in value from -1 
to 1, with values close to -1 indicating a high degree of dispersion in the data (e.g., a 
checkerboard spatial pattern), values close to 1 indicating a high degree of clustering, 
and values near 0 indicating a random spatial pattern.

We employed a simple rank-difference approach for further comparison of the base-
line results to those from our third sensitivity scenario dealing with uncertainty in the pij 
values. After calculating the per-cell differences between the baseline and sensitivity maps 
for each state and province, we converted both the baseline probabilities and the calculat-
ed differences into ranks. Each cell in a given map was assigned a rank from 1 to 6 based 
on a global percentile distribution of the values that occurred in the maps for all states and 
provinces; cell values that fell within the bottom 25% of this global distribution received 
a rank of 1, cells in the 25–75% range received a rank of 2, cells in the 75–90% range 
received a rank of 3, cells in the 90–95% range received a rank of 4, cells in the 95–99% 
range received a rank of 5, and cells in the top 1% of this distribution received a rank of 
6. We ranked each cell twice in this fashion, first according to its percentile value under 
the baseline scenario, then according to its percentile value in the global distribution of 
differences under this sensitivity scenario. Next, we calculated the change in rank between 
the two, which yielded an index value ranging from -5 to 5. Finally, we mapped the index 
values for each state and province in order to identify any spatial trends.

Results

Baseline scenario

Across all individual state and province maps created for the baseline scenario, we saw 
three general spatial patterns of out-of-state (or out-of-province) origin risk. First, 
as illustrated by the state of Alabama (Fig. 1a), there were cases where the highest 
origin probabilities (i.e., the per-cell φij values) were primarily limited to a narrow 
fringe zone surrounding the target state. This pattern was common among states in 
the southeastern and northeastern U.S. The second general pattern, exemplified by 
Missouri (Fig. 1b), similarly featured a localized zone of high probabilities around the 
target state, but this was augmented by several high-probability hotspots associated 
with major urban areas located outside this zone. For instance, the map for Missouri 
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included hotspots associated with the cities of Chicago (IL), Dallas (TX), Denver 
(CO), all of which are at least 400 km away. This mixed origin pattern was typical 
of many states in the U.S. Midwest. In the third pattern, exemplified by Utah (Fig. 
1c), there was also a subtle local fringe zone, but the majority of map cells with high 
probabilities were associated with major urban areas that are fairly distant from the 
target state. With respect to Utah, the most prominent urban areas (i.e., those display-
ing uniformly high probabilities) were generally in the western U.S., but a number 
of eastern U.S. cities also had probabilities in the top 5% of the global distribution 
of probabilities across all states and provinces. This sort of dispersed pattern of origin 
risk was exhibited by other states such as Arizona and California that, like Utah, fea-
ture several popular recreational destinations (e.g., national parks) that draw campers 
from throughout the continent.

The maps for the Canadian provinces, especially the more populous ones (i.e., 
Quebec, Ontario, Alberta, and British Columbia), usually exhibited a dispersed spatial 
pattern similar to that observed for Utah, although the origin probabilities in each map 
were low compared to their U.S. counterparts. Indeed, the highest probabilities in 
these maps very rarely reached the top 10% of the global distribution. The only excep-
tions were a few high-probability (top 5%) cells in each of the maps for the most popu-

Figure 1. Out-of-state origin risk maps for three U.S. states under the baseline scenario: a Alabama 
b Missouri c Utah. The maps show the relative probability, φij, that a map cell outside the state of inter-
est is a source of campers carrying potentially infested firewood to the target state. Numbers in paren-
theses link the defined probability classes to a global percentile distribution built from the probabilities 
that occurred in the maps for all states and provinces.



Frank H. Koch et al.  /  NeoBiota 18: 173–191 (2013)182

lous Canadian provinces, which appeared to be associated with specific recreational 
destinations such as Grand Canyon National Park (AZ) and Zion National Park (UT).

Two factors seem to govern the observed patterns of origin risk. Foremost is the 
population of the state or province of interest. Because the model is bi-directional (i.e., it 
also simulates return travel by campers from their destinations to their origin locations), 
the population of the target state or province influences the range of output probabilities 
that will be portrayed in its map, particularly the frequency at which high probabilities 
occur. In short, the maps of heavily populated states and provinces tended to have higher 
probabilities overall than sparsely populated states and provinces. The second factor is the 
nature of the recreational opportunities available in the target state or province. States or 
provinces containing several high-profile recreational destinations displayed a dispersed 
pattern of origin risk, while states or provinces with numerous but comparatively low-
profile recreational destinations usually displayed a more localized origin risk pattern.

Impact of uncertainty in the network configuration

Figure 2 shows three example maps of the mean percent difference (i.e., over all model 
runs) in the φij output probabilities under this sensitivity scenario. The example states 

Figure 2. Maps of the mean percent difference (i.e., across all model runs) between the φij output prob-
abilities calculated under the baseline scenario and under the sensitivity scenario that tested the impact of 
uncertainty in the network configuration: a Alabama b Missouri c Utah. Only cells with probabilities in 
the top 10% of the global distribution for the baseline scenario are shown.
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Figure 3. Maps of the mean percent difference (i.e., across all model runs) between the φij output prob-
abilities calculated under the baseline scenario and under the sensitivity scenario that tested the impact of 
uncertainty in the scaling parameter λt: a Alabama b Missouri c Utah. Only cells with probabilities in the 
top 10% of the global distribution for the baseline scenario are shown.

correspond to those highlighted under the baseline scenario: Alabama (Fig. 2a), Mis-
souri (Fig. 2b), and Utah (Fig. 2c). Note that only map cells in the top 10% of prob-
abilities under the baseline scenario are shown. For all states and provinces, the percent 
change in the values of cells in this top 10% typically ranged from -24% to -36%, 
with a map-wide mean (i.e., across all cells in a given map) near -30%. This level of 
difference is consistent with the proportion of nodes removed for this scenario. More 
importantly, as illustrated by the difference maps for all three example states, there was 
no obvious spatial trend in the pattern of change. Essentially, each map has a salt-and-
pepper appearance, such that cells with higher probabilities under the baseline scenario 
(see Fig. 1) do not appear to have greater (or smaller) percent changes than cells with 
lower probabilities under the baseline. This observation is supported by the Moran’s I 
values calculated for all states and provinces, which ranged between -0.016 and 0.021 
(median = 0.005) and thus indicated a minimal level of spatial autocorrelation.

Impact of uncertainty in the scaling parameter λt

Figure 3 shows three example maps of the mean percent difference in the φij output 
probabilities under this sensitivity scenario. As in the previous scenario, the example 
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states correspond to those highlighted under the baseline scenario: Alabama (Fig. 3a), 
Missouri (Fig. 3b), and Utah (Fig. 3c). Only map cells in the top 10% of probabilities 
under the baseline scenario are shown. For all states and provinces, the percent change 
in the values of cells in this top 10% typically ranged from -15% to 15%, with a map-
wide mean slightly greater than 0. This degree of change is consistent with the altera-
tions to λt under this scenario.

None of the difference maps for the example states appears to show a strong spa-
tial trend in the pattern of change. There may be a slight tendency for map cells with 
higher probabilities under the baseline scenario to exhibit small but positive percent 
changes, while cells with lower probabilities under the baseline may tend toward small 
negative changes. However, the existence of a subtle spatial trend is not really sup-
ported by the Moran’s I values for each state and province, which ranged from -0.005 
to 0.133 (median=0.008). Indeed, with the exception of a single Canadian province, 
Nova Scotia, which has relatively few connections to outside locations in our network 
model, none of the maps had an I value greater than 0.0324. Similar to the previous 
sensitivity scenario, this suggests a low level of spatial autocorrelation.

Impact of uncertainty in the pij probabilities

Figure 4 shows three example maps of the rank differences (see Methods) between the 
baseline scenario and this sensitivity scenario, which tested the effects of adding uni-
form random error to the pij probabilities. The maps display an obvious spatial trend 
in the pattern of change. (Again, only cells in the top 10% of probabilities under the 
baseline scenario are shown.) This trend can be summarized in general terms: cells 
with comparatively higher probabilities under the baseline scenario were more likely 
to exhibit a decrease or no change in rank under this sensitivity scenario, while cells 
with comparatively lower probabilities under the baseline were more likely to exhibit 
an increase in rank. Thus, for states and provinces like Alabama (Fig. 4a), where the 
highest origin probabilities under the baseline scenario were primarily limited to a 
localized zone adjoining the state or province (also see Fig. 1a), any decreases in rank 
were also usually limited to this zone. Alternatively, in states and provinces like Mis-
souri (Fig. 4b) and Utah (Fig. 4c), where high origin probabilities under the baseline 
were regularly associated with major urban areas outside the fringe zone, it is primarily 
map cells in these areas that exhibited a decrease or, just as commonly, no change in 
rank. For all states and provinces, the map cells that exhibited increases in rank under 
this sensitivity scenario were usually found in rural areas or the peri-urban zones (Allen 
2003) that surround large cities.

The existence of a spatial trend in the pattern of change is supported by the Mo-
ran’s I values calculated for the difference maps of each state and province. With the 
exception of Nova Scotia, the values ranged from 0.057 to 0.208 (median = 0.135), 
indicating a degree of positive spatial autocorrelation (i.e., clustering) that varied ac-
cording to whether the state or province of interest had a well-defined fringe zone of 
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high probabilities under the baseline scenario. Typically, states and provinces with 
such a zone exhibited larger I values. This variability, however, does not contradict the 
notion of a generally consistent spatial trend across all states and provinces.

discussion

By focusing on changes in the φij probabilities under the sensitivity scenarios, we can 
make conclusions about how the model generally behaves given uncertainty in the 
tested model aspects. We expected to see departures from the baseline φij values in all 
three scenarios, but importantly, our results indicated that the patterns of these dif-
ferences were consistent across all states and provinces. In the two scenarios testing 
the impact of uncertainty in the network configuration and in the scaling parameter 
λt, the distribution of the mapped differences was usually close to random; in other 
words, no particular state (province) or range of output probabilities was uniquely af-
fected by uncertainty in these model aspects. In the scenario that tested the impact of 
uncertainty in the pij values, there was a recognizable spatial trend in the differences 
from the baseline scenario, but this trend was manifested similarly across all states and 

Figure 4. Maps showing the difference in rank between maps generated under the baseline scenario 
and under the sensitivity scenario that tested the impact of uncertainty in the pij probabilities: a Alabama 
b Missouri c Utah. See main text for details regarding the calculation of ranks, which ranged from 1 to 6 
for each scenario. Only cells with probabilities in the top 10% of the global distribution for the baseline 
scenario are shown.
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provinces. Essentially, uncertainty in the pij values resulted in smoothing of the φij out-
put probabilities across the entire map area, regardless of how those probabilities were 
spatially distributed under the baseline scenario.

In summary, it appears that the network model is generally stable in the presence 
of uncertainties in its critical structural aspects (i.e., in its spatial configuration and in 
parameters that define Pt, the probability matrix that drives the pathway simulations). 
While making this determination was the primary objective of our study, close exami-
nation of the individual sensitivity scenarios reveals additional details about potential 
model improvements and future applications. First, removing a large portion of the 
nodes from the network did not cause the model to behave inconsistently. This stability 
suggests that the  modelling framework may be transferable to other data sets that can 
be organized as networks, including potentially sparser data sets. This transferability 
may present an easy opportunity to examine other modes of human-mediated disper-
sal that are relevant to invasion risk. For instance, we might want to apply the model 
to describe camper travel patterns associated with privately owned campgrounds across 
North America. The framework may also be applicable to the movement of crop pests 
via domestic shipments of certain agricultural commodities. Similarly, the network 
model continued to behave consistently despite sizeable alterations to the scaling pa-
rameter λt. This appears to affirm our supposition that a more precise value for λt would 
not substantially affect the generalbehaviour of the model, which further supports the 
notion of its transferability to other invasion risk  modelling problems.

In the sensitivity scenario that tested the impact of uncertainty in the pij probabili-
ties, the smoothing effect observed in the output maps suggests that these probabilities 
were fairly sensitive to uncertainty, or at least more sensitive than the other tested 
model aspects. Under this scenario, a small random variate was added to every pij value 
in the Pt matrix, including where pij = 0. This change effectively created new intercon-
necting vectors between network nodes, subsequently adding topological information 
to the network. Indirectly, this raised the relative importance of map cells with low 
origin probabilities under the baseline scenario, since it added some small probability 
of camper travel between cells, even in cases where no such travel was documented in 
the NRRS data.

Conceptually, this sensitivity scenario depicts a general lack of knowledge about 
the travel patterns of campers (and by extension, their movement of potentially in-
fested firewood). This implies that the best opportunity to improve our model may be 
to refine the pij probabilities. Notably, these values are partly shaped by the parameter 
λt (see Eq. 2), so the issues mentioned previously regarding λt may have relevance 
here. Indeed, while we did not implement a sensitivity scenario where λt and the pij 
values were varied together, it is possible that the pij values are more or less sensitive 
depending on the value of λt. This is a potential topic of future work. Regardless, the 
pij values are directly derived from the data underlying the network, and so depend on 
the comprehensiveness and representativeness of those data for the phenomenon being  
modelled. In our case, the NRRS data only cover a limited subset of all camper travel, 
so there could be some advantage to including other data sources such as camper res-
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ervation records at private- or state/provincial-managed campgrounds, contingent on 
the availability of such data.

We must reiterate that the φij output probabilities only provide a relative measure 
of invasion risk. Because we did not have sufficient data to directly model the move-
ment of forest pests in infested firewood, and instead modelled the travel of all campers 
as a proxy, then the resulting probabilities should not be interpreted as a depiction of 
the true risk. The actual probabilities of successful forest pest introduction via fire-
wood are likely much lower than the numbers we present here, for various reasons; for 
instance, not all campers transport firewood, not all of the firewood they transport is 
infested, and not all infested firewood contains enough individuals of a potential pest 
species to support establishment upon arriving at a destination (Haack et al. 2010; 
Haack et al. 2011; Jacobi et al. 2011; Koch et al. 2012). Being able to better define λt 
might bring us closer to estimating the true probabilities. However, it may be worth 
considering whether this would be a cost-effective expenditure of research effort. For 
example, developing a continuous function relating travel distance to the likelihood a 
camper is transporting firewood might require extensive surveys of camper behaviour, 
and then would only provide a partial estimate of λt. Moreover, a relative measure of 
invasion risk may still be quite pertinent for a common use of pest risk maps and mod-
els (Venette et al. 2010; Yemshanov et al. 2012): to prioritize locations for surveillance 
or other pest management activities.

While we have proposed that network models may be especially useful for mapping 
pest risk, they, like other types of models, should be subject to critical scrutiny prior to 
their application. We see the presented approach as being primarily of interest to analysts 
tasked with constructing network models. The approach does not address key questions 
that arise in uncertainty analysis regarding how uncertainty propagates to the model out-
puts, or the resulting implications for decision makers who will utilize these outputs. 
Instead, it is merely intended to help analysts assess the fundamental soundness of their 
models and feel more confident about incorporating them into their analytical toolsets.

Conclusions

Because human activities contribute significantly to the proliferation of invasive spe-
cies,  modelling approaches that characterize important human-mediated dispersal 
pathways may be highly applicable for pest risk analysis. To provide a working exam-
ple, we developed a geographically explicit network model that depicts the potential 
spread of forest pests in firewood moved by camper travel across the U.S. and Canada. 
We then presented an approach, based on common sensitivity analysis techniques, for 
assessing how this network model behaves when uncertainty is introduced into criti-
cal model aspects. In our case, the approach allowed us to determine that the model 
behaved consistently and predictably in the presence of uncertainty. The approach is 
analytically straightforward, and should be generalisable to other network models with 
comparable formulations.
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Abstract
Pest risk maps are important decision support tools when devising strategies to minimize introductions 
of invasive organisms and mitigate their impacts. When possible management responses to an invader in-
clude costly or socially sensitive activities, decision-makers tend to follow a more certain (i.e., risk-averse) 
course of action. We presented a new mapping technique that assesses pest invasion risk from the perspec-
tive of a risk-averse decision maker.

We demonstrated the method by evaluating the likelihood that an invasive forest pest will be trans-
ported to one of the U.S. states or Canadian provinces in infested firewood by visitors to U.S. federal 
campgrounds. We tested the impact of the risk aversion assumption using distributions of plausible pest 
arrival scenarios generated with a geographically explicit model developed from data documenting camper 
travel across the study area. Next, we prioritized regions of high and low pest arrival risk via application of 
two stochastic ordering techniques that employed, respectively, first- and second-degree stochastic domi-
nance rules, the latter of which incorporated the notion of risk aversion. We then identified regions in the 
study area where the pest risk value changed considerably after incorporating risk aversion.
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While both methods identified similar areas of highest and lowest risk, they differed in how they de-
marcated moderate-risk areas. In general, the second-order stochastic dominance method assigned lower 
risk rankings to moderate-risk areas. Overall, this new method offers a better strategy to deal with the 
uncertainty typically associated with risk assessments and provides a tractable way to incorporate decision-
making preferences into final risk estimates, and thus helps to better align these estimates with particular 
decision-making scenarios about a pest organism of concern. Incorporation of risk aversion also helps 
prioritize the set of locations to target for inspections and outreach activities, which can be costly. Our 
results are especially important and useful given the huge number of camping trips that occur each year 
in the United States and Canada.

Keywords
Risk aversion, stochastic dominance, decision-making under uncertainty, pest risk mapping, firewood 
movement, pathway invasion model

Introduction

Management of invasive species populations often requires making decisions about 
allocating scarce resources for surveillance or eradication of newly detected incur-
sions. To aid in the decision-making process, agencies responsible for monitoring and 
controlling invasive species, such as the USDA Animal and Plant Health Inspection 
Service (APHIS) in the U.S. (APHIS 1999; Lance 2003) or the Canadian Food In-
spection Agency (CFIA) in Canada (CFIA 2001), routinely assess the projected risk 
impacts of alien organisms on biological resources, trade and other economic activities 
(Simberloff 2005, Venette et al. 2010, Magarey et al. 2011). These risk assessments are 
usually based on the best available information about their target organisms. In gen-
eral, knowledge about an organism’s likely behaviour in its new environment is rarely 
complete, so any assessment of the potential risks and impacts includes a considerable 
amount of uncertainty. Consequently, a management decision based on such an as-
sessment is dependent not only on the estimates of pest invasion risk and potential 
impacts but also on how the decision-makers perceive the uncertainty embedded in 
these estimates.

In cases where the need to manage invasive pest populations prompts calls for ir-
reversible, costly or socially sensitive actions, decision-makers tend to follow a more 
certain course of action, thus exhibiting risk-averse behaviour (Gigerenzer 2002, She-
frin and Belotti 2007). Risk-averse behaviour may also be a response to a common 
situation when public appeals to eradicate or slow the spread of a recently detected 
invasive pest do not allow enough time to acquire the data necessary to adequately 
characterize the behaviour of the new invader. Often, the pressure to “do something” 
about expanding pest populations creates another incentive for decision-makers to 
follow a cautious, risk-averse strategy; basically, since resources for managing pest 
populations are limited, choices with a more certain chance of slowing the spread or 
eradicating new pest incursions are more likely to be adopted. Notably, government 
agencies tasked with monitoring and regulating the incursion and spread of unwanted 
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invasive organisms are fundamentally risk-averse and have resources and legal power to 
minimize risks, even at the cost of regulating trade or other related economic activities.

When decision-makers follow a risk-averse strategy, the presence of uncertainty 
in pest risk assessments inevitably changes decision outcomes about managing the 
pests. However, uncertainty has rarely been represented in assessments of new pest 
incursions in a geographical domain. At best, pest risk maps presented uncertainty as 
separate maps or a combination of coarse risk-uncertainty classes (Koch et al. 2009, 
Yemshanov et al. 2009). This kind of risk mapping implicitly places the burden of 
addressing uncertainty on decision-makers which, in turn, may lead to risk-averse 
behaviour, biased assessments and sometimes ignorance (i.e., a wait-and-see strategy if 
the assessment of pest impact is highly uncertain). Ideally, the uncertainty associated 
with the estimated impact of an invasive organism should be directly incorporated 
into the species’ risk map by the analyst, rather than interpreted by the decision-maker 
(Venette et al. 2010).

In this paper, we present a new risk mapping technique that helps quantify uncer-
tainty in pest risk assessments from the perspective of a risk-averse decision maker. We 
consider a particular case of risk mapping when a decision-maker faces the problem of 
prioritizing a set of locations in a geographical domain based on imprecise estimates 
of the likelihood of pest arrival in a given area. Our goal with this paper is to present 
the method of prioritizing uncertain outcomes of ecological invasions that would agree 
with a risk-averse decision-making strategy, and also to explore how the notion of risk-
aversion changes the delineation of pest risk in a geographical domain.

Methods

The risk aversion concept

In general, humans tend to place relatively low weights on uncertain outcomes and 
relatively high weights on certain outcomes (Kahneman and Tversky 1979, Kahneman 
et al. 1982). Prior studies have demonstrated risk aversion in decision-making attitudes 
over a range of anticipated economic losses (Markowitz 1952, Levy and Levy 2001, 
Levy 1998). Risk-averse decision-making is not limited to cases that involve economic 
losses (such as allocation of investment assets), but also applies to the general case of 
how humans perceive valuable outcomes under uncertain conditions. The expected 
utility hypothesis (Arrow 1971, Schoemaker 1982) considers preferences of individuals 
with regard to uncertain outcomes and represents these as a function of the payouts 
(whether in monetary or other valuable equivalents). The expected utility theory im-
plies that rational individuals act to maximize their expected utility (i.e., a monetary or 
non-monetary value that the decision-making agent attributes to a specific asset, service 
or action). When the expected utility value is represented as a function of the payouts 
in a monetary or non-monetary equivalent, this condition implies that the function is 
increasing (i.e., the decision-maker always prefers more to less). Adding the risk aver-
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sion assumption (which implies that individuals prefer the more certain choice of two 
outcomes with the same expected value) adds the condition that the decision-maker’s 
expected utility function (EUF) is concave (Fig.1; a more detailed discussion about risk-
aversion and the concavity of the EUF can be found in Arrow 1971 and Levy 1998).

The notion of risk-averse decision preferences can be embedded into the process of 
mapping risks of pest invasions. In our case, the concept of payoff can be thought as 
analogous to estimating anticipated losses from an invasive organism (or the likelihood 
of an organism’s arrival). Conceptually, the EUF value (Fig. 1) can be interpreted as 
analogous to a decision-making priority that indicates the degree of importance for 
the decision-maker of a particular geographical site that is under risk of infestation. 
Clearly, any rational decision-maker would assign a higher priority to geographical lo-
cations with a higher and more certain likelihood (or anticipated impact) of invasion. 
By adding the notion of risk-aversion we imply that the assessment of pest invasion 
risk should be done from the point of view of a decision-maker whose EUF is concave. 
In short, the notion of risk-aversion means that pest risk assessments (which, in our 
case as well as in general, translate to prioritization schemes) should include some sort 
of penalty for uncertain choices.

The use of the EUF’s concavity assumption for representing risk-averse behaviour 
offers a formal treatment of risk aversion without the need to explicitly define the 
shape of the utility function. Essentially, the concavity condition is a very basic defini-
tion of general risk-averse preferences (i.e., by eliminating the cases when the decision-
maker is risk-neutral or risk-seeking) and does not define a specific range of risk-averse 
preferences (such as moderate to extreme risk aversion). While it is possible to impose 
further restrictive assumptions on the type of risk-averse behaviour – for instance, by 
assuming a particular functional form of the EUF or limiting the degree of risk aver-
sion to an upper and lower bounds (Meyer 1977, Meyer et al. 2009, Hardaker et al. 
2004) – estimating the shape of the EUF in the invasive species management context 
could be problematic given the wide variety of pest invasion problems and the diverse 
spectrum of decision-making skills among pest management professionals.

Prioritizing pest invasion risk under the notion of risk-aversion

We consider a pest risk map that prioritizes geographical locations across a landscape 
based on the likelihood that the pest will arrive at a previously non-invaded locale. 
Ultimately, the assignment of decision-making priorities to a particular geographical 
location may depend on the decision-maker’s perception of uncertainty in the assess-
ment of the impact of the pest invasion. In this paper, we explore how the incorpora-
tion of risk-averse decision preferences changes the prioritization of areas of high and 
low pest invasion risk in a geographical setting. We use distributions of plausible inva-
sion scenarios generated by a stochastic model to predict the movement of an invasive 
organism across a heterogeneous landscape. We then delineate regions of high and 
low risk of pest arrival across the landscape via the application of two simple stochas-
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tic ordering techniques, one of which incorporates the notion of risk aversion. For 
consistency, we use ordering techniques from the same family based on the stochastic 
dominance (SD) rule. Finally, we identify geographical regions in a landscape where 
adding the notion of risk aversion changes the location’s pest risk value considerably.

Stochastic dominance (SD) rule

The stochastic dominance rule is a form of stochastic ordering that compares a pair of 
distributions. The concept was previously applied to compare distributions of invest-
ment portfolio returns in financial valuation studies (Hanoch and Levy 1969, Roth-
schild and Stiglitz 1970) and shares many technical aspects with the partial ordering 
of vectors and majorization theory in statistics (Whitemore and Findlay 1978, Levy 
1992). The SD rule compares two distributions based on their cumulative distribution 
functions, or CDFs (Levy 1998). In our case, we compare two map locations, f and g, in 
a geographical setting. At each location, the multitude of plausible invasion outcomes 
is described by the distributions, f(φij) or g(φij), of the rates of invasive pest arrival, φij, 
at locations f and g (Fig. 2) over an interval of possible arrival rate values, [a; b], where 
a = 0 (i.e., the likelihood of pest arrival is zero) and b = 1 (i.e., the arrival of the pest is 
certain,). The SD test compares the distributions at f and g as represented by their re-
spective cumulative distribution functions,  and . 
Location f dominates g by the first-degree stochastic dominance rule (FSD) if

G(φij) – F(φij) ≥ 0 for all φij, and G(φij) – F(φij) > 0 for at least one φij (1)

Figure 1. The expected utility function (EUF) concept. The EUF value can be interpreted as analogous 
to a decision-making priority that indicates the degree of importance for the decision-maker of a par-
ticular geographical site that is under risk of infestation. Bold line depicts an example of a concave EUF 
that denotes risk-averse decision-making preferences. The concavity condition means that a more certain 
amount of valuables (or degree of importance for the decision-maker) (u(x)) would always be preferred 
over a less certain choice (u(x ± Δx) with the same expected value, x. Dashed line shows an example EUF 
for a risk-neutral decision-maker (i.e., one who is indifferent between more certain and less certain choices 
with the same expected value).
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The FSD rule implies that the CDFs of f and g do not cross each other (Fig. 2A). 
The test for FSD also supposes that a decision-maker will always prefer the “higher-
value” outcome (Levy 1998) at any realization of φij, i.e., will place a greater manage-
ment priority on a location with higher likelihood of pest arrival (depicted by estimates 
of φij) than a location with lower likelihood.

The FSD conditions may fail when differences between G(φij) and F(φij) are small. 
Alternatively, second-degree stochastic dominance (SSD) provides weaker but more 
selective discrimination by comparing the integrals of the CDFs for F(φij) and G(φij): 

 and . Location f dominates the alternative g by SSD if

 for all φij, and

 for at least one φij (2)

The SSD rule implies that the integrals of the CDFs for F(φij) and G(φij) do not 
cross (Fig. 2B). The SSD condition adds the assumption that the decision-maker is 
risk-averse, that is the dominance relationships based on the SSD rule (Eq. 2) satisfy 
the assumption that the decision-maker’s EUF is concave (Levy 1992, Meyer et al. 
2005, Gasbarro et al. 2009, see proofs and more details in Levy 1998 and Levy and 
Levy 2001).

The SSD and FSD tests are pairwise comparisons. However, our study required 
evaluating a set of N multiple geographical locations, or map elements, that consti-
tuted a landscape. For each rule, we applied multiple pairwise stochastic dominance 
tests of map elements to delineate a subset of elements, À1, from the total set N such 
that each element of À1 could not be dominated by any element in the rest of the set, N 
- À1. Formally, a non-dominant subset À1 is equivalent to an “efficient set” in financial 
investment valuation literature (Fishburn and Vickson 1978, Porter et al. 1973, Por-
ter 1978, Post and Versijp 2007). While financial investment analyses often focus on 
evaluating a single non-dominant set and narrowing down the multitude of possible 
investment scenarios to the fewest possible choices, our study required evaluating each 
element (map location) in a set. Hence, we evaluated all nested non-dominated sub-
sets (based on the FSD or SSD rules) in the total set N using the following algorithm 
(Goldberg 1989): After the first non-dominant subset À1 was found, it was assigned 
the highest invasion risk rank of 1 and removed from set N temporarily. Then, the next 
non-dominant subset was found from the rest of the set, N ‑À1, assigned a risk rank 
of 2, temporarily removed from set N ‑À1 and so on. The delineation of nested non-
dominant sets continued until all elements in the set N were evaluated and assigned a 
corresponding decision-making priority rank. The final rank values based on the FSD 
and SSD rules were then plotted back to their geographical locations, resulting in a 
map for each SD rule.

The stochastic dominance rule assumes a very broad range of decision-making 
behaviours and has relatively low ability to discriminate small non-dominant sets. To 
improve the discriminative capacity, some alternative metrics have been proposed. 
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The stochastic dominance with respect to a function, or SDRF (Meyer 1977), as-
sumes that the absolute risk aversion measures of the decision-maker lie between ar-
bitrarily defined lower and upper bounds. Another measure, the stochastic efficiency 
with respect to a function, or SERF (Hardaker et al. 2004; Hardaker and Lien 2010), 
ranks risky alternatives in terms of certainty equivalents (CE) while assuming that 
the degree of risk aversion varies within a defined range. The SERF method requires 
making additional assumptions about the functional form of a decision-maker’s ex-
pected utility function and assumes that the decision-maker’s risk aversion metric is 
of the same functional form as those lower and upper risk aversion bounds. Impos-
ing these additional restrictions on risk-averse preferences enables the SERF metric 
to discriminate even smaller non-dominant sets than the stochastic dominance rule 
but requires eliciting the risk aversion bounds from decision-makers and identifying 
the functional form of the EUF. In our risk mapping case, these details about risk-
averse preferences were unavailable, so we opted to use the more generalized but less 
discriminating SSD rule.

Figure 2. First-degree and second-degree stochastic dominance rules: A distributions, f(φij) and g(φij), of 
camper travel probabilities (φij) at two corresponding map locations, f and g B the cumulative distribution 
functions (CDFs), F(φij) and G(φij), of f(φij) and g(φij) in Fig. 1(a). “FSD” indicates the first-degree sto-
chastic dominance conditions are satisfied (i.e., G(φij) and F(φij) do not cross each other) C two additional 
example distributions of pest arrival rates at f and g d in this case, CDFs of f(φij) and g(φij) cross each other 
so that the first-degree stochastic dominance conditions fail E the integrals, ∫∫

ijij

a ija ij dFdG
ϕϕ

ϕϕϕϕ )(,)( , of the 
CDFs. “SSD” indicates the second-degree stochastic dominance conditions are met (i.e., ∫

ij

a ij dF
ϕ

ϕϕ )(  and 
∫

ij

a ij dG
ϕ

ϕϕ )(  do not cross each other).
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Case study

We explored the impact of decision-maker risk-aversion with a North American case 
study that estimates the likelihood of wood-boring forest pests arriving in firewood 
at campgrounds on U.S. federal lands in the 49 U.S. states by travellers from the 
continental U.S. and Canada. The potential for accidental, long-distance transport 
of alien species with recreational travel has become a topic of considerable concern 
in North America (Haack et al. 2010, Tobin et al. 2010, Jacobi et al. 2011, Koch 
et al. 2012). Visitors often bring untreated firewood to parks and campgrounds in 
the U.S. and Canada, and this material has been recognized as a significant vector of 
wood-boring forest pests (CFIA 2011, APHIS 2010, The Nature Conservancy 2011, 
Jacobi et al. 2011). For example, movement of firewood by campers has been deemed 
one of the major causes of the rapid expansion of populations of the emerald ash 
borer, an invasive pest of ash trees (Fraxinus spp.), throughout eastern Canada and 
the U.S. Midwest (Haack et al. 2002, 2010, Kovacs et al. 2010). Overall, recreational 
travel is considered a significant vector of firewood movement: campground surveys 
in various parts of the U.S. indicate that 8–57% of campers bring their own firewood 
from home, frequently travelling distances exceeding 160–320 km and crossing state 
and U.S.-Canada border lines (APHIS 2011). Moreover, staff at national, state and 
provincial campgrounds typically have scarce resources to check campers for firewood 
usage and lack the legal mandate to undertake random checks of firewood in visitors’ 
vehicles. This makes it difficult to enforce preventive measures such as bans on the 
importation and use of outside firewood.

While the problem of moving forest pests with firewood is well recognized (APHIS 
2010, The Nature Conservancy 2011), data on the movement of firewood across North 
America are generally lacking. Therefore, we undertake an alternative approach by ex-
ploring more general travel patterns of campers rather than their actual movement of 
firewood. For this study, we analyzed a 5-year (2004–2009) geographically referenced 
database of campground visits in the United States (including visits from Canada). 
Our primary data source for this study was the National Recreation Reservation Ser-
vice (NRRS), which manages reservations for campgrounds at over 1700 locations 
that are operated by the U.S. Army Corps of Engineers, the USDA Forest Service, the 
National Park Service, and other federal agencies (see full description of the NRRS 
database in Koch et al. 2012). Each reservation record provided information including 
the name and state of the destination campground, reservation date, and the visitor’s 
origin ZIP code (or postal code for Canadian visitors). The NRRS data set provided 
geographic coordinates for the campgrounds, and we assigned geographic coordinates 
for each visitor’s home ZIP code (or postal code) in the data set (ESRI 2009, NRCan 
2010). These records were then used to build a network of pathways that connected 
sets of origin and destination locations across North America (see further details in 
Koch et al. 2012).
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Pathway model

We used the NRRS data set to undertake spatial stochastic pathway simulations of po-
tential movements of invasive pests with firewood carried by campers. Spatial stochas-
tic models have been increasingly used for assessing risks of ecological invasions (Rafoss 
2003, Cook et al. 2007, Pitt et al. 2009, Muirhead et al. 2006, Yemshanov et al. 2009, 
2010). We applied a pathway model that used vector-based information stored in the 
NRRS database to predict movements of recreational travellers to federal campgrounds 
in the U.S., including cross-border visits from Canada. Here, we assumed that there 
is a predictable relationship between camper travel and firewood usage (Jacobi et al. 
2011), so the camper travel pattern is a proxy for the firewood transport pattern.

Our choice of a network-based model was aimed at emphasizing the importance 
of human-assisted movement of invasive organisms over long distances, a phenom-
enon that many classical dispersal models cannot predict well (see Andow et al. 1990, 
Buchan and Padilla 1999, Melbourne and Hastings 2009). The model is conceptually 
similar to that presented in Yemshanov et al. (2012a, b); here, we describe only the 
model updates required for this study.

We used the NRRS dataset to build a matrix of n × n origin–destination locations, 
where each matrix element defined the number of visits for a particular pair of origin–
destination locations (i.e., the total number of reservations between a particular origin 
ZIP code and destination campground). Because the original NRRS records encom-
passed more than 500 000 unique spatial locations, we aggregated the data to a grid 
of 15  × 15 km cells. This aggregation decreased the size of the matrix and reduced the 
computational burden. The NRRS data were then parsed into a set of unique pathway 
segments, each connecting an origin map cell, i, and a destination map cell, j, in the 
network. Subsequently, the cumulative number of visits (based on the NRRS reserva-
tions) for each pathway segment ij were used to build an n × n pathway matrix where 
each element defined the rate, pij, of camper movement (and by extension, firewood-
facilitated pest transport) from cell i to cell j. The pathway matrix stored the pij values 
for all possible pairs of (i, j) cells in the transportation network:

 (3)

where the elements ∑
=

−
n

j
ijp

1
1 describe the probability that camper travel between i 

and j did not occur and
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pij = mijλ  (4)

where mij is the total number of reservations for the origin-destination vector ij and λ 
is a scaling parameter.

Ideally, the scaling parameter λ would define the likelihood that a pest is moved 
with firewood from any location i to j. In fact, knowing the precise value of λ would 
be critical in order to estimate pij exactly. However, our study did not require precise 
estimates of λ because we had the more basic aim of prioritizing the geographical loca-
tions (i.e., map cells) according to their level of risk. In short, our goal was to order the 
full set of map cells in the dimension of high–low relative infestation risk via multiple 
pairwise tests for first- and second-degree stochastic dominance (as described in Eqs. 
1 and 2). In this case, the value of λ needed only to be sufficiently small to ensure that 
the sum of transmission rate values in the Pt matrix rows was below 1:

1
1

≤∑
=

n

j
ijp  (5).

We then used the Pt matrix to generate stochastic realizations of potential move-
ments of campers (and by extension, pest-infested firewood) from a given cell i to other 
cells with recreational travel. With i set as the point of “origin”, the model simulated 
subsequent camper movements from i to other destination cells j by extracting the 
transmission probabilities from Pt associated with i (Fig. 3). The process continued 
until a selected destination node had no outgoing paths or a terminal state was chosen 
based on the elements ∑

=

−
n

j
ijp

1
1 in Pt. Finally, for each pair of origin–destination loca-

tions (i, j), a transmission probability, φij, was estimated from the number of times the 
camper arrived at j from i over K multiple stochastic model realizations

φij = Jij/K  (6)

where Jij is the number of individual pathway simulations where a camper originated 
at i and ultimately arrived at j, and K is the total number of individual simulations 
of pathway spread from i (for this study, K = 2×106 for each i). The values of φij were 
estimated for each (i, j) pair of origin–destination cells, requiring a total of K× [n (n-
1)] pathway simulations.

Prioritizing the geographical locations in the dimension of transmission risk

We used the transmission probabilities φij (which, in relative terms, depict the potential 
of invasive pests to be moved by recreational  travellers) to order the map cells across 
Canada and the U.S. in dimensions of high-low risk. We built separate maps for each 
of the continental 49 U.S. states and nine Canadian provinces (including the Yukon 
Territory). For each potential origin map cell, the model generated a list of other cells 
(with corresponding transmission probabilities φij) to which the movement of camp-
ers (and, in turn, forest pests carried by firewood) was most likely. Since our primary 
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Figure 3. Mapping risks that invasive pests may be carried with infested firewood by campers (the 
analysis summary).

focus was to estimate the risk of pest movement to a particular state or province, we 
rearranged the results so each cell i outside of a state (province) of interest, k, had an 
associated distribution of the transmission probabilities φij (j ∈ k), from that location 
to the state of interest (Fig. 3). In short, this distribution described the degree of the 
location’s invasiveness in relation to the state (province) of interest.
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Assuming that the map for each state (province) of interest k had nk external loca-
tions that could potentially serve as sources of future pest arrivals with camper travel, 
the analysis produced a total (i.e., across all k)of N = ∑

=

k

k
kn

1
distributions of the jij trans-

mission probability values. We then applied the FSD and SSD rules to this superset of 
distributions so that we could order them in the dimension of highest-to-lowest risk of 
transmission from i to k. Thus, each cell i was given two partial risk ranks, rik SSD and 
rik FSD, of pest movement from i to k by campers. Importantly, since partial ordering 
of the distributions of transmission probabilities was done in a single superset (that 
included all sets of outputs representing risks of movement to all k states / provinces 
of interest), the final risk ranks for different states and provinces can be compared one 
with another.

Our next goal was to compare the ranks generated with the FSD and SSD tech-
niques and to explore how much the risk aversion assumption in the delineations 
based on the SSD rule changed the geographical patterns of risk across the study area. 
Because the SSD rule is weaker than FSD and usually produces smaller-size non-dom-
inant sets (Porter 1978, Post 2003), the total number of nested non-dominant sets 
(and subsequently the number of risk ranks) in the two classifications will be different. 
Therefore, we inverted and rescaled the risk ranks rik generated by the FSD and SSD 
techniques to a 0-1 range so the rescaled ranks, r`ik FSD and r`ik SSD denoting the highest 
risks were close to 1 and the lowest risks were close to 0. We then explored differences 
between the rescaled risk ranks generated with the FSD and SSD classifications and 
their variation across the study area. We also plotted the rescaled risk ranks r`ik FSD and 
r`ik SSD as maps, each depicting the risk of pest transport to a particular state (province) 
with recreational travel from elsewhere.

Results

Exploratory geospatial data analysis

Figure 4 depicts example maps of the rescaled risk ranks for Texas and California gen-
erated, using the second-degree stochastic dominance rule. (The maps of risk rankings 
based respectively, on the first- and second-degree stochastic dominance rules for the 
other U.S. states and the Canadian provinces are shown in online Appendices 1 and 
2). The maps suggest some basic geographic trends in campers’ travel behaviour. First, 
the highest-risk out-of-state locations (i.e., from where the movement of infested fire-
wood is the most likely) are usually in close proximity to the state (provincial) border 
or, at longer travel distances, are associated with major urban centres. In addition, 
prominent recreational destinations such as Grand Canyon National Park (AZ) or 
Zion National Park (UT) are also high-risk locations. Notably, there are distinctive re-
gional trends in camper behaviour. For instance, interior states in the mid-western and 
southeastern U.S. are characterized by predominantly local and medium-range travel 
from surrounding areas. While states in these regions have few high-profile recreational 
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destinations such as national parks, they have a dense and fairly uniform network of 
campgrounds, situated near major water bodies or public forest lands, which are used 
more often by casual or short-term campers.

The western U.S. has vast areas of sparsely populated land, and so has a higher 
relative proportion of long-distance sources of campers (and thus potential firewood-
associated pests) than the eastern U.S. The risk of pests being moved by campers re-
turning to Canada is relatively low. However, the largest Canadian cities, such as To-
ronto (ON), Montreal (QC) and Vancouver (BC), have relatively high risks of being 
potential sources of infestations in neighbouring U.S. states.

Differences between risk ranks based on the FSD and SSD rules

We investigated the geographic differences between the risk rank maps based on the 
FSD and SSD criteria. Figure 5 and online Appendix 3 present maps of differences 
in rank values, Δr`ik = r`ik FSD – r`ij SSD, composed for individual states and provinces. 
Overall, the FSD and SSD approaches provided similar delineations of the locations 
ranked with the most extreme risks, i.e., above 0.95 or below 0.05 (Table 1). The great-
est differences between the ranks based on the FSD and SSD criteria were found in 
the areas in the peri-urban and rural zones (since information about camper travel to 
these locations is expected to be less certain because of a lack of well-documented links 
from the NRRS data).

For moderate risk ranks between 0.05 and 0.95, the methods appeared to place 
differing levels of emphasis on certainty in the φij transmission probabilities. The SSD 
approach seemed to decrease the risk rank’s value when the variation of the probability 
(i.e. uncertainty) was high and generally assigned lower rank values than the approach 
based on the FSD rule. This tendency is particularly evident in the range of moderate 

TexasCalifornia

r`ik SSD:
< 0.1

0.1-0.3

0.3-0.5

0.5-0.7

0.7-0.9

> 0.9 

Figure 4. Examples of risk maps depicting the potential of invasive forest pests to be moved by recrea-
tional travelers to the states of Texas and California. The risk rank values are based on the second-degree 
stochastic dominance rule (SSD), which incorporates risk-averse decision preferences. The maps for the 
other U.S. states, Canadian provinces and the Yukon Territory can be found in online Appendix 2.
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ranks 0.05–0.5 (Table 1). For example, almost 90% of ranks assigned to a 0.25–0.5 
range in the FSD classification were classified into the 0.05–0.25 range in the SSD 
classification. Similarly, 72% of low-risk ranks classified within the range of 0.05–0.25 
in the FSD classification had an SSD rank below 0.05, and roughly 83% of locations 
with FSD ranks in the 0.5–0.75 range were assigned lower risk ranking in the SSD 
delineations (Table 1).

Online Appendix 4 presents summaries of the differences, for individual states and 
provinces, between the FSD and SSD ranks allocated to broad rank classes: 0–0.05, 
0.05–0.25, 0.5–0.75, 0.75–0.95 and 0.95–1. Most of the changes in rank values oc-
curred in low–medium rank classes between 0.05 and 0.5, which is consistent with 
Table 1. For many states and provinces, the difference between the FSD and SSD-
based ranks was at least one rank class (e.g., ranks in a 0.25–0.5 range under the FSD 
rule were assigned to a 0.05–0.25 range under the SSD rule).

TexasCalifornia

0.5-0.7

0.3-0.5

0.1-0.3

-0.1 - 0.1

-0.3 - -0.1

r`ik FSD
– r`ik SSD:

Figure 5. Maps of rank differences, Δr`ik = r`ik FSD – r`ik SSD, between the delineations based on first- and 
second-degree stochastic dominance for Texas and California. Positive values indicate that the SSD-based 
risk rank is lower than the FSD-based rank (so adding the notion of risk aversion decreases the risk rank). 
The maps for the other U.S. states, Canadian provinces and the Yukon Territory can be found in online 
Appendix 3.

Table 1. Correspondence between the FSD and SSD rank classes as a percent of the map area. The num-
bers in the diagonal show the percentages of the map area where the rank class was the same in both FSD 
and SSD rankings. The largest percentage values in each row are marked on bold.

Risk rank based 
on the FSD rule

Risk rank based on the SSD rule
0–0.05 (lowest) 0.05–0.25 0.25–0.5 0.5-.75 0.75–0.95 0.95–1 (highest)

0–0.05 (lowest) 100
0.05–0.25 72.2 27.7 0.1
0.25–0.5 0.7 89.8 7.7 1.8
0.5–0.75 30.5 52.8 15.0 1.7
0.75–0.95 <0.01 3.5 24.6 71.0 0.9

0.95–1 (highest) 2.6 97.4
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discussion

The maps in online Appendix 3 suggest that geographical patterns of changes between 
the FSD and SSD rank values, Δr`ik, can be grouped into three general types. The 
first type represents states with very high volumes of out-of-state recreational visits 
(and thus higher risks of pest arrival with infested firewood from elsewhere), such as 
California and Texas (Table 2, Appendix 3). For these states, the high Δr`ik values are 
uniformly distributed in rural and suburban regions across much of the entire central 
and western U.S. However, the difference between the FSD and SSD ranks in large 
urban areas appeared to be small (Fig. 5).

The second type is represented by the mountain and desert states in the western 
U.S. (such as Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington 
and Wyoming), which show a less uniform pattern of Δr`ik values. Most of the highest 
changes in ranks were either associated with large urban areas in the central and eastern 
U.S. or were dispersed across rural and suburban areas in neighbouring states in the 
western U.S. (Appendix 3). This bifurcated distribution of changes in rank is likely 
caused by some campers travelling long distances from the central and eastern U.S. and 
Canada (i.e., for predominantly urban areas), as opposed to shorter-distance travels for 
campers from neighbouring states in the western U.S.

The third group is represented by states in the northeastern U.S. (Connecticut, 
Delaware, Maine, Massachusetts, New Hampshire, New Jersey, New York, Rhode 
Island, Vermont), more sparsely populated states in the north-central U.S. (North 
and South Dakota), and the most populous Canadian provinces (Alberta, British Co-
lumbia, Ontario and Quebec, Appendix 3). For this group, the highest changes in risk 
ranks were detected only in locations close to the state or provincial border, or in major 
urban areas in the western U.S., such as Denver (CO), Los Angeles (CA), Phoenix 
(AZ) and San Francisco (CA).

The rest of the Canadian provinces, the District of Columbia and Alaska showed 
extremely small changes in the rank values. Note that the risk rank values for these 
states and provinces were very low for both the FSD- and SSD-based delineations. 
The rest of the U.S. states can be characterized by a combination of the geographical 
patterns of high Δr`ik values noted above: relatively uniform allocations across rural 
and peri-urban areas in a sort of “fringe zone” adjacent to the state borders, as well as 
long-distance travel hotspots associated with densely populated urban areas or promi-
nent recreational destinations (e.g., national parks) in the western U.S. (Appendix 3).

Impact of adding the notion of risk aversion

The general impact of adding risk-averse decision preferences can be illustrated (Fig. 6) 
using a simplified delineation of risk ranks in the dimensions of mean transmission 
probability, ijϕ , and its degree of variation, represented by the standard deviation, 
σ(φij). When uncertainty is ignored and the assignment of risk classes is based solely on 
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Table 2. State and provincial summaries based on the mean rank values, r`ik FSD and r`ik FSD.

Country State / Province
FSD-based risk rank SSD-based risk rank

Mean r`ik FSD Relative rank Mean r`ik SSD Relative rank
US Texas 0.283 1 0.202 1
US Arkansas 0.251 2 0.184 3
US California 0.246 4 0.202 2
US Missouri 0.246 3 0.167 4
US Tennessee 0.226 5 0.157 5
US Colorado 0.215 6 0.140 7
US Georgia 0.201 8 0.143 6
US Florida 0.205 7 0.128 8
US Illinois 0.197 9 0.121 10
US Iowa 0.185 10 0.123 9
US Oklahoma 0.179 11 0.117 11
US Washington 0.169 12 0.109 15
US Oregon 0.168 13 0.110 14
US Arizona 0.161 15 0.115 13
US Utah 0.151 17 0.116 12
US Kansas 0.166 14 0.100 17
US North Carolina 0.150 18 0.101 16
US Nevada 0.156 16 0.088 20
US Kentucky 0.142 19 0.095 18
US Alabama 0.137 21 0.093 19
US Virginia 0.139 20 0.086 21
US Pennsylvania 0.132 22 0.085 23
US South Carolina 0.121 25 0.085 22
US Idaho 0.127 23 0.081 24
US Ohio 0.121 24 0.062 27
US Mississippi 0.119 26 0.072 25
US New York 0.116 27 0.063 26
US Louisiana 0.113 29 0.062 28
US Maryland 0.114 28 0.057 31
US Indiana 0.111 30 0.058 30
US West Virginia 0.092 32 0.059 29
US Minnesota 0.106 31 0.053 33
US Wisconsin 0.088 33 0.046 34
US Montana 0.073 38 0.054 32
US New Mexico 0.082 34 0.039 36
US Michigan 0.080 35 0.037 38
US Massachusetts 0.078 36 0.033 39
US Nebraska 0.073 39 0.039 37
US New Hampshire 0.067 41 0.044 35
US New Jersey 0.075 37 0.028 41

Canada British Columbia 0.068 40 0.024 43
US Wyoming 0.053 44 0.031 40

Canada Quebec 0.062 42 0.020 44
US South Dakota 0.040 45 0.027 42
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Country State / Province
FSD-based risk rank SSD-based risk rank

Mean r`ik FSD Relative rank Mean r`ik SSD Relative rank

US Connecticut 0.054 43 0.020 45
Canada Alberta 0.028 47 0.012 46

US Maine 0.027 48 0.012 47
Canada Ontario 0.030 46 0.010 50

US Vermont 0.024 49 0.010 49
US North Dakota 0.017 51 0.010 48
US Delaware 0.023 50 0.008 51
US Rhode Island 0.016 52 0.006 52
US Alaska 0.004 53 0.002 53

Canada New Brunswick 0.001 54 0.002 54
Canada Saskatchewan 0.001 55 0.001 55
Canada Manitoba 0.001 56 0.001 56
Canada Nova Scotia <0.001 57 0.001 57

US District of 
Columbia <0.001 58 <0.001 58

Canada Yukon Territory <0.001 59 <0.001 59

the mean probability ijϕ , broad risk ranks can be defined by parallel lines at certain 
constant probability thresholds (i.e., parallel dashed lines in Fig. 6). Adding the notion 
of risk aversion generally implies that between two geographic locations (represented 
by points in Fig. 6) with the same expected mean probability of the pest’s arrival, the 
more certain choice (i.e., the location exhibiting lower variation) will be assigned a 
higher decision-making priority. In turn, the boundaries between risk classes under the 
risk-averse SSD rule (i.e., solid lines in Fig. 6) will always be tilted at an angle, b, below 
90 degrees relative to their corresponding risk-neutral boundaries, since a location with 
the same mean transmission probability ijϕ  as another location, but lower variability 
will receive a higher risk rank under SSD.

Notably, the SSD rule does not restrict the potential range of risk-averse preferences, 
i.e., it does not limit the degree of decision-makers’ absolute risk-aversion. This suggests 
that the SSD rule allows for the possibility that the risk aversion of some decision-makers 
may be very large, such that small differences in the uncertainty of the risk estimates could 
receive unrealistically high importance. To address instances of extreme risk aversion, 
several alternative approaches that limit the potential range of risk aversion have been 
proposed. For example, stochastic dominance with respect to a function (SDRF) limits 
the range of the absolute risk aversion measure to arbitrary chosen limits (Meyer 1977; 
Meyer et al. 2009). Alternatively, stochastic efficiency with respect to a function (SERF) 
restricts the variation of the degree of risk aversion to an arbitrarily defined range but 
ranks risky alternatives in terms of their certainty equivalents (CE) (Hardaker et al. 2004; 
Hardaker and Lien 2010). The SERF method requires making additional inferences 
about the functional form of the expected utility function and adds the restrictive as-
sumption that the measure of risk aversion used is held constant as the level of outcomes 
changes (Hardaker and Lien 2010). Overall, the SERF metric is capable of discriminat-
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ing smaller non-dominant sets than SSD (or SDRF), but this is achieved at the expense 
of imposing strong restrictive assumptions on decision-maker’s risk-averse preferences.

In economic studies, the SSD rule has commonly been considered too coarse to 
be used effectively for practical purposes (Hardaker et al. 2004, Hardaker and Lien 
2010). However, we found the discriminatory power of the SSD rule to be adequate 
for our geographical risk mapping case. Since our study required ranking of all spa-
tial elements in the map (and the total number of map elements was very large), the 
performance of the SSD rule was sufficient to discriminate a large number of nested 
non-dominant sets and identify areas of high and low pest arrival risk with good spatial 
precision. Because the analysis delineated nested non-dominant sets (instead of finding 
a single non-dominant set of the smallest possible size), the impact of lower discrimi-
natory capacity was less noticeable. Also, the magnitude of the variation in pest arrival 
rates in our study was considerably larger than the typical variability of net returns (or 
CE values) in economic efficiency studies, hence the differences between the CDFs 
were more discernible. Note that the discriminatory power of the SSD-based approach 
could be further improved by increasing the number of discrete percentile points in the 

Figure 6. Schematic representation of broad risk classes delineated with the SSD rule, r`ik, in dimen-
sions of the mean camper travel probability, , and its standard deviation, σ(φij). b denotes the tilt angle 
between the generalized boundaries of broad risk classes in the point cloud - σ(φij) and the horizon-
tal line indicates a constant mean transmission rate (φij = const). Dashed lines denote the boundaries 
between hypothetical risk classes in a risk-neutral classification (i.e., b = 0, when risk delineation is inde-
pendent of the amount of uncertainty in the estimates). Points represent individual locations (15×15 km 
map cells, a 10% random subset of all locations).

ijϕ

ijϕ
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calculations of the CDF integrals or by re-sampling the underlying geographical data 
to a higher spatial resolution and thereby increasing the total number of map elements 
in the study area (which would lead to a larger number of nested non-dominant sets).

Technical aspects of an application of the stochastic ordering techniques

In our study, we used the stochastic dominance concept to delineate nested non-domi-
nant sets of map elements, based on a partial order of these elements, in a space defined 
by the distributions of pest transmission rates φij to a state (province) of interest. The 
reliance on a partial order of elements makes this approach relatively stable to errors in 
data and underlying assumptions about the behaviour of the invader. Basically, it takes 
a higher degree of error to alter the partial ordering of elements in the set and change 
the dominance relations between the map elements.

The stochastic dominance concept (SD) provides an attractive framework for as-
sessing risks of pest invasions under uncertainty. In our study, the theoretical attrac-
tiveness of the second-degree stochastic dominance (SSD) lies in its non-parametric 
nature (Fishburn and Vickson 1978). While the SSD rule operates from the general 
perspective of a risk-averse decision-maker (Porter et al. 1973, Meyer et al. 2005), it 
does not require an explicit specification of a decision-maker’s expected utility func-
tion (i.e., defining a numerical “utility” value for every possible invasion outcome that 
a decision-maker may encounter). In fact, the precise determination of the degree of 
risk aversion (as well as the other behavioural aspects of managing invasive pests) is 
problematic as it would require tracking the history of decision-making actions within 
agencies responsible for managing pest incursions, as well as quantifying the associated 
risk preferences. Note that practical applications of the SSD rule still require careful 
consideration of the decision-making problem of interest.

The stochastic ordering techniques used in this study help resolve some trouble-
some issues in assessing invasion risks when knowledge about an invasive organism 
is insufficient for deriving precise estimates of risk. A lack of knowledge about the 
organism’s behaviour in a new environment often causes experts to generate fairly 
coarse assessments (e.g., by assessing risk in vague “high-low” terms or deriving a broad 
distribution of plausible invasion outcomes instead of a single impact value). Although 
experts can discern the meaningful tendencies in the predicted outcome of an invasion 
(such as relatively high or low likelihood of invasion), they are rarely able to assign pre-
cise likelihood values. In techniques based on nested non-dominant sets like the FSD 
and SSD rules, every geographic location of interest is ordered along a risk gradient, 
which makes the issue of assigning precise pest arrival rate values less critical.

The estimation of non-dominant sets with the FSD or SSD rule requires undertak-
ing multiple pairwise tests for stochastic dominance and has a computational complex-
ity on the order of N(N - 1)/2. While calculation of non-dominant sets for large N can 
be computationally demanding, the basic algorithm that checks for non-dominance is 
relatively simple, and can be easily parallelized.
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We must note that the use of nested non-dominant sets for ordering geographic 
locations provides only a partial ranking (so that ranks reflect relative “high-low” posi-
tions only within a given dataset). Since our intention was to develop comparable risk 
rankings derived for the U.S. states, eight Canadian provinces and the Yukon Terri-
tory, we undertook the extra step of aggregating all datasets into a single superset and 
ranking it with the FSD and SSD rules. Thus, the final ranks were mapped within a 
single frame of reference and the ranks for individual states and provinces were com-
parable one with another. While computationally demanding, we believe this method 
addresses a major criticism of risk mapping methods based on a partial ordering: an 
inability to generate a common ranking space. Table 2 shows a comparative level of 
risk that each state (or province) will receive infested firewood with recreational travel-
ers as an average rank values, r`ik of firewood moved to a state (or province) of interest 
from all out-of-state locations as a risk metric. As Table 2 suggests, Texas, Arkansas, 
and California show the highest potential to receive forest pests in camper-transported 
firewood from elsewhere, whereas the District of Columbia, Yukon Territory, Nova 
Scotia, Manitoba and Saskatchewan have the lowest potential. These rankings assume 
a generalized risk of infestation. Knowledge of a specific potential source location for 
an infestation could, of course, change these rankings, but the approach used here to 
incorporate risk aversion in the mapping process would remain applicable.

Incorporation of risk-averse preferences into a delineation of high-risk locations has 
some important implications for the development of broad-scale pest surveys and public 
outreach campaigns. In regions where the areas with high-risk estimates based on the 
SSD rule are uniformly dispersed in relatively close proximity to a state or provincial 
border (such as for Alabama or Pennsylvania, Appendix 2), the development of large-
scale public outreach programs could target nearby states because camper travel is mostly 
local and risk is distributed uniformly in close proximity to the state (or province) of 
interest. Alternatively, if the majority of high-ranked source locations indicate long-dis-
tance travel destinations (such as for the prominent national parks in Utah or Arizona), 
a statewide surveillance program may be inefficient and an alternative effort that targets 
specific high-risk recreation destinations would represent a more effective strategy.

Conclusions

This study demonstrated how the notion of a decision-maker’s risk aversion can be 
incorporated into the process of mapping risks of ecological pest invasions. We believe 
that the approach based on the stochastic dominance rules represents a major step 
forward in model-based assessments of ecological risks because it provides a tractable 
way to incorporate decision-making preferences into the estimates of pest invasion 
risk and consecutively offers the appropriate treatment of uncertainty according to 
the anticipated preferences of decision-makers (the end users of risk assessments and 
maps). Overall, incorporation of risk-aversion adds credibility to the pest risk mapping 
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process, helps narrow the set of geographical locations that would need to be targeted 
for costly inspection and public outreach activities, and could be easily applied to the 
threat of recreational firewood movement in North America.
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Appendix 1

Risk of out-of-state (out-of-province) locations to be the source of forest pests trans-
ported in firewood carried by campers. The risk rank values are based on the delinea-
tion of nested non-dominant sets via the first-degree stochastic dominance rule (FSD). 
The ranks close to 1.0 denote the highest risk of pest arrival and the ranks close to 
0 denote the lowest risk. (doi: 10.3897/neobiota.18.4002.app1) File format: Adobe  
PDF File (pdf ).

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) 
is a license agreement intended to allow users to freely share, modify, and use this Dataset 
while maintaining this same freedom for others, provided that the original source and 
author(s) are credited. 
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neobiota.18.4002 Risk of out-of-state (out-of-province) locations to be the source of forest pests transported in firewood 
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Appendix 2

Risk of out-of-state (out-of-province) locations to be the source of forest pests trans-
ported in firewood carried by campers. The risk rank values are based on the deline-
ation of nested non-dominant sets via the second-degree stochastic dominance rule 
(SSD), which embeds the notion of risk-averse decision choice. The ranks close to 1.0 
denote the highest risk of pest arrival and the ranks close to 0 denote the lowest risk. 
(doi: 10.3897/neobiota.18.4002.app2) File format: Adobe  PDF File (pdf ).

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) 
is a license agreement intended to allow users to freely share, modify, and use this Dataset 
while maintaining this same freedom for others, provided that the original source and 
author(s) are credited. 
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carried by campers. doi: 10.3897/neobiota.18.4002.app2
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Appendix 3

Maps of differences in the risk ranks based on the first- and second-degree stochastic 
dominance rules, Δr`ik = r`ik FSD – r`ik SSD. Positive values indicate that the FSD-based 
risk rank exceeds the SSD-based rank and vice versa. (doi: 10.3897/neobiota.18.4002.
app3) File format: Adobe  PDF File (pdf ).

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) 
is a license agreement intended to allow users to freely share, modify, and use this Dataset 
while maintaining this same freedom for others, provided that the original source and 
author(s) are credited. 
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neobiota.18.4002 Maps of differences in the risk ranks based on the first- and second-degree stochastic dominance 

rules, Δr`ik = r`ik FSD – r`ik SSD. doi: 10.3897/neobiota.18.4002.app3

Appendix 4

Summary of differences between risk rank classes, 0–0.05, 0.05–0.25, 0.25–0.5, 
0.5–0.75, 0.75–0.95 and 0.95–1 in the delineations based on the FSD and SSD 
rules. (doi: 10.3897/neobiota.18.4002.app4) File format: Adobe  PDF File (pdf ).

Copyright notice: This dataset is made available under the Open Database License 
(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License (ODbL) 
is a license agreement intended to allow users to freely share, modify, and use this Dataset 
while maintaining this same freedom for others, provided that the original source and 
author(s) are credited. 
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