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Abstract

Mapping is an important tool for the management of plant invasions. If landscapes are mapped in an
appropriate way, results can help managers decide when and where to prioritize their efforts. We mapped
vegetation with the aim of providing key information for managers on the extent, density and rates of
spread of multiple invasive species across the landscape. Our case study focused on an area of Galapagos
National Park that is faced with the challenge of managing multiple plant invasions. We used satellite
imagery to produce a spatially-explicit database of plant species densities in the canopy, finding that 92%
of the humid highlands had some degree of invasion and 41% of the canopy was comprised of invasive
plants. We also calculated the rate of spread of eight invasive species using known introduction dates,
finding that species with the most limited dispersal ability had the slowest spread rates while those able to
disperse long distances had a range of spread rates. Our results on spread rate fall at the lower end of the
range of published spread rates of invasive plants. This is probably because most studies are based on the
entire geographic extent, whereas our estimates took plant density into account. A spatial database of plant
species densities, such as the one developed in our case study, can be used by managers to decide where
to apply management actions and thereby help curtail the spread of current plant invasions. For example,
it can be used to identify sites containing several invasive plant species, to find the density of a particular
species across the landscape or to locate where native species make up the majority of the canopy. Similar
databases could be developed elsewhere to help inform the management of multiple plant invasions over
the landscape.
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which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
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Introduction

Globally, plant invasions are growing in frequency and areal extent (Mack 2000).
These invasions need to be managed because they have serious consequences for
biodiversity and the economy (Vila et al. 2011). Mapping is an important tool for
managing plant invasions because it can identify where they are and how long they
have been there. Knowing the spatial distribution of invaders can help managers
identify sites of invasion (Shaw 2005), monitor the outcomes of management actions
(Roura-Pascual et al. 2009) and understand processes that operate at a landscape scale
(Richardson 2011). Also, quantitatively documenting the change in areal extent of
invasions is important for justifying and sustaining public support of management
programs (Mack 2000).

However, not all maps are useful for all purposes. The way the landscape is classified
in mapping projects affects the types of management decisions that can be made (Lin-
denmayer and Hobbs 2007). A traditional vegetation map classifies the landscape into
discrete classes that each represent distinct vegetation communities (Kiichler 1967).
The mapping product may identify the presence of invasive plants as a major or minor
element in one or more of the vegetation communities. For example, Garzén-Machado
(2011) noted the presence of invasive species in two of the communities in their
vegetation map of an island National Park, which could direct the attention of managers
of invasive plants to the broad areas of the landscape occupied by those communities.
Landscapes can also be classified such that a particular invasive species is a specific
focus of the mapping; these can give managers detailed information on the location
and dynamics of the species (e.g. Miillerovd et al. 2005; Pengra et al. 2007). As plant
invasions continue to become more pervasive and all ecosystem researchers/managers
are forced to consider invasive species (Richardson 2011), there is an increasing need
to map landscapes in a way that takes account of all invasive species that may present.

The methods used to map vegetation, including plantinvasions, have evolved over time.
The availability of remotely sensed data, especially from satellites, has revolutionised the
ability to map vegetation over large areas (Xie et al. 2008). Recently, advanced technology
has been used to model invaded and non-invaded forest, giving very specific details on
the location, structure and species composition of vegetation containing multiple invasive
species (Asner et al. 2008). Whilst this approach provides a plethora of useful information
to managers, the application of it is limited due to the expense of obtaining data. In under-
resourced parts of the world, most managers have access to a limited range of data. As our
study was based in the developing country of Ecuador, we aimed to use readily available
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satellite data to map vegetation in a way that would give managers useful information for
managing a landscape containing multiple invasive species.

One of the factors that is important for prioritising the management of plant
invasions is the rate of spread of individual invaders (PySek and Hulme 2005).
Empirical evidence suggests spread is driven primarily by dispersal ability (Coutts et al.
2011). Specifically, the ability to disperse long distances is the main reason for rapid
spread of invasive plants (Richardson and Pysek 2006). Therefore, plants dispersed by
wind (e.g. Pinus radiata) or animals (e.g. Acacia cyclops, Opuntia stricta) exhibit the
fastest rates of spread, whereas clonal plants tend to have comparatively slower rates
of spread (Pysek and Hulme 2005). Knowing this, managers may choose to delay the
management of slow spreaders in favour of managing fast invaders either via attempts
to eradicate the species quickly; or adopting a longer term management strategy such
as biological control. Information on the rate of spread of invaders can be obtained
from the known locations of invasive species at more than one point in time (Gilbert
and Liebhold 2010).

Our study focuses on the humid highlands of Galapagos National Park where
invasive plants have spread from areas of human habitation (Itow 2003; Renteria
and Buddenhagen 2006). Known ecosystem impacts include reduced abundance and
diversity of native species (Jager et al. 2007), which aligns with global concern for the
threat of plant invasions on island plant diversity (Caujapé-Castells et al. 2010). The
first objective of our study was to map the location, extent and density of invasive
canopy species (ecosystem transformers, sensu Gardener et al. 2013; Richardson et al.
2000) in the highlands of Santa Cruz Island, Galapagos. Our second objective was to
calculate the rate of spread of individual invasive species. Results from both objectives
can help managers decide which species and which parts of the landscape require
intervention, and to provide a baseline for monitoring future vegetation change.

Methods

Study area

Our study concerns the humid highlands within the Galapagos National Park on Santa
Cruz Island, which form a doughnut shape surrounding an agricultural zone and are
surrounded by dry lowlands (Figure 1). Non-native plants have been introduced to the
island since the first human visitors arrived in the early 1800s, though the majority of
the current non-native flora have arrived in the last 30-50 years (Tye 2006). Major
plant invasions began in the National Park with the spread of Cinchona pubescens in the
1970s (Eliasson 1982), followed by other invasions from the 1980s onwards (Gardener
etal. 2013). To give historical context to the recent plant invasions, we refer to the four
most widespread historical vegetation types (HVTs) described and mapped by Trueman
et al. (2013): Scalesia Forest, Fern/Herbland & Miconia Shrubland, Mixed Forest and
Dry Forest. The extent of these HVTs in the map we produce here differs slightly to
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Figure 1. Location of the study area and density of invasive plants in the canopy. The upper map shows
the location of the study area, spanning the humid highlands of Galapagos National Park, Santa Cruz
Island. Climatic zones are indicated and the four islands inhabited by people are labelled; each of these
is inhabited only in an agricultural zone in the highlands and a small coastal town in the lowlands. The
lower map shows the density of invasive plants in the canopy of the study area, as indicated by shading.
Co-dominant invasive species may be present with either invasive or native plants. Historical vegetation
types are outlined and labelled. Of these the Dry Forest occurs on the periphery of the humid highlands
that is transitional to the dry lowlands.

that of Trueman et al. (2013) due to the finer scale of data used in this study. Our core
area of interest is the humid highlands because they are the most invaded (Guézou
et al. 2010) but our study area also includes the transitional periphery between the
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humid highlands and the dry lowlands (sensu Trueman and d’Ozouville 2010; Figure
1), coinciding with the HVT Dry Forest.

Mapping the vegetation

We mapped the native and invasive canopy vegetation across the study area using data
derived from satellite images and validated with field observations. Canopy vegetation
refers to the tallest layer of vegetation, which ranged in height from approximately one
metre (e.g., Melinis minutiflora grassland) to over ten metres (e.g., Persea americana
forest). Invasive canopy species are ecologically significant because they can modify the
structure of vegetation communities and reduce the amount of light penetrating the
ecosystem, negatively affecting the abundance of native understorey species and the
recruitment of native canopy species (Reinhart et al. 20006).

Mapping involved the creation of a spatially-explicit database. Essentially, we drew
polygons over the study region and assigned to each polygon a measure of density of
each vegetation cover class using visual assessment of satellite data (Figure 2 and detailed
below). We used three separate satellite datasets. Two were Worldview-2 multispectral
datasets (2 m resolution, 8-band) as provided by DigitalGlobe. Scene 1 (19 October
2011, catalog ID: 103001000E276500) covered the western part of the study area
and scene 2 (23" March 2011, catalog ID: 10300100091E2400) covered the central/
eastern part of the study area. The third dataset was a SPOT 5 pan-sharpened scene
(30* March 2007, 2.5 m resolution, 3-band, level 2A product, image 615/351) which
we georectified using 160 ground observation points and a spline transformation in
ArcMap 10.0. The SPOT dataset spanned our study area, including small areas in the
east that were not covered or were obscured by clouds in the Worldview-2 datasets.

We visually assessed both a true-colour image derived from each satellite dataset
and multispectral classifications of each satellite dataset (Figure 2). Visual analysis of
imagery, as traditionally applied to aerial photographs, results in a high degree of map
accuracy (Coppin et al. 2004). We used satellite images of sufficiently high resolution
(2-2.5 m) to be visually assessed in the way of aerial photographs using features such
as colour and texture (Morgan et al. 2010). The added benefit of satellite datasets over
aerial photography is that they include reflectance values in the infra-red (non-visible)
parts of the light spectrum that are particularly useful for distinguishing different types
of vegetation using classification tools (Xie et al. 2008). To take advantage of this,
we performed supervised classifications using the maximum likelihood algorithm in
ArcMap 10.0 which require human input to select training areas that define a priori
classes (Xie et al. 2008). We selected training areas representative of all 26 vegetation
cover classes (described below) by visually assessing the true-colour images. We
computed several classifications of each dataset because the spectral signatures of the
vegetation classes varied over the spatial extent of each dataset. We drew polygons based
on the congruence between visual inspection of the true-colour images and the multiple
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Figure 2. Polygons were manually delineated using a visual interpretation of satellite imagery (a: extract
of Worldview-2 19 October 2011) and a classification of the imagery (b: Blue — Persea americana, Mid
green — Scalesia pedunculata, Yellow — Cestrum auriculatum, Light Blue — Psidium guajava, Brown — Pen-
nisetum purpureum, Red — Pteridium arachnoideum, Purple — Rubus niveus, Dark green — Cinchona pube-
scens, Dark blue — wet depressions of mixed species). Each polygon (c) was assigned attributes for the level
of density of each class/species present. For example, polygon 1 had P. purpureum dominant; polygon 2
had P. americana and P. guajava co-dominant with C. pubescens scattered; polygon 3 had S. pedunculata
dominant, with R. niveus secondary and C. auriculatum and P. americana scattered; polygon 4 had P.
guajava dominant; polygon 5 had P. arachnoideum dominant and P. guajava scattered.

classifications using ArcMap 10.0 at a display scale of 1:5 000 employing the Auto
Complete Polygon Tool (Figure 2). Our final database consisted of 1 624 polygons.

In each polygon, we recorded the presence of any of the 26 vegetation cover classes
we identified in the images. Twelve of the cover classes represented individual invasive
plant species, one class was a mixture of invasive grass species, eight classes represented
individual native plant species, three classes represented native plant assemblages, and
two classes were non-vegetated (Suppl. material Table 1). The density of each cover
classes present in each polygon was scored using the following categories: dominant
(60-100% cover), co-dominant (20-50% cover, shared with other species of roughly
equal cover summing to a total of 60-100%), secondary (10-20% cover), and scattered
(isolated individuals or clusters of individuals with 0—10% cover).

We collected field observations to validate the spatially-explicit database. Data
collection points were selected to representatively sample the different patterns
visible on the SPOT true-colour image. Field observations were recorded between
September—December 2010 and July—November 2011. We recorded the canopy
species present within an area of 400 m?* centred on 591 points within the study area;
in total pertaining to approximately 2 000 ha of the full 14 214 ha study area. For
validation we intersected the spatially-explicit database with our field observations.
The confusion matrix is commonly used for this purpose (Xie et al. 2008) but was not
suited to our accuracy assessment because our database contained the density of not
one but multiple vegetation classes in each polygon.
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The spatial intersection confirmed that our database accurately represented field
observations as follows: Classes recorded as dominant in our database were observed
at 81% of intersecting observation points, and at least one of the two or more species
comprising the co-dominant classes was observed at 82% of intersecting points. These
scores were consistent with the average estimated total cover represented by these two
density categories (60-100%). Classes recorded as secondary in our database were
observed at 45% of intersecting points, while classes recorded as scattered in our
database were observed in 37% of intersecting points. This is higher than the average
estimated cover represented by these density categories (10-20% cover and 0—10%
cover respectively), but is consistent with the fact that each of these classes are dispersed
within the vegetation cover, and that observation points relate to cover within a small
area rather than a single point.

Invasion extent

We mapped the presence of invasive plants in the canopy using the highest density
category for any invasive species recorded in each polygon of our spatially-explicit
database. For each HVT, we summed the areas of polygons containing invasive plants
in these categories. We also calculated the total area invaded by summing the areas of
all polygons in which at least one invasive species was recorded. We calculated the ap-
proximate total coverage in 2011 of individual invasive species by summing the area
of all polygons in which each occurred in each HVT, weighted by the average percent-
age cover of its density category (i.e., dominant 80%, co-dominant 35%, secondary
15%, scattered 5%). We did this for seven of the invasive species we had mapped as
a single class (we excluded Syzygium jambos because it had very low presence) and for
the invasive grass species combined. We then calculated the percentage of the canopy
vegetation that was comprised of invasive plants by summing the area of total coverage
of all invasive species in each HVT and dividing by the total area of each HVT.

Rates of spread

We calculated the mean annual rate of spread of each of invasive species to allow
comparison of our results with spread rates reported in the literature (Py$ek and Hulme
2005). Rate of spread is commonly measured in terms of distance per year and can be
calculated using a variety of methods (Gilbert and Liebhold 2010; Higgins and Rich-
ardson 1999). According to the popular Skellam (1951) model, the square root of the
area occupied by an invading organism increases linearly with time (Shigesada et al.
1995). This regression approach is suited to cases such as ours where the introduction
location of the invading organism is unknown (Gilbert and Liebhold 2010; Pysek and
Hulme 2005). In our case, the areal extent is only known from a single date, and so we
calculated the mean linear rate of spread as the square root of the area occupied at that
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date divided by the number of years since introduction into the study area (National
Park area of Santa Cruz Island). We derived the first record of each species from the
literature, herbarium records, and personal communications with past Galapagos plant
researchers and residents. Finally, we reviewed literature to compile information on
dispersal mechanisms of each canopy invader.

Data resources

The spatial database underpinning the analysis reported are deposited at PANGAEA
Data Publisher for Earth & Environmental Science: http://dx.doi.org/10.1594/
PANGAEA.833752

Results

Our spatially-explicit database covered a total area of 14 214 ha, representing the full
extent of the highlands of Santa Cruz Island that fall within the Galapagos National
Park, including the transitional periphery between the humid highlands and the dry
lowlands (Figure 1). Of this area 7 782 ha (55% of the total area mapped) contained
invasive plants in the canopy (Figure 1). Invaders were dominant in 1 527 ha (11%),
co-dominant in 1 945 ha (14%), secondary to native species in 1 395 ha (10%), and
scattered among native species in 2 916 ha (21%) (Figure 1). Of the invaders present
in the canopy as co-dominants, some were co-dominant with native species (especially
Cinchona pubescens) while others were co-dominant with both native and invasive spe-
cies (especially Psidium guajava and Cestrum auriculatum). Overall, 21% of the canopy
of the study area was comprised of invasive species.

The Scalesia Forest and Mixed Forest were the most invaded of the HVTs, both
with 96% of their area containing invasive plants in the canopy (Figures 1, 3). The
HVT Scalesia forest had the highest proportion of the canopy vegetation comprised of
invasive plants (52%), followed by the HVT Mixed Forest (46%). Twenty six percent
of the canopy of the HVT Fern/Herbland & Miconia Shrubland was comprised
of invasive plants. Most of the invasion-free areas occurred in the HVT Dry Forest
(Figures 1, 3), of which only 5% of the canopy was comprised of invasive plants.
Excluding this drier periphery from our calculations, 92% of the humid highlands
contained some degree of invasive plants in the canopy, while approximately 41% of
the canopy was comprised of invasive plants.

Of all the invasive plants featured in our database, the first to arrive into the study
area was Cinchona pubescens in 1966, and the others arrived later (Table 1). In the 50 year
record, Cedrela odorata was the fastest canopy invader and had the largest area of canopy
cover (Table 1), predominantly in the HVT Mixed Forest (Suppl. material Table 2). In
both speed and extent, this invader was closely followed by Psidium guajava (Table 1)
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Figure 3. Percentage of the canopy of each historical vegetation type (HVT) containing invasive plants.
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which has spread extensively within all of the HVTs (Suppl. material Table 2). Cestrum
auriculatum also had a large area of canopy cover (Table 1), mainly in the HVT's Scalesia
Forest and Mixed Forest (Suppl. material Table 2). These three species are the most
rapid spreaders of all the invasive species we recorded and are dispersed by wind or birds.
However, not all species with these dispersal mechanisms invaded so quickly (Table 1).
Persea americana and the grass Pennisetum purpureum had the slowest invasion rates and
were the only species purposefully introduced to the National Park and also the only
invasive species with vegetative and gravity-assisted means of dispersal (Table 1).

Discussion

Our map of invasions highlights the fact that invasive canopy plants have an extensive
distribution in the humid highlands of the Galapagos National Park on Santa Cruz
Island. The drier periphery of our study area (the HVT Dry Forest) was less invaded,
probably because most invasive plants in Galapagos are suited to wet climates and
consequently thrive in the more humid areas (Guézou et al. 2010). We applied a
robust, repeatable method of mapping that allows for the comparison of our data with
other data that are obtained using similar methods elsewhere or at the same place in
the future.

Our database details the extentand density of multiple invasive species at a landscape
scale and thus provides a benchmark for monitoring future vegetation change. Our
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map of invasions shows that some areas in the HVT Fern/Herbland and Miconia
Shrubland are free of canopy invaders, which is likely a result of management action
to control Cinchona pubescens (Garcia and Gardener 2012). Further, our database
allows for the identification of areas of high densities of multiple invasive species,
where managers might apply control measures for several species, and also areas where
careful intervention may be required to conserve the native canopy species that coexist
with non-native species. Most of the vegetation classes featured in our database relate
to single species, and the density of each is modelled over the landscape. As such,
if managers choose to focus on a single species, the percentage cover of that species
can be mapped over the landscape. Also, the data can be further classified to match
other studies or meet needs for consistency in vegetation classification (De Céceres
and Wiser 2012). The database has already been reclassified to map the distribution of
vegetation states of varying degrees of novelty across the study area, to identify options
for management (Trueman et al. 2014).

Decisions on management interventions may depend on the rate of spread of
individual invasive species. The range of spread rates exhibited by the species in our
study can be only partially explained by their dispersal vectors. The two species in
our study with the lowest dispersal ability; Persea americana and the grass Pennisetum
purpureum — dispersed either by gravity or vegetatively (noting that birds and tortoises
also disperse seeds of P. purpureum but seeds tend not to establish (Itow 2003)) were
among three of the slowest spreaders (0.003-0.008 km? yr'). This result is consistent
with research illustrating that spread is driven by dispersal ability (Coutts et al. 2011).
However, the remaining species we studied, which are distributed by either wind or
animals over long distances, had variable spread rates (0.008-0.35 km? yr). This
variability supports the idea that species traits alone do not determine rates of spread
(Pysek and Hulme 2005). Our results fall within the lower end of the range of areal
spread rates reported elsewhere, probably because such results are often inflated due
to inclusion of the entire geographic extent of species and without density estimates
(Pysek and Hulme 2005). Our study has taken density into account by using the
actual area of canopy coverage, and therefore our results are deflated compared with
other published rates of spread.

All of the invasions reported in our study have occurred since 1966 or more
recently. In less than 50 years 41% of the native canopy vegetation in the humid
highlands of Santa Cruz Island in Galapagos National Park has been replaced by
invasive species. We have assumed a constant rate of spread, though in reality there
is likely to be temporal variability in the spread of invasions (PySek and Hulme
2005). In general, plant invasions spread slowly initially (lag-phase), then rapidly
(exponential phase), and finally, spread slowly or not at all (Py$ek and Hulme
2005). These phases were apparent for species in our study. For example, Cestrum
auriculatum exhibited a lag time of 15-20 years following the first record of its
occurrence (1985); it was not recognized as invasive until sometime between 2001
and 2005 (Renteria and Buddenhagen 2006; Tye 2001). Conversely, Cinchona
pubescens was an earlier invader (first observed in the study area in 1966) that
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expanded in range quickly and may have reached its peak distribution in the early
2000s (Buddenhagen et al. 2004). It is important for managers to account for
potential variability in the timing of invasion among species. For example, non-
native species covering small areas could rapidly expand (i.e., become invasive)
after a lag phase. Thus, assuming constant spread rates could lead to management
decisions to ignore potential future invasions.

Another important management consideration is that some invasive species
requiring management do not feature in the vegetation canopy and are thus not
detected in satellite images or data derived from them, such as ours. For example, in
our study area T7adescantia fluminensis is a ground-cover plant that has invaded rapidly
since its introduction to the study area after 2001 (Fausto Llerena, pers. comm.). By
2011 we observed it widespread in all HVTs except for Fern/Herbland and Miconia,
with abundances of up to 100% cover, forming a thick mat that is thought to inhibit
the growth of native plants (Gardener et al. 2013). Other species that do feature in
the canopy may also require management elsewhere where they only occur in the
understorey. Our database featured mono-dominant stands of Rubus niveus that form
a canopy, but our methods could not detect where it occurs under other vegetation.
During field work in 2011 we observed it as widespread at low to moderate abundance
in all HVTs except for Dry Forest, though its extent and density have since grown
during years that have been wetter than the long term average (Wilson Cabrera,
personal observation 2013). New methods have been used to map the structure of
vegetation canopies, producing promising results that will help managers identify
invasive species in the understorey and sites of early invasion (Asner et al. 2008).

Future plant invasions are likely in Galapagos. New invasions are predicted to
occur from within the existing non-native flora due to the short residence time of many
ornamental species and increasing human-mediated propagule pressure (Trueman et al.
2010a). Invasion by current or new non-native species may also be facilitated by the
projected increased precipitation in Galapagos (Trueman et al. 2010b). Such a trajectory
of ongoing invasions is a huge challenge for management. We reiterate the suggestion of
others to apply prevention strategies (e.g. quarantine) and early intervention strategies (e.g.
eradicating or containing species that have small distributions) to lower the risk of future
invasions (Gardener et al. 2013). Additionally, engagement with private landholders and
relevant government agencies is necessary for managing non-native plants in inhabited
areas that are the source of invasions to the surrounding National Park.

In summary, invasive plants have been spreading in the last 50 years and now
make up a substantial proportion of the canopy vegetation in the humid highlands of
Galapagos National Park on Santa Cruz Island. The invasion process is continuing,
and early intervention is the strategy most guaranteed to prevent invasion by new
arrivals. Local managers can use our spatially-explicit database to identify areas
requiring management by targeting sites with multiple invasive species (i.e., site-led
management) or particular invasive species (weed-led; Timmins and Owen 2001) and
to assess the efficacy of efforts to control canopy invaders, thereby helping to curtail the
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expansion of current canopy invaders. Our methods could be applied elsewhere to help
managers deal with plant invasions across landscapes under their care.
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Abstract

The article reviews distribution records of Deroceras invadens (previously called D. panormitanum and D.
caruanae), adding significant unpublished records from the authors’ own collecting, museum samples,
and interceptions on goods arriving in the U.S.A. By 1940 D. invadens had already arrived in Britain,
Denmark, California, Australia and probably New Zealand; it has turned up in many further places since,
including remote oceanic islands, but scarcely around the eastern Mediterranean (Egypt and Crete are the
exceptions), nor in Asia. Throughout much of the Americas its presence seems to have been previously
overlooked, probably often being mistaken for D. laeve. New national records include Mexico, Costa Rica,
and Ecuador, with evidence from interceptions of its presence in Panama, Peru, and Kenya. The range ap-
pears limited by cold winters and dry summers; this would explain why its intrusion into eastern Europe
and southern Spain has been rather slow and incomplete. At a finer geographic scale, the occurrence of the
congener D. reticulatum provides a convenient comparison to control for sampling effort; D. invadens is
often about half as frequently encountered and sometimes predominates. Deroceras invadens is most com-
monly found in synanthropic habitats, particularly gardens and under rubbish, but also in greenhouses,
and sometimes arable land and pasture. It may spread into natural habitats, as in Britain, South Africa,
Australia and Tenerife. Many identifications have been checked in the light of recent taxonomic revision,
revealing that the sibling species D. panormitanum s.s. has spread much less extensively. A number of
published or online records, especially in Australia, have turned out to be misidentifications of D. lzeve.
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Introduction

Some terrestrial slugs and snails have been inadvertently spread by man well beyond
their natural range (Hanna 1966, Barker 1999, Robinson 1999, Cowie 2001, Herbert
2010). They may become very common and cause significant economic damage. For
instance, in much of North America the commonest slugs in disturbed habitats are
not native species but European slugs such as Deroceras reticulatum (Miiller, 1774)
and several species of Arion (e.g. Chichester and Getz 1969). These species have also
colonised less disturbed habitats. In these cases much of the spread likely occurred well
before anyone was observing the process.

The current paper gathers data on the spread of the slug Deroceras invadens Reise
etal., 2011, which has often been reported (under various different names) as turning
up in new places over the last century, thus revealing something of the colonisation
process. Many relevant publications are widely dispersed in local journals, so there
seems merit in reviewing these accounts in the hope of identifying global patterns. A
better knowledge of the colonisation process may help in restricting or slowing the
further spread of this and other slug species. The commonest sort of relevant data is
the first occurrence in a country or administrative division. Unfortunately this is rather
an unreliable statistic, because when a species first arrives its rarity makes its discovery
very much a chance event, and because most local malacologists may not recognise the
species until its first occurrence in their region has been published. Accordingly, we
have tried also to assess rates of spread following the first discovery; unfortunately such
monitoring is uncommon.

Our second object is to establish how far D. invadens has spread; several records of
our own and unpublished information from museum collections significantly expand
the known range. Conversely, some records turn out to be erroneous. Besides the value
to those battling pest slugs in affected countries, a fuller knowledge of the range of cli-
mates that the species can tolerate may allow us to predict other regions that are at risk
of being colonised. Thirdly we are interested in what habitats D. invadens occupies,
particularly whether it invades agricultural and natural habitats. A fourth issue is how
common the species gets, which can be assessed at various scales, such as proportion
of grid squares occupied, proportion of sampling sites at which it is found, or number
of animals collected. Here we will often compare with comparable data on D. reticula-
tum, a usually commoner congener that is found in similar synanthropic habitats but
has spread earlier and more widely. Occurrence of D. reticulatum thus provides a proxy
for estimating sampling effort (i.e., confirming the activity of someone interested in
recording slugs).

The diversity of climates within the introduced range of D. invadens prompts
the question of whether several cryptic species might be hidden within the diaspora.
Therefore another aim has been to check the species identity of introduced popula-
tions. To understand the issues, it is helpful to review the taxonomic background.
Deroceras is the largest genus of terrestrial slugs, with over 100 species described (Wik-
tor 2000). Although the genus is originally Palaearctic, two species, D. reticulatum and
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D. laeve (Miiller, 1774) have spread globally; in the case of D. laeve it is thought that
its invasion of America has been natural. Another species, D. sturanyi (Simroth, 1894),
is spreading widely in Europe. In much of western Europe and elsewhere in the world
malacologists can recognise D. invadens in the field, because it is a different colour to
D. reticularum (although this difference can disappear in alcohol) and larger than D.
laeve. However, dissection is required to be sure because D. /lzeve can sometimes grow
large (particularly outside Europe), because D. invadens is externally indistinguishable
from D. sturanyi, and because there are other more local species in Europe that are also
externally similar, and which also might have spread. In particular, D. invadens was
until recently confused with D. panormitanum s.s., a species common in Sicily and
Malta (Reise et al. 2011); the vast majority of identifications in the literature predate
this splitting. Deroceras caruanae (Pollonera, 1891) is a junior synonym of D. panor-
mitanum (Reise et al. 2011).

Material and methods

Besides checking literature in our own collections, we carried out online searches for
“caruanae’, “panormitanum” and “invadens” particularly in combination with the
names of specific countries. We also searched for the most recent species lists or distri-
bution maps of likely host countries. We checked online museum catalogues, and per-
sonally screened the natural history museums in London and Wroctaw. A.J. de Winter
kindly selected relevant material from the Naturalis Biodiversity Centre, Leiden, and
we have also borrowed material from the Rihle collection in the Stuttgart State Mu-
seum of Natural History, the Field Museum Chicago, the Florida Museum of Natural
History, the Museum Victoria, the Queensland Museum, the Australian Museum, and
the University Museum of Zoology Cambridge.

We have incorporated into the account results from our own fieldwork. Specimens
collected by HR and JMCH are in the Senckenberg Museum of Natural History at
Gorlicz (SMNG). DGR has collected separately and specimens are in the collection
of the U.S. Department of Agriculture (USDA) at the Academy of Natural Sciences
in Philadelphia. Furthermore we have accessed the USDA collection of material inter-
cepted arriving at U.S. ports (Robinson 1999, Reise et al. 2006). M.A. Nash and G.M.
Barker provided the SMNG with numerous samples from Australia and New Zealand;
other collectors who responded to our requests are listed in the Acknowledgements.

HR confirmed identities using characters of the genitalia (Reise et al. 2011). Table
2 lists the collection details of previously unpublished records that extend the distribu-
tion of D. invadens significantly. To avoid confusion in subsequent work, we mention
identifications of D. invadens in museums or in publications that have proved to be
incorrect or were based only on unreliable external characters. Unrecognised misiden-
tifications may affect some of the other records that we analyse or map, but where we
had suspicions we have endeavoured to borrow voucher specimens, or we state where

further checking would be desirable.
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Literature commonly refers to D. invadens as D. caruanae, D. panormitanum or D.
pollonerae (older literature also uses the genus name Agriolimax). Moreover, because
the separation of D. invadens from D. panormitanum s.s. is recent, much literature is
ambiguous to which species it refers. We have found it least confusing here to refer to
all such ambiguous records as D. invadens, which is by far the more widespread spe-
cies, rather than to distinguish unconfirmed records as “D. panormitanum s.1.” Table 1
states, for each country or island, how many populations we have confirmed are D.
invadens rather than D. panormitanum s.s. Fig. 4A also makes this distinction. The text
highlights the very few records outside of Malta and Sicily that were D. panormita-
num s.s. This low incidence of D. panormitanum s.s. justifies our working assumption
throughout that ambiguous records are of D. invadens. But in no region have we ex-
amined enough samples to be confident that some D. panormitanum s.s. are not mixed
in; others should continue to check.

Table 1. List of countries and oceanic islands dealt with in the text (in the same order). The second
column summarises the date D. invadens was first found (outdoors, unless specified). The ‘<’ symbol in-
dicates when a publication does not give a date of first collection. Dates of interception describe when the
species was found on goods derived from that country. The third and fourth columns give the number of
sites (or interceptions) for which we are sure that D. invadens rather than D. panormitanum s.s. occurs or
vice versa; usually this evidence is our dissections, other cases are from publicly available COI sequences
(indicated if this is the only evidence), otherwise the source is cited. We use ‘- instead of ‘0” if there is no
evidence of either species.

Location First known occurrence Sites confirmed
of D. invadens D. invadens D. panormitanum s.s.
Europe
Ttaly native mainland ﬁ’)iﬁ")‘f;’ Sieily 5| ainland 1, Sicily 21
San Marino 2013 2 0
Malta no record 0 Malta 5, Gozo 2
Gereat Britain 1930 England 25, Wales 5, Scotland 7 Wales ;0(11{40:7?)11 etal.
Island of Ireland 1958 4 0
France <1945 12 0
Monaco 2012 0
Belgium 1968 0
Netherlands 1969 9 0
Luxembourg 1997 0 0
Germany 1979 18 0
Switzerland 1982 1 0
Austria <1977 2 0
Czech Republic 1996 1 0
Slovakia (greenhouse 2003) 1 (Dvofék et al. 2003) 0
Poland 2001 1 0
Lithuania erroneous record - -
Hungary no reliable record - -
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First known occurrence

Sites confirmed

Location of D. invadens D. invadens D. panormitanum s.s.
Romania erroneous record - -
Bulgaria no reliable record - -
Greece 2011 1 (COI) 0
Denmark 1937 0 0
Sweden <1980 (greenhouse 1957) 4 0
1983-84 (greenhouse c.
Norway 1% 7) 2 0
Finland (greenhouse <1961) 0
Portugal 1977 0 0
Spain 1974 12 0
Africa
Egypt 2005 0 0
South Africa 1963 2 0
Kenya interception 2012 1 interception 0
Asia and Australasia
Sri Lanka erroneous record - -
. NSW 8, Victoria 4, Tasmania 1,
Australia 1936 S. Aus. 1, W, Aus. 2 0
New Zealand 1974, or maybe <1891 8 0
Americas
Washington State 3, Oregon 2, California
UsA 1940 4, Colo;gatdo 7, Utah 5, V(z%ashington DC1 0
Canada (greenhlo9§s4€ 1966) British Columbia 10, Newfoundland 1 0
Mexico 1974 1 0
Costa Rica 2006 1 0
Panamd (interception 2007) 2 0
Colombia 1975 1, 1 interception 0
Ecuador 2012 (interception 2004) 1 0
Peru (interception 2012) 1 interception 0
Chile <2003 3 0
Argentina 2010 1 (COI) 0
Brazil 1991 1 interception 0
Oceanic islands
Faroe Islands 1970 0 0
Madeira 1980 17 2
Azores 1957 Sao Miguel 4, 1 interception 1 interception
Canary Islands 1947 9 0
Tristan da Cunha 1982-83 1 0
Raoul Island 1973 2 0
Chatham Islands 1976 0 0
Marion Island 1972 1 (COI) 0
uan Ferndndez
! Islands 1962 ! 0
Lord Howe and

Norfolk islands

erroneous records
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Results

This section considers each country in turn. Countries are grouped by continent; with-
in continents the ordering is mostly so that geographically close countries are dealt
with together; Table 1 can be used as an index to the order of presentation. Oceanic
islands are dealt with separately at the end, independently of their political affiliation.

Europe

Italy and San Marino
The native range of D. invadens is thought to be in Italy (Reise et al. 2011), but the spe-
cies might nevertheless be an introduction in parts of that country. Our recent collec-
tions and their genetic analysis support this hypothesis, but the results will be published
elsewhere. To summarise, we have found that D. invadens is widespread throughout
mainland Italy and occurs also in Sicily and Sardinia. It is easiest to find in synanthropic
sites, as in other countries, but we also found it in undisturbed woodland. Several other,
less frequent, species occur which are externally indistinguishable from D. invadens.
Only in one garden in northwest Italy was D. invadens found co-occurring with D.
panormitanum s.s. (Table 2); the latter replaces D. invadens in parts of Sicily.

Table 2 details the first two records (2013) of D. invadens in the Republic of San
Marino (a tiny state surrounded by Italian territory).

Malta

Reise et al. (2011) argued that Pollonera’s (1891) original description of D. caruanae
from the capital Valletta referred to D. panormitanum s.s. Our collecting in 2000 on
Malta and Gozo (supplemented by that of T. Backeljau in 1994: see Reise et al. 2011)
was targeted at Deroceras but never encountered D. invadens; D. panormitanum s.s. and
D. golcheri (Altena, 1962) were widespread.

Great Britain

Deroceras invadens was first found about 1930, in Cornwall, but by 1932 also from
South Wales, central southern and northeast England, and Scotland (Ellis 1950, Quick
1960, Kerney 1999). This wide distribution implies that it had been overlooked for
some time. Formerly, some supposed that D. invadens was native in Britain (Ellis 1951,
Hayward 1954), but we are now more aware of how well the species can spread, and
further work (Reuse 1983) established that the shell is insufficiently distinctive for us
to trust Hayward’s (1954) identification of fossils.

The Conchological Society of Great Britain and Ireland publishes lists annually of
vice-counties in the British Isles from which species have been newly recorded and the
identity confirmed by experts. If we restrict attention to England and Wales (Scotland
and Ireland were more sporadically recorded), the number of vice-counties increased
only slowly to 13 by 1964, then jumped to 54 within 10 years (presumably at least partly
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Figure 1. The distribution of D. invadens in the British Isles. A Records of D. invadens (blue cross)
and D. reticulatum (red circle) for each 10 km square (accessed from NBN gateway 24.xi.12) B Human
population density (pale green = low, dark blue = high); sourced from Center for International Earth Sci-
ence Information Network (Columbia University), Centro Internacional de Agricultura Tropical. 2005.
Gridded Population of the World Version 3: Population Density Grids. Palisades, NY: Socioeconomic
Data and Applications Center (SEDAC), Columbia University. Downloaded from http://sedac.ciesin.
columbia.edu/gpw Nov. 2012.

an artefact of increased sampling effort in preparation of a distribution atlas). Over the
next 25 years, Kerney (1999) considered that it had continued to spread rapidly. Today,
confirmed records are lacking in only one of the 70 vice-counties (for which there are
unconfirmed records) and the distribution now spans all of Great Britain, including
such offshore islands as Orkney, Shetland, the Western Isles, the Isle of Man, Lundy,
and the Scilly Isles.

At a more local scale, D. invadens has been recorded from 1849 10 km grid squares
in Great Britain; this is 0.44 as many as the almost ubiquitous D. reticulatum (access of
NBN gateway on 24.xi.12; https://data.nbn.org.uk). The distribution map still shows
some regions of scarcity (Fig. 1). Some correspond to areas where absent records of D.
reticulatum suggest light recording activity, but these are also often areas of low human
population density, which itself might have hindered the spread of a synanthrope.
Areas in the west with low human population densities nevertheless show a dense dis-
tribution of D. invadens. A higher abundance in the west was noted by Kerney (1999)
and may derive from the milder climate (both warmer winters and wetter summers).
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Some regional differences in abundance are certainly not artefacts of recording
intensity. For instance, in Suffolk (eastern England, sparsely populated) D. invadens
was not reported until 1982 and a particularly thorough survey up to 1990 found it
to be relatively scarce, with scattered localities across the county but concentrated in
a couple of areas and generally only in gardens and disturbed ground (Killeen 1992).
Contrast this with a 1987-88 survey of gardens in Greater Manchester (northwest
England, densely populated), which found it to be the slug species occurring in the
most gardens (258 out of 372 gardens) and in the greatest numbers (North and Bailey
1989). Similarly, in a diverse sample of 16 gardens in southeast Scotland, D. invadens
occurred in 14; D. reticulatum was the only mollusc occurring in more (Sumner 2002).

Kerney (1999) nicely summarises where D. invadens is most often found (writing
of the British Isles, but it is typical elsewhere t00): “A species of disturbed habitats, and
associated with roadside rubbish, farmyards and gardens. It often shelters under stones,
pieces of wood, cardboard and other litter in bare or sparsely vegetated waste ground”.
He also reported the species occurring in wilder places such as woods and hedgerows
but only in climatically mild areas such as the South West; in our experience this is
also the case in the South East. In a survey of eight ancient woods on the Isle of Man,
it was found in seven and was the only widespread non-native species (Alexander and
Dubbeldam 2013). Likewise, in northeast England D. invadens occurred in 9 out of
17 woods (all contained D. reticulatum: Wardhaugh 1996). Dirzo (1980) reported the
absence or rarity of D. invadens in habitats dominated by grass. It occurs in some ar-
able fields (Quick 1949, Foster 1977, Dirzo 1980, Vernavd et al. 2004, Howlett 2005
Chapter 8), where it sometimes dominates, but usually other slugs are the more im-
portant pests. However, D. invadens was the dominant slug pest in 10 selected English
nurseries growing “hardy nursery stock” (Anon. 2003; the dearth of information about
this survey does raise a concern that D. /zeve might have been confused sometimes). An
ability to thrive in the damp warm environment of modern nurseries would predispose
the species to spread into gardens nationwide.

Rowson et al. (2014a, b) reported the occurrence of D. panormitanum s.s. from a
garden in Cardiff. The single occurrence of this species contrasts with the 37 British
populations of D. invadens that we have checked or from which COI sequences appear

in Genbank (Table 1).

Island of Ireland

The first records were in 1958, from several sites around Cork, and in 1959 from New-
castle, County Down, at the other end of the island and in a different country (Mak-
ings 1959). These dates are surprisingly late, considering the close links with Great
Britain and that malacologists familiar with the species there were collecting in Ireland
in these 29 years after its discovery in Britain.

Today in Ireland the number of 10 km squares occupied by D. invadens is a similar
proportion of those occupied by D. reticulatum as in Great Britain (0.38 vs 0.44; access
to NBN gateway on 24.xi.2012; https://data.nbn.org.uk). In an interesting contrast
with Britain, Ross (1984) observed that it was commoner to the east and north; this
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might be explicable by a correlation with higher population densities (Fig. 1). At least in
the north, the explanation for such a correlation is not an absence of collecting activity
towards the west (Anderson 1983). Ross (1984) reported that its occurrence in less dis-
turbed sites such as woodlands and marshes was increasing. By 1996, it was “widespread
and abundant in disturbed habitats, woodland and marshes throughout Northern Ire-
land. A notable pest in gardens” (Anderson 1997). Around Cork, even soon after its first
discovery, 7-27% of slugs collected in gardens were D. invadens (Makings 1959, 1962).

France
In 1910 Simroth described Agriolimax scharffi collected in 1903 from La Giandola in the
extreme southeast of France. Some (e.g. Bishop 1980, Gavetti et al. 2008) have argued
that this refers to the slug we call D. invadens, which would then be the first record of the
species in France or anywhere else and give the species name scharffi priority. Unfortu-
nately the description is so casual (“... fand ich neben der gemeinen Ackerschnecke eine
kleinere helle Form, die nicht retikuliert, sondern fein dunkel punktiert war™: I found
together with the common D. reticulatum a smaller pale form which was not reticulated
but with fine dark dots) that it could refer to other species known from the area (Bodon
etal. 1982), such as D. bisacchium Bodon, Boato and Giusti, 1982, D. rodnae Grossu and
Lupu, 1965, or a form of D. reticulatum. Also the sibling species D. panormitanum s.s. oc-
curs only 23 km away at Bordighera, Italy (Table 2). We visited La Giandola in 2013 and
did find D. invadens, which in itself is not so informative because the species could well
have spread there since Simroth’s visit. More significant is that D. invadens at this site is
not paler than the D. reticulazum. Conversely some of the D. reticulatum were of a some-
what unfamiliar appearance to us and did fit the description of “pale ... not reticulated ...
with fine dark dots”. And also in La Giandola itself we found another species fitting this
description; anatomically it matched local D. rodnae s.s. but its mating behaviour was
distinct. Altogether there seems plenty enough uncertainty to follow Reise et al. (2011) in
regarding A. scharffi as a nomen dubium and not to treat this as a record of D. invadens.

The first clear reports of D. invadens from France are from Hameury (1958), list-
ing two sites near Brest (NW France) from 1956. Quick (1960) had examined speci-
mens from the Pyrenées Orientales (SW France). Later Reygrobellet (1963) described
a new species D. meridionale, now considered a synonym of D. invadens (Reise et al.
2011); she mentioned it occurring in southeast France (departments of Var, Bouches-
du-Rhone, and Alpes-de-Haute-Provence, without details of localities or dates). More
specifically, Chevallier (1973) published an occurrence of D. invadens from this region
(Marseille) from 1948. Reygrobellet (1963) also referred to work by Abeloos (1945)
demonstrating the existence of two forms of Deroceras near Poitiers (western France),
one of which she and Abeloos had subsequently agreed was D. meridionale (i.e. D.
invadens). To summarise, the species occurred at two distant sites in France already in
the 1940s and was widespread at least by 1963.

A map prepared in 1972 by Chevallier (1973) showed many localities throughout
the western half of France and around Paris; their absence on the eastern half of the map,
except in the south, was explained by this region not having been surveyed. However
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Chevallier also stated that the species seemed more at home in coastal regions than inland,
and emphasised that it occurred along the very edges of sea shores, estuaries and lagoons
as well as by freshwater habitats. In contrast to other habitat descriptions of D. invadens,
he mentioned only in the last sentence that it was also sometimes found in gardens.

The first two records from Corsica were from 1977 (Holyoak 1983); these were
identified by A. Wiktor but it would be desirable to scrutinise specimens from this
island further given the taxonomic complexity of the genus on the adjacent Tuscan
archipelago (Giusti 1976). The online database of the Inventaire National du Patri-
moine Naturel (INPN) (http://inpn.mnhn.fr/espece/cd_nom/163204/tab/rep) shows
D. invadens now to occur also widely in northeast France. Cucherat and Demuynck
(2006) describe it as widespread and sometimes locally abundant in the northeast de-
partments of Nord and Pas du Calais. Comparison of INPN maps of D. invadens and
D. reticulatum suggests that the continuing absence of records from areas of central
and eastern France at least partially reflects an absence of recent recording. However,
there certainly are still areas of France where D. invadens is uncommon. Thus, Boulord
et al. (2007) found it to be rare to uncommon in Maures (NW France), occurring in
only six 5 km squares compared with the 44 with D. reticulatum (ratio = 0.14). And in
a review of slugs in Alsace (E France), Hommay (2000) could report D. invadens only
from greenhouses near Colmar.

Monaco
We believe that the first record of D. invadens from Monaco is our finding in 2012
under bushes in a park at a spot irrigated by an automatic watering system (Table 2).

Belgium

The first finding of D. invadens in Belgium was in 1968 in a Brussels garden (Van
Goethem 1974). The species was not found again until 1972, when a project map-
ping terrestrial Mollusca began. Van Goethem et al. (1984) mapped on a 10 km grid
all findings of D. invadens and D. reticulatum for each year from 1972-83. Again we
divide the number of grid squares in which D. invadens had been found by the number
for D. reticulatum (thus controlling for collecting coverage); this yields a ratio of 0.65,
comparable with figures of 0.44 and 0.38 for Britain and Ireland.

Van Goethem et al. (1984) also displayed the total number of records of D. invadens
and D. reticulatum within each grid square. Deroceras reticulatum occurred in almost
every square, so for each grid square the ratio of number of records of D. invadens to
those of D. reticulatum provides a local measure of commonness of D. invadens adjusted
for collecting effort. (Only a small proportion of the records for D. reticulatum predate
the occurrence of D. invadens.) By this measure D. invadens is rarer in the southeast
(Fig. 2). As in Britain and Ireland, the pattern is a good match at a coarse level to hu-
man population density (Fig. 2). A partial exception is the paucity of records around the
city of Liege, interesting because in 2012 we failed to find the species in this city despite
screening public gardens and allotments that looked ideal habitat.
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Figure 2. Incidence of D. invadens in Belgium (white outline) 1968-83. Based on surveys by Van Goe-
them et al. (1984). Size of the square in each 10 km grid square is proportional to the ratio of the number
of records of D. invadens to that of D. reticulatum (the very few squares with no record of D. reticulatum
show no symbol). This is superimposed on a map of population density (pale green = low, dark blue =
high; same source as in Fig. 1).

Additionally the Belgian data provide the number of grid squares in which each
species of Deroceras was found each year. Surprisingly, the ratio between the counts
for D. invadens and D. reticulatum does not increase over the period 1972-83 (Fig. 3,
r=-0.30, P = 0.19), suggesting that the species was already well established by 1972
despite only one record predating this. Even when we considered only the apparently
less saturated southeast, the ratios did not suggest an increase. Our conclusion conflicts
with that of Van Goethem et al. (1984), who did sense an increased incidence over
this period.

Van Goethem et al. (1984) provided qualitative comments on the habitat of D.
invadens. It was more synanthropic than D. reticulatum, and could predominate over
that species in such habitats, whereas it was less common on canal banks. It seemed to
be absent from the interior of woods, especially coniferous woods, but it was rare even
in poplar plantations.
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Figure 3. Deroceras invadens did not get easier to find in Belgium 1972-83. Ratio of the number of
Belgian 10 km grid squares in which D. invadens was found to those in which D. reticulatum was found,
for each year reported by Van Goethem et al. (1984). Numbers above and below the line are the counts
for D. invadens and D. reticulatum respectively.

Netherlands

The first finding was in 1969 in Domburg at the southwest tip of the country (Git-
tenberger et al. 1970). By 1982 it was recorded from five provinces across the south of
the country (de Winter 1984), and already in 1984 de Winter estimated that he had
found it in a third of gardens and similar habitats examined. A distribution map pre-
pared in 2005 (Atlasproject Nederlandse Mollusken; http://www.anemoon.org/anm/
voorlopige-kaarten, accessed 5.vi.13) shows it spread over the whole country, including
even the Wadden island of Terschelling (Mienis 2003), although mapping of the Neth-
erlands is much less complete than for the British Isles or Belgium. This map shows
D. invadens as recorded in 50 5 km squares between 1990 and 2005, compared with
199 squares for D. reticulatum. The ratio of these numbers is somewhat lower than in
Britain, Ireland or Belgium (0.25 vs. 0.44, 0.38 and 0.65), which might partly reflect
the lesser sampling intensity in the Netherlands: if each square is sampled rarely the
ratio reflects the chance of encountering D. invadens at an individual collecting site,
rather than somewhere in the whole grid square.
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Three intensive local surveys from the south of the Netherlands confirm the broad
pattern. In Zuid-Holland, Boesveld (2005a) found D. invadens in 34 5 km squares,
compared with 80 for D. reticulatum (ratio = 0.42). For 1 km squares, the correspond-
ing figures are 48 and 129 (ratio = 0.37). In Noord-Brabant, Boesveld (2005b) found
D. invadensin 9 of the 118 1 km squares visited, and D. reticulatum in 36 (ratio = 0.25).
Both studies pointed out that they had undersampled urban areas, where D. invadens is
commoner. Along the coast of Zeeland (Boesveld 2005¢), D. invadens occurred in 22
out of the 79 1 km squares visited compared with 38 for D. reticulatum (ratio = 0.58).

Luxembourg

There are four 1997-98 records of D. invadens provided by Weitmann and Groh in the
database of the Musée d’histoire naturelle Luxembourg (accessed via http://data.gbif.
org/species/5190777 Sept. 2012).

Germany
Falkner (1979) documents several cases in the 1970s of D. invadens turning up in
Munich on purchased lettuce, endive and strawberries, mostly imported from Italy.
The first findings outdoors in Germany were in 1977 and 1978 in and near Munich
(Falkner 1979). Analysing the subsequent spread is complicated because, although
Germany is well supplied with malacologists, recording schemes have been organised,
if at all, at the level of the 16 states (Bundeslinder). The following paragraphs deal with
each state in turn, in order of the first appearance of D. invadens in each, except that the
states that were part of East Germany until 1990 are considered in a second paragraph
(Berlin is listed with West Germany). The first published occurrence in the former
East Germany postdated by a year the opening of the border between East and West
Germany (Béssneck 1994), but by this time D. invadens had not been recorded either
in 6 of the 11 West German states. Moreover, the notebooks of the late V. Herdam,
indicate East German occurrences in Berlin in 1982 and in Brandenburg in 1985 (E.
Hackenberg pers. comm.; Table 2); it is hard to judge how reliable these records are.
Bavaria: first found in 1977 (see above). North Rhine Westphalia: first found in
1979, at several sites near Cologne (Schnell and Schnell 1981); a thorough survey of
Cologne between 1990 and 1994 located it at 15 sites throughout the city, compared
with 49 for D. reticulatum (ratio = 0.31: Tappert 1996). Baden—Wiirttemberg: first
found in 1982, from several distant sites (Schmid 1997). Schleswig—Holstein: first
found by 1983 (Wiese 1983); the 1991 atlas (Wiese 1991) showed it in 2 10 km
squares, compared with 21 for D. reticulatum (post-1960 records; ratio = 0.10). Hesse:
W. Hohorst collected D. invadens in Frankfurt am Main in 1985 (Table 2); ina2010-
11 survey in Frankfurt am Main, D. invadens was recorded from 11 of 22 sites, com-
pared with 5 for D. reticulatum (ratio = 2.2; Kappes et al. 2012). Rhineland Palatinate:
first found in 1994, in Jockgrim (Schmid 1997). Lower Saxony: first found in 1998
on the island of Baltrum; other records in Lill (2001) indicate that by 2001 it occurred
throughout the state, sometimes at high densities, but restricted to synanthropic sites.
Hamburg: first found in greenhouses in 1998 and outdoors in 2000 (Gloer and Haus-
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dorf 2001). Bremen: first found 2001 (Lill 2001). Berlin: we know of no published
record, but note Herdam’s 1982 record mentioned above, and we collected it ourselves
from a garden in Steglitz in 2001 (Table 2). Saarland: we know of no record.

Saxony: first found in 1990, in Limbach near Reichenbach (Bossneck 1994), and
in 1991 at the other end of the state, in Gorlitz (Reise and Backeljau 1994). Thuringia:
first found in 1993, in Erfurt (Béssneck 1994); rather few sites (c. 5) have turned up
since (U. Bossneck, pers. comm. 28.i.14). Mecklenburg—Vorpommern: first found in
1998; by 2006 it had been recorded in 10 5 km squares, always at synanthropic sites
(64 squares contained D. reticulatum: ratio = 0.16; Zettler et al. 2006). Saxony—Anhalt:
Unruh (2001) stated that it had been part of the outdoor fauna for years but by 2012
it was recorded from only 4 10 km squares (compared with c. 55 with post-1990
records for D. reticulatum: ratio = 0.07; Kérnig et al. 2013). Brandenburg: we know
of no published record beside our own from 2004, in Senzig at the edge of the Berlin
conurbation (Reise et al. 2011), but note Herdam’s 1985 record mentioned above.

A 2000-12 survey covering a broad area of northwest Germany, extending also
into the Benelux countries, found that the mean density of D. invadens slightly ex-
ceeded that of D. reticulatum in gardens and in early successional woodland (Kappes
and Schilthuizen 2014) but not in grassland or mature woodlands. The ranking of
habitats in decreasing order of mean density of D . invadens was: gardens (0.68 m™),
early successional woodland, mesic open, floodplain forest, wet open, wet deciduous
forest, deciduous forest, scree forest, conifer; in the later three types the density was
very low or absent.

In conclusion, D. invadens is now widely distributed in Germany and can be a
common synanthrope in the west, but it took decades to turn up in many states and
is still uncommon in many areas. The other invading Deroceras, D. sturanyi, is often
commoner (e.g., Zettler et al. 2006, Kornig et al. 2013) although not in the northwest
(Kappes and Schilthuizen 2014). There is little indication of D. invadens colonising
more natural habitats.

Switzerland

The first record was in Basle near the German border in 1982 (Falkner 1982), the
next not until 1991 (Turner et al. 1998). By 2011 D. invadens had still been recorded
from only eight 5 km squares (around Basle, Bern, Lucerne and Ziirich, so only from
the lowlands in the northern half of the country: Boschi 2011). This compares with
records of D. reticulatum from 350 squares since 1951 (Boschi 2011; ratio = 0.02).
However, an independent study in 2007-09 (Fabian et al. 2012) found D. invadens
to be one of the three commonest slugs in wildflower strips edging arable fields south
of Lake Neuchatel; perhaps the mapping had tended to overlook such occurrences in
mundane agricultural landscapes.

Austria
The first record was in or before 1977 from a market garden in Maissau (NE Austria;
Reischiitz 1977, 1980). A 1986 atlas (Reischiitz 1986) shows D. invadens in 9 10 km
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squares, all in the eastern quarter of the country, centred on Vienna. However, D. in-
vadens had been collected already in 1979 from Lienz (SSW corner of Austria: Kofler
1986), and in the north also the species has since been found further to the west (1990
in Schiebbs: Ressl 2005; 1999 in Braunau am Inn: collected E Seidl, Table 2; 2009 in
Linz, 2011 in Wels: Aescht and Bisenberger 2011). In 2013 we found the species still
further west, in Innsbruck (Table 2).

A 1992 survey of greenhouses around Vienna found D. invadens in 3 out of 10
establishments (the same as for D. reticulatum; D. laeve occurred in 6: Leiss and

Reischutz 1996).

Czech Republic

A specimen collected in Ostrava in 1996 was identified as D. invadens only in 2003
(Horsdk and Dvotdk 2003). By that time there was a further 2002 record from a green-
house in Susice. Horsdk and Dvordk (2003) believed that it was liable to have been
widely overlooked elsewhere, but the latest review (Horsék et al. 2013a) provides no

further records. We have recently (2014) found the species at two sites within the town
of Hrddek nad Nisou, close to the German and Polish borders (Table 2).

Slovakia
Deroceras invadens is known only from greenhouses of the botanical garden in Brati-
slava where it was first found in 2003 (Dvordk et al. 2003; Horsdk et al. 2013a).

Poland

The only record of which we are aware is from 2001 from the botanical garden and
adjacent areas in Wroctaw (SW Poland: Wiktor 2001a, 2004). The population was still
extant in 2013 (A. Wiktor and HR pers. obs.).

Lithuania

Deroceras invadens had been reported from the botanic garden in Kaunas (Skujiené G
2013 Invasive slugs in Lithuania: results, problems and perspectives of the investiga-
tions. Abstract booklet of “Slugs and snails as invasive species, a meeting of the IOBC/
WPRS slugs and snails subgroup, Bergen, Norway 25-27 September 20137, p. 11).
However, Skujiené kindly lent us the specimen on which this record was based and it
proved to have been misidentified.

Hungary
Deroceras invadens was listed as present in Hungary in the guide book by Kerney et

al. (1983). However, the more authoritative lists of Wiktor and Szigethy (1983) and
Pintér and Suara (2004) do not include this species.

Romania
Grossu (1969) retracted the earlier claim that D. invadens occurred in Romania (Grossu

and Lupu 1965).
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Bulgaria

Wiktor (2000) mentioned a population in the Piryn mountains of Bulgaria that he
assigned to D. panormitanum. At that time the confounding of D. panormitanum and
D. invadens meant that the genitalia of the species were considered very variable. Now
we reject this identification; for example, the sarcobelum is strongly flattened in these
Bulgarian slugs, which is utterly untypical of D. invadens, or of D. panormitanum s.s.

Greece

Wiktor (2001b) reported “Deroceras cf. panormitanum” at “scattered localities” in
Greece; he considered the 202 specimens from many sites to be all one species but was
tentative in placing them in this taxon. However, specimens fitting this description from
Crete proved to be an undescribed species (Reise et al. 2011). We have now checked
the anatomy of five Greek samples in the Museum of Natural History, Wroctaw Uni-
versity (from Mount Lampeia in the Erymanthos mountains, Cape Sounion south of
Athens, the island of Skyros, the Kallicratis plateau in SW Crete, Heraklion in Crete)
and one sample in the Naturalis Biodiversity Centre, Leiden (RMNH.MOL 329848
from the island of Lefkada), all labelled by Wiktor as D. panormitanum. In the light of
the recent taxonomic revision (Reise et al. 2011), our opinion is that none of these are
D. invadens or D. panormitanum s.s., so we concluded that probably all Greek records
of D. invadens should be considered unreliable.

However, recently Rowson etal. (2014a) have published a finding of D. invadens from
Lake Kournas in Crete reliably identified by a COI gene sequence (Genbank KF894343;
R. Anderson pers. comm. 15.iv.2014). Anderson had found the species in a patch of
disturbed scrubland in May 2011 and 2012. Crete has been fairly well sampled for slugs
without this species being noted elsewhere, so a recent introduction seems likeliest.

Denmark
The first specimens were already collected in 1937, outdoors in a park in Odense. But
their identity was not recognised until the mid 1950s when further specimens turned
up at seven different cemeteries in another part of Denmark (northern end of Jutland:
Lohmander 1959). We have found no more recent information.

See below for records from the Faroe Islands.

Sweden

The first findings date from 1957 to 1959, when D. invadens was found in six green-
houses well spread over the country (even up in Bysek at 65°N; Waldén 1960). Howev-
er, subsequently the species remained rare in greenhouses or even declined (Proschwitz
1991). Outside greenhouses, occurrences also remained “extremely rare” before 1980,
but by 2002 D. invadens was rapidly establishing itself, perhaps as a result of milder
winters (Proschwitz 2002). It is now recorded outdoors from the provinces of Skane,
Halland, Smaland, Vistergotland, Dalsland, Uppland, Virmland and the Baltic islands
of Oland and Gotland, with records denser in the south but extending as far north as
Uppsala (59.8°N: Proschwitz 2009, 2010).
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Norway

The first find was in about 1967 from a greenhouse in a botanic garden in Bergen (Olsen
2002). Outdoors, D. invadens was first found in 1983-84 at four synanthropic sites
along the mild Adantic coast, as far north as Mere og Romsdal (c. 62°N: notebooks of
H.W. Waldén, cited in http://databank.artsdatabanken.no/FremmedArt2012/N79713
accessed July 2013). By 2002 it was considered common outdoors in cultural habitats
(Olsen 2002), and it is spreading to more natural habitats (Sneli et al. 2006).

Finland

Brander and Kantee (1961) reported D. invadens from Finland, without stating the
date of discovery. Valovirta (1967) made clear that it was known only from the green-
houses of southern Finland. We are not aware of more recent information.

Portugal
Seixas (1978) was the first to report D. invadens, from near Lisbon in 1977. Rodriguez
et al. (1993) reported three further localities in the northern half of Portugal from
1983-85 (out of 55 sites visited across Portugal, 40 of which yielded D. reticulatum:
ratio = 0.05).

See below for records from Madeira and the Azores. The indications of D. pan-
ormitanum s.s., together with D. invadens, on both these archipelagos suggest that it
would be worthwhile rechecking specimens from mainland Portugal.

Spain
The first published record of D. invadens was from Bilbao (north coast) in 1980 (Gémez
et al. 1981). However, Castillejo (1983) had identified material collected as early as
1974 from northeast Spain; over the period 1974-80 D. invadens had been found in
16 10 km squares in Galicia (compared with 36 for D. reticulatum: ratio = 0.44; records
added over the next decade changed this to 20:50 = 0.40: Castillejo and Rodriguez
1991). Later mapping (Castillejo 1997) indicates a distribution along the wet northern
coast, with one record in the southern foothills of the Pyrenees ENE of Huesca and
some around Valencia (middle of east coast). The species is rarer in the east than in the
northwest: in the east-coast province of Castellon, Borreda and Collado (1996) found
D. invadens in 2 out of 105 locations sampled in 1990-92, compared with 61 for D.
reticulatum (2 vs 38 10 km squares occupied by each species: ratio = 0.05). Similarly
in the neighbouring east-coast province of Valencia, D. invadens occurred in 2 out of
69 localities sampled in 1990 and D. reticulatum in 34 (2 vs 27 10 km squares: ratio
= 0.07; Borreda et al. 1990). Two of our own findings (Table 2) extend the range to
the northeast (Bascara = first record for Catalonia) and further south of the Pyrenees
(Tudela). There remains a dearth of records from the drier middle and south of the
country. Survey work in Castilla—La Mancha (central Spain) 2003-07, located only one
site for D. invadens compared with about 101 for D. reticulatum (Bragado et al. 2010).
The first record for the Balearic Islands was 2001 from Majorca, where D. in-
vadens has since been found in several other localities (Beckmann 2007). There are also
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records from Ibiza in 2001 (under pots in garden centre: Anderson 2003) and from
Menorca in 2002 (hedgerows and/or woods: Anderson 2004).

Castillejo (1998) emphasised that D. invadens is restricted to synanthropic habitats
in mainland Spain, especially gardens, whereas Altonaga et al. (1994) listed wet mead-
ows and beside streams. In northwest Spain it occurs in arable fields and permanent
cattle-grazed pasture, in both of which it is sometimes the commonest slug (Iglesias et
al. 2001, 2003; Cordoba et al. 2011).

See below for records from the Canary Islands.

Africa

Egypt

A 2005-07 survey in Asyut Governate (along the Nile, upstream of Cairo) found D.
invadens in 15 out of 38 gardens and farms (Obuid-Allah et. al. 2008; 8 sites contained
D. reticulatum: ratio = 4.75). This was the first report from Egypt, probably partly be-
cause the authors sent some specimens abroad to be identified.

South Africa

Deroceras invadens was recorded from several widely separated sites in Cape Province
(George, Wilderness, Cape Town) in 1963—65 (Altena 1966). Now (Herbert 2010), it
is also known from the Eastern Cape and from Guateng, including Pretoria, which, at
25.7°S, has a humid subtropical climate (cf. the mediterranean climate of the Cape).
Although most records are from gardens it has been found also in indigenous forest on
Table Mountain and near Somerset East (at the former already in 1965: Altena 1966,
Herbert 2010). Herbert’s (2010) distribution maps show 10 dots for D. invadens com-
pared with 16 for D. reticulatum (ratio = 0.63), the major difference being that only D.
reticulatum has been reported from the region west of Durban.

See below for records from Marion Island.

Kenya

A specimen was intercepted arriving in the USA on cut flowers (Astrantia) from Kenya
(04.viii.12, USDA 110834). One area in Kenya where Astrantia is grown commer-
cially for export is at Kipipiri, at an altitude of 2300-3000 m. Such altitudes may well
provide a suitable habitat for D. invadens.

Asia and Australasia

Sri Lanka

Two publications report the presence of D. invadens in Sri Lanka (Kumburegama and
Ranawana 2001, Bambaradeniya 2002) and this information has been repeated in
secondary sources. However, a later review paper including some of the same authors,
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but in conjunction with European experts, did not list the species (Naggs et al. 2003).
The explanation is that the original reports were erroneous (N.P.S. Kumburegama,
pers. comm. 21.viii.13).

Australia

Altena and Smith (1975) were the first to identify D. invadens in Australia. The
earliest collection date of the specimens they identified was 1967, although in 1964
specimens had been intercepted arriving in New Zealand on plants from Australia
(Barker 1979). However, a sample in the Museum Victoria from near Melbourne
was collected in 1936 (collection no. F174271; HR confirmed identity). Previous
to 1975, the species had been misidentified as D. laeve and D. reticulatum. Because
they had never encountered specimens of D. laeve from Australia, Altena and Smith
(1975) suggested that Limax queenslandicus Hedley, 1888, which had been syn-
onymised with D. /aeve soon after its description, might have been D. invadens.
Reise et al. (2011) argued strongly against this; they showed that D. laeve was present
in Queensland in the nineteenth century and that the identification of L. queens-
landicus as D. laeve was reliable.

Deroceras invadens has been reported widely from Australia (Altena and Smith
1975, Smith 1992a, Stanisic et al. 2010, Atlas of Living Australia http://bie.ala.
org.au/species/Deroceras+panormitanum accessed 21.vii.13). However, we have
borrowed some of the material in the Australian museums on which these re-
cords were based and found that much of it is misidentified D. /zeve. As in North
America, D. laeve in Australia often grows larger than in Europe, which might
have misled originally. Altena and Smith (1975) did not encounter D. laeve, but
did not dissect material from outside Victoria that they assumed to be D. invadens.
The belief that D. laeve was rare in Australia and, for instance, did not occur at
all in Queensland (Stanisic et al. 2010) must have inhibited routine dissection.
The latest Australian guidebook gives general coloration and paleness around the
pneumostome as characters to distinguish D. laeve and D. invadens (Stanisic et al.
2010); these are certainly not reliable characters in Europe and may well explain
misidentifications in Australia.

We can confirm the occurrence of D. invadens in Victoria, New South Wales, Tas-
mania, South Australia and Western Australia (Table 2). There is no reliable evidence
of D. invadens in Queensland. We have examined 14 lots covering a wide geographic
range in Queensland from the New South Wales border as far north as 16° (10 labelled
as D. panormitanum from the Queensland Museum, one similarly labelled from the
Museum Victoria, and 3 others). All were D. laeve. The northernmost confirmed re-
cords of D. invadens in New South Wales are 30.4°S (Table 2).

Already in the 1975, D. invadens was described as “one of the commonest and
most wide-spread of introduced slugs”, “a pest both of pasture plants and those of sub-
urban gardens”, occurring “in only slightly disturbed native bushland as well as wholly
modified habitats” (Altena and Smith 1975). More recent surveys found it to be the
commonest introduced mollusc in native grassland in southeast Australia (Holland
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et al. 2007), and to occur also around the edges of ponds and swamps (Stanisic et al.
2010). It is found in some arable fields (Nash et al. 2007). The frequent misidentifica-
tions of D. laeve as D. invadens might have coloured these claims, but we can confirm
its presence in gardens, agricultural habitats, and rough grassland.

See below for erroneous records from Lord Howe Island and Norfolk Island.

New Zealand

Barker (1979) published the first records of D. invadens from New Zealand, including
specimens collected in 1974. Barker (1979, 1999) concluded that earlier widespread
records of D. laeve must have referred to D. invadens, because he found that D. laeve
had a restricted distribution in New Zealand. For instance, Suter (1913, p. 1071) de-
scribed D. laeve as cosmopolitan, and already in 1891 Musson mentioned that D. laeve
occurred. An occurrence at either of these dates would predate the first records of D.
invadens anywhere in the world. The argument mirrors that for an early occurrence in
Australia, which we criticised above, but we find it more compelling in the case of New
Zealand: New Zealand has been more thoroughly surveyed, the distribution of D. lzeve
was more restricted at the time of these reliable surveys, and, unlike in Australia, there
are no extant specimens of D. laeve collected before the late 1950s.

Barker (1999) described the habitat of D. invadens in New Zealand thus; “a slug
of moist habitats found in gardens, parks, and pastures, on arable land, stream banks,
and roadsides, and in greatly disturbed areas of native forest”. It is “frequently found
in roadside margins adjacent to forest, often kilometres from any cultivated areas”,
“ubiquitous where there is improved grassland and cultivated plants”, “often the most
abundant species in humid glasshouses and wet field situations”, and “an important
pest of cultivated plants” (Barker 1982, 1992). In one old pasture, 39% of slugs were
D. invadens (= 14 m?, cf. 16 m™ D. reticulatum; Barker 1990). Although most often
recorded in the Auckland area of North Island, D. invadens also occurs widely around
the coast of South Island and on Stewart Island (Barker 1999).

See below for records from Raoul Island and the Chatham Islands.

Americas

United States of America

Pilsbry (1948) described D. invadens as widespread in the Bay Area of California
(the environs of San Francisco) by 1940; habitats he listed were a park, nurseries, a
lawn and a ranch. Subsequently it has been recognised further south, in Monterey
County (Lange 1944, Pilsbry 1948) and in Los Angeles (Roth and Sadeghian 2003).
It also occurs further north, in Oregon and Washington: Burke (2013) described it
as common in urban and suburban areas of the Pacific Northwest from California to
southern British Columbia and Pearce et al. (2013) described it as well established
in Olympia and Tacoma (Washington State). Table 2 includes further records from
this region.
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With this firm foothold , one would expect the species to have become widely dis-
tributed in the USA, because some large horticultural firms grow plants in the benign
climate of the Pacific Northwest and then ship nationally. However, compared with
Europe, North America has far fewer experts able to identify slugs, especially those
requiring dissection. Also problematic is that D. /zeve in North America often grows
larger than in Europe so that D. invadens is readily mistaken for it unless specimens are
dissected (Reise et al. 2000). It is not a healthy sign that all the records of D. invadens
from the USA outside of the west coast are our own!

In 1998 we found D. invadens in Washington DC, under bushes in a park, the
first outdoor record in eastern North America (Reise et al. 2006). Our surveys of
synanthropic habitats in Colorado and Utah in 2004 and 2006 respectively JMCH
and HR, unpublished; see Table 2) turned up D. invadens in several garden centres
and in the watered plantings in city centres (e.g. Park City; Memory Grove Park, Salt
Lake City: Reise et al. 2011), but also in unwatered parts of a city park (Cheesman
Park, Denver), along the banks of a drainage ditch (university campus, Fort Collins)
and beside a stream in a ski resort (Snowbird).

The only other records from the eastern USA of which we are aware are from
two sites in Kentucky (specimens in Florida Museum of Natural History, catalogue
numbers 43778 and 44718, details available via http://data.gbif.org/species/5190777
accessed 24.iii.14). However, we have dissected one animal from each sample and they
were not D. invadens.

Canada

The first Canadian records are from greenhouses in two cities in Quebec Province in
1966 (Chichester and Getz 1969). This thorough survey of 770 sites (although only
25 greenhouses, nurseries or gardens) in the northeast of the USA and southeast of
Canada failed to find the species elsewhere, whereas D. reticulatum and other European
slugs were frequently encountered. The first outdoor records are from the other side
of the continent on the UBC campus in Vancouver in 1974 (Rollo and Wellington
1975). Deroceras invadens is nowadays present at other sites in Greater Vancouver and
around Victoria on Vancouver Island (Forsyth et al. 2001, Forsyth 2004, http://linnet.
geog.ubc.ca/efauna/Atlas/Atlas.aspx?sciname=Deroceras%20invadens; Table 2). We
also found it in 2013 in a garden centre in Kamloops, in the drier interior of British
Columbia (Table 2). On the Adlantic coast, D. invadens was found in 2012 on rough
ground adjacent to gardens in St John’s, Newfoundland (Forsyth 2014; confirmed by
HR); the maritime influence there ameliorates winter temperatures.

Identifications of D. invadens from a garden in Edmonton, Alberta and from or-
chards by Osoyoos Lake, British Columbia, (Neckheim 2013, 2014) were not based
on dissection (C.M. Neckheim pers. comm. 02.x.13), so should be regarded as uncon-
firmed; winters in Edmonton are more extreme than in any area where the species is
known with certainty (see Discussion). A 1994 record from wild habitat near King-
ston, Ontario (Grimm et al. 2009) is also best considered as unconfirmed because of
other misidentifications by the collector (Forsyth 2013).
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Mexico

We have confirmed the identification of specimens of D. invadens collected by A.S.H.
Breure in 1974 at 3000 m in the Desierto de los Leones National Park, above Mexico
City (Table 2). The gardens of the nearby convent might have been the original point
of introduction but these slugs were collected in the surrounding pine and oak wood-
land (A.S.H. Breure 1974, pers. comm. 27.ix.13). At this altitude the climate is cool
and damp. Although the specimens were correctly identified by Altena and deposited
in the Naturalis Biodiversity Centre, Leiden, the record was not published so that D.
invadens is missing from a recent national checklist (Thompson 2008).

Costa Rica

In 2006, we found ten specimens under rocks in a small wood near Tierra Blanca, Pro-
vincia Cartago (USDA 131032; Table 2). The altitude was 2060 m. The only Deroceras
species listed from Costa Rica by Barrientos (2003) was D. laeve.

Panamd

In July 2007, a specimen of D. invadens was found on a leaf imported into the USA
from Panamd (USDA 131034). In July 2009, three further specimens were found on
Allium imported into the USA from Panamd (USDA 131033). Note that Panam4
connects Costa Rica to Colombia, countries for which the presence of D. invadens has
been confirmed on the ground.

Colombia
Two specimens of D. invadens in the Field Museum Chicago (JK-198690, identity
confirmed by HR) were collected by the University of Oxford expedition to Colombia
in September 1975. There are no further locality data but in this month the expedition
was both near Nazaret (Guajira state) and in the capital Bogotd (Knappett et al. 1976).

Deroceras invadens was next found in 2000 at two rural sites near Bogotd in a
garden and a flower plantation (Hausdorf 2002). It was considered a serious horticul-
tural pest. Although the localities are less than 5°N, the altitude (> 2600 m) makes
the climate oceanic (subtropical highland). Until Hausdorf’s visit, the species had ap-
parently not been recognised by local researchers, so that it may be more widespread.
However, D. invadens was not found at 6 of the 8 sites where Hausdorf’s survey found
D. reticulatum (ratio = 0.25).

Cut flowers imported into the USA from Colombia in March 2008 contained D.
invadens (USDA 131036).

Ecuador

In April 2012, L. Manangén collected a specimen “on alder” near Bolivar, Provincia
Carchi (USDA 110614: Table 2). Although this is only 56 km north of the equator,
the altitude of 2600 m meliorates the climate (cf. the localities in Colombia, 600
km away along the chain of the Andes). Earlier, in August 2004, an individual of D.
invadens had been intercepted on cut flowers imported into the USA from Ecuador

(USDA 131035).
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Peru

The only Deroceras species listed from Peru by Ramirez et al. (2003) were D. laeve and D.
reticulatum. However, in March 2012, an individual of D. invadens was intercepted on
lettuce imported into the USA from Peru (USDA 110831). Peru connects Ecuador and
Chile, countries for which the presence of D. invadens has been confirmed on the ground.

Chile
Letelier et al. (2003) reported D. invadens as present in southern Chile. We can add
three later records of our own from central Chile in, and within 70 km of, the capital
Santiago (Table 2). At these latitudes, the species occurs at low altitudes.

See below for a record from the Juan Ferndndez Islands. The presence of D. invadens
there in 1962 suggests that it was probably present in mainland Chile by this time.

Argentina

Gutiérrez Gregoricetal. (2013) reported the occurrence of D. invadensin Argentinawith-
out providing the date of first discovery. However, the online catalogue of the Museo Ar-
gentino de Ciencias Naturales ‘Bernardino Rivadavia’ (http://datos.sndb.mincyt.gob.ar/
portal/occurrences/search.htm?c[0].s=08&¢[0].p=08&c[0].0=Deroceras+panormitanum)
indicates that much of the material was collected in 2010 and 2011 in well vegetated
valleys at the eastern edge of the Andes around the shores of lake Nahuel Huapi (770 m
a.s.l.), and 94 km south in El Bolsén (310 m a.s.l.). A further site is a little to the east on
a cultivated estate in the arid Patagonian steppe. The map in Gutiérrez Gregoric et al.
(2013) indicates a further locality near the city of Neuquen 300 km to the northeast of
Nahuel Huapi. So the range in Argentina is sizeable and Gutiérrez Gregoric et al. (2013)
stated that localities include both urban areas and national parks.

Brazil
Barker (1999) listed two samples of D. invadens that he examined, from a park in the
city of Porto Alegre and from a state park 70 km outside the city, both collected in
1991. These determinations should be considered reliable because Barker was familiar
with D. invadens in New Zealand. However, recent species lists from the same state
(Agudo-Padrén 2009) and from all Brazil (Simone 2006, Agudo-Padrén and Lenhard
2010) do not mention this species. They do list D. /aeve, which seems likely to have
masked the presence of D. invadens from local malacologists.

Recently (27.ii.14) a specimen of D. invadens was intercepted arriving in the USA
on cabbage from a ship’s stores that had been loaded in Brazil (USDA 140148).

Oceanic Islands

Faroe Islands (Denmark)

This sizeable archipelago (1400 km?, population 50,000) lies between Scotland and
Iceland at 62°N, having a maritime subarctic climate. In 1970, McMillan (1972)
found D. invadens to be frequent in waste ground to the west of the capital Térshavn.
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Madeira (Portugal)

The first record of D. invadens is from 1980 (Rihle 1992). Based on fieldwork from
1980 to 1986, Rihle (1992) concluded that it was widespread but rare and restrict-
ed to synanthropic sites on the main island. Seddon (2008) provided more records,
but the species had still not been recorded from Porto Santo or other minor islands.
Whereas Rihle knew it from 7 sites compared with 10 for D. reticulatum (ratio = 0.7),
Seddon’s distribution maps show 21 dots for D. invadens and 11 for D. reticulatum.
However, Seddon’s data may have confounded occurrences of D. invadens with those
of Deroceras lombricoides (Morelet, 1845): Seddon has no records of the latter species,
whereas Rihle found it to be the commonest Deroceras.

Rihle’s (1992) illustrations indicate that he found D. invadens rather than D. pan-
ormitanum s.s. We have also confirmed the identity of samples in the Stuttgart State
Museum of Natural History from 6 localities (collected 1980-85) and of samples
in the Naturalis Biodiversity Centre, Leiden, from a further 11 localities (collected
1987-88). However, we collected D. panormitanum s.s. from the south of Madeira in
2006 and again eight years later just 0.7 km away (USDA 131030, USDA 140106:
Table 2); the localities lie <2.5 km from one where D. invadens was found in 1988.

Azores (Portugal)

Waldén (1960) mentions the first finding of D. invadens in the Azores by a 1957 expedi-
tion (see Backhuys 1975, p. 22). However, Backhuys™ (1975) team of collectors did not
find this species during their extensive fieldwork in 1969, in contrast to numerous records
for other slugs, including D. /aeve (reported as always aphallic, so not a misidentification).
Backhuys (1975) reported a single later finding in 1974 from a synanthropic habitat on
Sao Miguel. In dramatic contrast, single-island surveys 1320 years later showed the spe-
cies to have become widespread (e.g., present at 5 out of 29 sampling stations on So
Miguel in 1987, 8/21 stations on Flores in 1989, 5/17 stations on Santa Maria in 1990,
2/9 stations on Sao Jorge in 1992, 3/18 stations on Faial in 1993: de Winter 1988; Mar-
tins et al. 1990, 1991, 1993; Cunha et al. 1994). By 2010 the species was known from all
of the nine main islands except Terceira (Cunha, Rodrigues and Martin 2010).

A slug intercepted arriving in the USA from the Azores on a taro root in March 2008
was D. panormitanum s.s. (USDA 110434). So we checked specimens collected by J. Wier-
inga from four sites on Sao Miguel in 1987 (Naturalis Biodiversity Centre, Leiden: collec-
tion numbers 329842-329845). They were D. invadens, as was another U.S. interception
from the Azores (USDA 131029, Dec. 2008). Probably, as on Madeira, both species occur.

Canary Islands (Spain)

The first records of D. invadens are from the island of La Palma in 1947 (Altena 1950).
In the 1980s Alonso et al. (1986) found it to be commoner there than D. reticulatum
(12 vs 2 localities, 8 vs 1 5 km squares) and to range in altitude from 60 to 1800 m. On
the island of Tenerife, Altena (1950) failed to find D. invadens in 1947 and extensive
sampling in 1982-85 located it at only one site (Alonso et al. 1986), but by 2007 it was
widespread in native laurel forests (Kappes et al. 2009). The species was also present on
Gran Canaria by 1984 (M. Ibdfez, pers. comm. 16.ix.13, Table 2).
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Tristan da Cunha (UK)

This lies in the middle of the South Atlantic (37.1°S), 2816 km from South Africa, with
a population of under 300. The climate is temperate. Preece’s (2001) survey in 1982-83
found D. invadens not only on the main island of Tristan da Cunha but also on Inaccessible
Island 40 km away. The latter had been inhabited rarely, and not since 1938 (Anon. 2011).
Seabirds abound, so possibly they could have dispersed slugs from Tristan da Cunha.

Raoul Island (New Zealand)

This lies 29.3°S in the South Pacific, 1100 km NNE of New Zealand’s North Island.
The climate is subtropical. Deroceras invadens was found in 1973 in forest litter (Barker
1999). At this time there was a small farm on the island as well as a meteorological sta-
tion, although resupply was infrequent.

Chatham Islands (New Zealand)

These lie 44°S in the South Pacific, 680 km from New Zealand. The climate is tem-
perate and they have a sizeable agricultural community and frequent transport links.
Deroceras invadens was found in 1976 in pasture on the main island and nearby Pitt

Island (Barker 1979).

Marion Island (South Africa)

This is a subantarctic island (46.9°S, 290 km?) with a cool oceanic climate, unpopu-
lated except for research stations; South Africa lies 1730 km to the northwest. Deroceras
invadens was first reported in 1972, under timber and in damp mossy habitat beside
the base hut; a thorough survey in 1965-66 had not reported it (Smith 1992b). By
1976-77 it occurred in further habitats but had not spread far, and by the early 1990s
it was much more abundant but still known only within several hundred metres of
the base (Smith 1992b, Chown et al. 2002). Further dispersal around the rest of the
island over inhospitable terrain is thought to have been facilitated by its habit of sitting
under wooden boxes lying on the ground, which helicopters then carried to other huts
(Chown et al. 2002). The species has now spread right around the island but the cold re-
stricts it to land under about 200 m (Lee et al. 2009). It is most abundant near the coast.

Juan Ferniandez Islands (Chile)

In the Field Museum Chicago and the Museum of Natural History, Wroctaw Uni-
versity are specimens of D. invadens collected in 1962 from Robinsén Crusoe Island,
formerly Mds a Tierra (identities confirmed by HR; Field Museum catalogue number =
198633). This Pacific island is 48 km? in area, and lies 600 km west of mainland Chile,
with a mediterranean climate and a population in 1999 of over 500. The slugs were
collected in a ravine in the Valle de Lord Anson, which rises from the main village.

Errors and Absences

Lord Howe Island and Norfolk Island are small (15 and 35 km?) but well populated
Pacific islands, belonging to Australia although 570 and 1400 km east from the Aus-
tralian mainland. Online records from the Australian Museum (http://ozcan.ala.org.
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au accessed 08.iii.2013) indicated that D. invadens was collected on Lord Howe Island
in 2000 (single record) and on Norfolk Island in 1999 and 2002 (6 records, most
from the largest patch of woodland but two from the opposite side of the island). We
have borrowed the specimen from Lord Howe Island and two from Norfolk Island
(one from each year); one from each island were D. /aeve and the third specimen was
not identifiable. Given the high rate of similar misidentifications of other Australian
material (including from this museum; see above), we consider that there is no reliable
evidence of D. invadens occurring on either island.

Specimens in the Natural History Museum London labelled as D. caruanae from
Sao Tomé in the Gulf of Guinea (collected 1993 by A. Gascoigne from Lagoa Amelia
and Tras-os-Montes; BMNH 19991797, 19991798) turned out to be D. lzeve (dissec-
tion by HR); these records appear not to have been published or put online.

It may also be helpful to list some oceanic islands where D. invadens has not been
found even though the climate might be suitable and recent surveys have been extensive
and informed enough to have probably revealed the species were it well established:
Iceland (Sumner 2007), Bermuda (Bieler and Slapcinsky 2000), Cape Verde Islands
(Groh 2012), Mascarene Islands (Griffiths and Florens 2006), Hawaii (Cowie 1997,
Hayes et al. 2012), Samoan Islands (http://pbs.bishopmuseum.org/samoasnail/query.asp,
updated 2003), Pitcairn (Preece 1995), Rarotonga (Brook 2010), Fiji Islands (Brodie and
Barker 2011), Easter Island (Boyko and Cordeiro 2001). Of these ten island groups, all
but the Samoan Islands have been colonised by D. laeve, and five have D. reticulatum also.

Figure 4. The global distribution of D. invadens related to climate. A Each symbol represents presence
of D. invadens on a grid of one degree of latitude and longitude; exceptions are small oceanic islands
(single symbol for each island group) and when records specify only a region which overlaps the grid
lines (California, N Norway, Oland, and interceptions; a single symbol is marked in a representative
“square”). Green cross = records only from greenhouse or garden centre; orange or magenta square = any
other record (including garden or park); magenta indicates that at least one record has been confirmed to
be D. invadens rather than D. panormitanum s.s.; circled i = only evidence of presence is interception on
produce exported from that country. Swedish records in Waldén (2007) are taken to be from greenhouses.
In regions where there has been taxonomic confusion (Italy, Balkans, Australia), we have excluded records
not verified by ourselves (exceptions are a COI sequence from Crete, and data in Barker (1992) and Al-
tena & Smith (1975) confirmed by dissection) B The squares in A are replaced by black dots, and these
are superimposed on a map of the most relevant Kdppen climate categories, as modified and interpolated
by Peel et al. (2007). Cb + Cc = temperate with warm or cold summer (7, <22 °C, 0°C < 7_ < 18 °C).
Ca = temperate with hot summer (7} > 22 °C, 0 °C < 7, < 18 °C). Da + Db = cold winter, with hot or
warm summer (7. < 0°C, 7, >22°Cor N, = 4). BSk = cold steppe (5 P, < P< 10 P, T, <18°C). T, =

7>10
temperature of hottest month, 7" = temperature of coldest month, 7' = mean annual temperature, N,
= number of months when temperature is above 10 °C, P = annual precipitation, P = constant set by 7
and timing of precipitation € The squares in A are replaced by black dots, and these are superimposed
on a map indicating winter temperature. For each calendar month, the mean of the daily minimum tem-
perature was calculated, this was averaged over years, and the lowest value amongst the calendar months
used (Hijmans et al. 2005; http://www.worldclim.org/ accessed 01.x.2013). Maps created in QGIS 2.0.1

(QGIS Development Team 2013) using outlines from Natural Earth.
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Discussion

Habitat

In Europe much of the area occupied by D. invadens counts as temperate according
to the Képpen climate scale (Fig. 4B). This holds also for much of its range outside of
Europe. Further areas of the world having this climate category, such as the southern
USA and much of China and Japan, would be worth checking further for the presence
of D. invadens, and should consider themselves at risk of invasion. Moreover, the pres-
ence of D. invadens in such regions as Austria and Newfoundland demonstrates that it
can exist in areas with somewhat colder winters than allowed under Képpen’s temper-
ate categories (C), whereas its presence in eastern Spain shows that it can extend into
drier climates classed as steppe (BS). Conversely, even around the Mediterranean, D.
invadens does not occupy all the region classed as temperate. Inevitably, the criteria of
the Képpen scale do not exactly match the critical factors defining the species” niche.

Cold seems to be one critical factor. In the laboratory, D. invadens collected
from Marion Island was unable to survive brief temperatures lower than 6.4 °C, or,
on a longer time scale, temperatures lower than about —3 °C on average. This neatly
explained its altitudinal range on that island (Lee et al. 2009). Moreover, the gradual
decline in density with altitude is explicable by a gradual reduction in performance
with decreasing temperatures (Lee et al. 2009). Analogously, the slowness to penetrate
Eastern Europe perhaps has as much to do with the cold winters as the restrictions
on east—west trade until 1990. Temperatures experienced by slugs in winter depend
on snow cover and how deep the slugs burrow underground, but weather stations
normally measure only air temperature. In Europe, the coldest locations for which
D. invadens has been recorded outdoors are Ultuna near Uppsala in Sweden (winter
minimum air temperature averaged over last 20 years = —22 °C; coldest over same
period = =29 °C), Sédra Fjole in Sweden (=22 °C and 28 °C for these statistics), and
Ostrava in the Czech Republic (19 °C and -27 °C: Klein Tank et al. 2002, http://
www.ecad.eu accessed 25.ix.13). For Wroctaw, we know the species has survived the
last 12 winters, in three of which air temperatures dropped to —22 °C. Figure 4C
suggests that winter temperatures could well block further expansion eastwards from
Wroctaw or northwards from Uppsala, but there does seem an opportunity for fur-
ther expansion elsewhere, for instance along the Baltic coast of Poland, into Hungary,
or onto Iceland. Proschwitz (2010) has suggested that in Sweden the ameliorating
climate is associated with the recent range extension, and the same process could oc-
cur in eastern Europe.

In North America, three sites in Colorado and Utah where D. invadens has been
found away from garden centres and plantings of annual bedding plants (Table 2)
reach temperatures similarly cold as the extremes in Europe: for Fort Collins, winter
minimum temperature over last 20 years averaged —22 °C with a minimum of —28
°C; for both Denver and Snowbird these statistics are —22 °C and —27 °C (http://ccc.
atmos.colostate.edu/sum_form.html; heep://climate.usurf.usu.edu).
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At the other extreme, too much heat is probably not a restriction per se, since the
species occurs in Egypt, for instance. Meyer and Cowie (2010) proposed that the oc-
casional extremes of a temperate climate preadapt some invasive molluscs to be able to
cope with the high temperatures of the tropics. However, heat may be associated with
drought, at least seasonally. In such regions the automatic watering systems in use in
intensive agriculture and in horticulture (particularly prevalent in prosperous countries)
facilitate the survival and spread of D. invadens. Maybe these artificial habitats will
provide a route for D. invadens to colonise naturally damp areas within steppe habitats.

In Central and South America, D. invadens occurs within the tropics but the ac-
curately localised records are all from higher altitudes. This may be because higher
altitudes tend to be cooler and have different precipitation patterns, or because such
climatic differences have encouraged urbanisation or types of agriculture that favour
the species. Higher altitudes would seem the likeliest place to search for D. invadens in
other areas of the tropics, including Africa and India.

Deroceras invadens is typically associated with disturbed habitats, especially gar-
dens, and is often easiest to find under discarded rubbish. It is one of the few mol-
luscs to occur in the most urban sites, by surviving in the soil of flowerpots (Horsdk
et al. 2013b). Greenhouses and consistently watered nurseries suit it, and it occurs in
some arable fields (e.g. England, N Spain, Switzerland, Australia), but is a significant
pest more rarely than D. reticulatum. Although reported to avoid grassland in Britain
(Dirzo 1980), D. invadens occupies that habitat in New Zealand and Australia (Barker
1982, Holland et al. 2007). Outside of the probable natural range of the species (Italy),
the species has spread to natural habitats not only in western Europe (e.g. Britain,
Ireland and France, although not in Germany) but also in Australia, South Africa and
the Canary Islands. It seems likely that dispersal into gardens is often rapid, but that
the spread into and across agricultural and natural habitats is a slower process and not
inevitable. This could explain the positive association with population density even in
long colonised countries such as Britain, Ireland and Belgium.

Deroceras invadens can become one of the most frequently encountered slugs, typi-
cally about half as frequent as D. reticulatum, but at some sites even commoner (e.g.
Manchester gardens, British commercial greenhouses, Frankfurt am Main, Egypt). In
the laboratory we have observed that D. invadens can mature a month faster than D.
reticulatum, which may give it an advantage when growing seasons are short owing to
either climate or agricultural activities.

Geographical range

Deroceras invadens is widespread over most of the western half of Europe. However,
there are still areas within this region where it is scarce. In some cases this is probably
because of climate (cold in Scandinavia, summer drought in central Spain), in other
areas it might merely be because of a lack of time to spread there (e.g. Suffolk, Alsace).
The species has yet to spread far in eastern Europe and is still much more thinly spread
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in Germany and Austria than in Belgium or Great Britain, for instance. Currently the
most eastern outdoor records in Europe are the Baltic coast of Sweden, Wroctaw in
Poland and Ostrava in the Czech Republic; further east, at least in Lithuania, Latvia
and the Ukraine, there is sufficient current interest in slugs that D. invadens would
probably have been recorded had it become well established (Skujiené 2002, Gural-
Sverlova et al. 2009, Rudzite et al. 2010). The species also appears largely absent from
the eastern Mediterranean (except for one record from Crete and some from along the
Nile in Egypt in agricultural habitats). The Balkans and Turkey are a centre of diversity
of Deroceras, so maybe competition with local species is a factor limiting the spread
here. But this diversity also makes it harder for malacologists to spot a new arrival. The
absence of D. invadens from Asia is striking, but have malacologists there been looking
critically at their alien Deroceras species?

The species has long been known from the Pacific Northwest of America, and
also occurs sporadically elsewhere in the USA and Canada. The pronounced scarcity
of records in the east compared with the west is untypical of other introduced Euro-
pean slugs. The reason could be that much of the east has an unsuitable climate for
D. invadens; perhaps in areas southern enough to for the winters not to be too cold,
the summers are too hot and dry (Fig. 4B). But surely there is enough artificial irriga-
tion often to overcome this restriction. Or, supposing that D. invadens has spread to
America much later than most other introduced slugs, perhaps its distribution remains
more biased towards the original site of introduction. However, the pattern could also
be an artefact: our hunch is that D. invadens is at least somewhat more widely spread
in the east than currently recognised, but has been frequently misidentified as D. lzeve.
This confusion had no doubt hidden its occurrence in Central and South America; the
records assembled here are sparse but imply that D. invadens is widespread.

Elsewhere in the southern hemisphere, the species has been present, maybe for a
long time, in the former British colonies of South Africa, Australia and New Zealand.
In this context, the indication from interceptions that it may be present in Kenya is
not surprising. It has also colonised a number of remote oceanic islands; the maritime
influence on their climates is probably favourable, and perhaps also their depauperate
faunas have left a niche vacant.

The range of D. invadens is impressive (Fig. 4), and current records probably still
significantly underestimate it. However, it should be recognised that there are a num-
ber of other European slugs that are ahead of it in the extent of their non-native range.
Besides D. laeve and D. reticulatum, one can list at least Lehmannia valentiana (Miil-
ler, 1774), Limacus flavus (Linnaeus, 1758), and Milax gagates (Draparnaud, 1801)
(Herbert 2010). Although these species have spread at different rates, the process is
continuing, so it remains to be seen whether the ranges that they eventually occupy
will differ significantly.

The similar species D. panormitanum s.s. from Sicily and Malta has also been in-
troduced elsewhere, but much more rarely than D. invadens: the only such records are
from one site in northern Italy, one in Wales, two adjacent sites on Madeira and an
interception from the Azores (Tables 1, 2). Although both species are probably native
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on Sicily, we never collected them together there JMCH & HR unpublished), so the
species might tend to exclude each other. We did collect them together from the same
culvert in northern Italy (Table 2), but two subsequent visits to the site yielded only
D. panormitanum s.s.

Spread

Deroceras invadens has been directly observed arriving from abroad on salads, vegeta-
bles, lowers, roots, and tiles (Falkner 1979 and USDA records). Such vectors need not
be representative of the processes responsible for spread within a country, which surely
must often be via garden plants, considering how frequently the species has been found
in nurseries and garden centres. At both scales it seems unnecessary to invoke dispersal
on bird’s feet or plumage, for which there is conspicuously little direct evidence for
any slug (Pearce et al. 2012); birds are a parsimonious explanation only perhaps for
colonisation of uninhabited islands (e.g. to Inaccessible Island from Tristan da Cunha).

We hoped that our review of the literature would illuminate the rate and pattern of
these dispersal processes, but mostly it is hard to be sure that the apparent rate of spread
is actually not the spread of awareness that this novel species is worth distinguishing
from others. That is particularly a problem with a slug species that requires dissection
for reliable identification. In several cases (e.g. Britain, France, New Zealand) the spe-
cies was probably widespread before anyone was aware of its presence; presumably at
a more local level the distribution continued to grow denser, but usually there are no
follow-up surveys once someone has claimed the first record. What is really required
is an initial survey reporting absences of the species, then comparable repeat surveys of
the same places in subsequent years; this has rarely, if ever, been done.

There is nevertheless good evidence of a spread within one or two decades through
the Azores and Tenerife. The German data are also probably reliable and representa-
tive in suggesting a time scale of one to two decades to extend over a larger country,
but it is far from the case that every suitable garden or even district has been colonised
within that time. Puzzling gaps in the present distribution elsewhere (e.g. Suffolk in
England, Alsace in France) suggest that “filling in” can take decades longer. It is diffi-
cult to make quantitative comparisons between species, especially because the delay in
spotting a new arrival depends on the ease of recognising the species, but D. invadens
probably has spread a little slower than three other terrestrial molluscs that have also
invaded much of Europe within the last century, the slugs Boerzgerilla pallens Simroth,
1912 and Arion vulgaris (Moquin-Tandon, 1855) and the snail Hygromia cinctella
(Draparnaud, 1801) (Reise et al. 2000, Beckmann and Kobialka 2008, Koztowski
and Koztowski 2011). Quite probably when D. invadens first arrived in England and
France, the more local pattern of trade at that time led to a slower spread than has
occurred in more recently colonised European countries, but the quality of the data
is insufficient to test this. One also expects the spread to be slower in countries with
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a hostile climate, which might explain the dearth of additional records in Poland,
Slovakia and the Czech Republic. Similarly, the rate of spread in Sweden may re-
flect recent climate amelioration as much as the dispersal process (Proschwitz 2002).
Marion Island is a special case, but is revealing in demonstrating the reliance on man
for long-distance dispersal within the island, in contrast to the slow initial penetration
of the natural habitat by natural means. Here and elsewhere, it is an interesting open
question whether the spread accelerated following a period of genetic adaptation to
the local environment. The climatic diversity of its non-native range would make D.
invadens an appealing subject on which to test whether such adaptations have evolved.

One would expect uniparental reproduction to facilitate colonisation if adventi-
tious human-mediated transport sometimes introduces a single slug at a time. Foltz et
al. (1984) observed that self-fertilising slug species had been significantly more success-
ful in colonising eastern North America, with D. invadens one of the species fitting this
pattern (outcrossing and absent). Subsequently D. invadens has been found in eastern
North America, but paternity studies in our laboratory (Reise et al. unpublished) have
shown that the species does sometimes self-fertilise, producing viable offspring, es-
pecially in the absence of a partner. Nevertheless, the intra-site polymorphisms that
Folez et al. (1984) observed in populations from the British Isles and France do not
suggest that the species’ spread through these regions was dependent on a succession of
founder events involving self-fertilisation. In contrast, on the remote Marion Island,
all 25 slugs sequenced had the same COT haplotype (Lee et al. 2009). In ongoing work,
we are comparing patterns of genetic diversity elsewhere in its range.
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Definition of terms

Native species Refers to a species that has been observed in the form of a naturally occurring and
self-sustaining population in historical times.

Non-native species | Refers to a species that has been introduced through human action outside
(NS) its natural present or historical range. This term includes species whose main
pathway of introduction is human-related although they have entered a country
through natural spread from one or more neighbouring countries. However the
term excludes species expanding their range without direct human action, as in
the case of migration or species expanding because of climate change or habitat
modification, even if these changes are caused by humans.

Invasive non-native| Refers to a non-native species that adversely affects the regions and habitats it

species (INS) invades environmentally, economically and/or ecologically. This term therefore
excludes non-native species that do not pose any significant threat to biodiversity
conservation.

Introduction

The region comprising the British Channel and southern part of the North Sea, as
well as coastal areas of Great Britain, France, Belgium and The Netherlands (also re-
ferred to as The Two Seas region) has a long history of trade and travel, and includes
important commercial ports such as Southampton, Felixstowe, Le Havre, Antwerp
and Rotterdam ("World Shipping Council. Top 50 World Container Ports" ; Enshaei
and Mesbahi 2009). These intensive activities across national borders have led to the
introduction of numerous exotic animal, plant and other species to this area, both
from other European regions and further afield (Holdich and Pckl 2007; Gherardi et
al. 2009; Keller et al. 2009).

Invasive species do not know political borders, which is why cooperation and col-
laboration between countries is key in the fight against devastating and costly non-
native, invasive species. Efficient cross-border communication and knowledge transfer
would guarantee that knowledge on the vectors, impacts and control options for non-
native species gained in one country informs decisions on management and control for
non-native species in other countries. It can further help to raise the alarm on species
that are likely to spread from one country to another, prompting preventive action
plans. International cooperation in environmental politics can facilitate development
and implementation of sustainable cross-border management practices for non-native
species (Essl et al. 2011).

Examples exist where international cooperation has significantly improved the
prevention of non-native species’ spread. These include the Inter-American Invasive
Species Network (IABIN-13N, http://i3n.iabin.net/) that supports the detection and
management of invasive alien species in the Americas, and the Trilateral Committee
for Wildlife and Ecosystem Conservation and Management (http://www.trilat.org),
which addresses environmental challenges common to Canada, United States and
Mexico (Simpson et al. 2006; Simpson et al. 2009).
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With regard to the Two Seas region, the European-funded ‘Interreg Two Seas Pro-
gramme’ promotes cross-border cooperation between Great Britain, France, Belgium
and The Netherlands (see http://www.interregda-2mers.cu for more information).
Within this initiative, the RINSE (Reducing the Impacts of Non-native Species in
Europe) project aims to develop cross-border tools to improve the prioritisation and
targeting of non-native species. As a minimum requirement, such a regional approach
to invasive species’ management requires an up-to-date and comprehensive registry of
non-native species containing information on the current status of each non-native
species in each of the four Two Seas region countries. To facilitate application in reli-
able horizon-scanning and similar exercises, and allow for meaningful comparisons of
inventories between countries and taxa, it is crucial that this database is as comprehen-
sive as possible but not skewed towards particular countries or taxa.

Unfortunately, currently available databases are unsuitable for such a purpose.
For example, the number of species listed in freely accessible online databases dif-
fers considerably between databases as well as between the four countries of con-
cern. Thus, the primary data portal for non-native species in Europe, DAISIE (De-
livering Alien Invasive Species Inventories for Europe; http://www.europe-aliens.
org/), features 2,471 non-native species for Belgium, 2,075 of which are terrestrial
plants, but only 881 species for the slightly larger Netherlands. In contrast, the
Dutch Biodiversity registry (http://www.nederlandsesoorten.nl) lists 925 non-na-
tive species, and only 101 invasive non-natives are highlighted by the Belgian in-
formation system Harmonia (http://ias.biodiversity.be). The Great Britain Invasive
Non-Native Species Secretariat (NNSS) database (http://www.nonnativespecies.
org) comprises over 3,000 species. No comparable initiatives exist in France. Such
enormous discrepancies between inventories of neighbouring countries that would
be expected to host comparable numbers and sets of non-native species are unlikely
to be real but probably root in different experts providing the data for different
countries and databases.

The present dataset aims at providing a registry of non-native species in the Two
Seas region that is comprehensive and not biased towards particular countries or taxa.
We achieve this by integrating information from a total of 55 national and interna-
tional print- and online-sources on the presence of non-native terrestrial, marine and
freshwater species in the four Two Seas region countries. In addition, for each taxon,
the registry provides information on its taxonomic classification, current distribution
and environment inhabited. Potential utilities of this registry include developing na-
tional checklists of non-native species, and analysing spatial patterns of distribution of
species. Furthermore, the database offers a general point of reference for both scientists
and practitioners working on non-natives in the Two Seas region and adjacent coun-
tries. Finally, the registry could act as a tool to assess reliability and comprehensiveness
of other databases from which data was retrieved. This could be done by, for example,
comparing number and identities of non-native species listed by a given source data-
base to those of the present registry.
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Metadata

Data set descriptors

A. Data set identity

Registry of non-native species in the Two Seas region countries (Great Britain, France,

Belgium and the Netherlands)

B. Data set description

The dataset consists of 1 file, containing two worksheets. Worksheet “Registry” con-
tains a 10 x 6,662 matrix of text values, Worksheet “Summary of data” contains three
summarising tables in the form of three 2 x 33, 2 x 5 and 8 x 5 matrices of text and
numeric values. The file is labelled as Table_RegistryNonNativeSpecies.xls

1. Principal investigators

Alexandra Zieritz. Aquatic Ecology Group, Department of Zoology, University of
Cambridge, Downing St. CB2 3E], Cambridge (UK)

Belinda Gallardo. Aquatic Ecology Group, Department of Zoology, University of
Cambridge, Downing St. CB2 3E], Cambridge (UK)

David C. Aldridge. Aquatic Ecology Group, Department of Zoology, University of
Cambridge, Downing St. CB2 3E], Cambridge (UK)

Research origin descriptors

A. Overall project description

1. Identity

We collected information on the status of non-native species in each of the four coun-
tries Great Britain, France, Belgium and the Netherlands. The taxonomic affiliation
and environment inhabited by each species is also provided.

2. Originators

The project was conducted within and on behalf of the European Union funded
RINSE (Reducing the Impacts of Non-native Species in Europe) Project. Methodol-
ogy was developed by the three authors Alexandra Zieritz, Belinda Gallardo and David
C. Aldridge. Data collection was done by Alexandra Zieritz and Belinda Gallardo.

3. Period of study

Data was collected from 01/06/2012 to 27/02/2014. Collected data correspond to
contemporary species records.
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4. Objectives

The primary objective of the present work was to compile a registry of non-native
species present in the four countries comprising the Two Seas region, i.e. the English
Channel and the Southern part of the North Sea. The registry will serve as a basis
for developing effective, cross-boundary strategies to manage and control non-native
species, which can have severe ecological and economic impacts. It can further be
used as a general reference for both scientists and practitioners, as well as a tool to
assess reliability and comprehensiveness of other well-known databases such as the
DAISIE portal.

5. Source of funding

INTERREG IVA 2-Seas Programme. Funded by the European Regional Development
Fund (ERDEF).

Project: RINSE, Reducing the Impacts of Non-Native species in Europe.

Work Package 1 subproject: Targeting and Prioritisation for Non-Native species
into the RINSE area.

Summary of the RINSE project

RINSE (Reducing the Impacts of Non-native Species in Europe) is a European Project
which investigates best strategies of managing non-native species (NS) across the Two
Seas Programme area. The project specifically aims to i) develop cross-border tools to
improve prioritisation and targeting of NS, so that scarce resources can be directed
towards the species and sites of greatest concern, ii) enhance the capacity to address NS
within a range of target stakeholders, and iii) develop new approaches and best prac-
tices for the management of NS, by delivering field trials and demonstration projects.
RINSE works across borders to share best practice and adopt strategic approaches to
tackle the threats posed by non-native species (NS).

B. Specific subproject description

1. Site description.
a. Site type

The region includes terrestrial, marine and freshwater habitats.

b. Geography Location
Countries comprising the Two Seas Programme area (i.e. the English Channel and the
Southern part of the North Sea): Great Britain, France, Belgium and The Netherlands.

c. Habitat
The region includes terrestrial, marine and freshwater habitats.



70 Alexandra Zieritz et al. / NeoBiota 23: 65-80 (2014)

d. Geology, landform
The region includes various geological types, ranging from Pre-Cambrian, to Car-
boniferous, Cretaceous and Tertiary rocks.

e. Watersheds, hydrology
The main river systems in the area include the Thames, Loire, Seine, Meuse and

Rhine.

f. Climate
Climatic conditions in the study area range from Mediterranean (i.e. Southern
France) to temperate.

2. Experimental or sampling design
a. Design characteristics
Basic data were collected by systematic review of 36 web- and print-based sources
over an eight-month period (see Table 1). Additional systematic scanning of three
scientific journals, i.e. Neobiota, Aquatic Invasions and Biolnvasions Records, re-
covered 19 additional relevant publications from which information was included
in the registry.

b. Data collection period, frequency, etc.

Basic data collection period was 01/06/2012 to 17/01/2013. Additional systematic
scanning of the three journals Neobiota, Aquatic Invasions and Biolnvasions Re-
cords was performed in January and February 2014.

3. Research methods

A number of online and print data sources were used to obtain information on non-
native species present in the four Two Seas region countries. In total, the basic data
were gathered from 36 sources, including the 12 listed in detail in Table 1 used for all
animal phyla and plant divisions, and additional references for particular groups of
organisms (see references). Selection of the databases included in this work was done
with the help of consulting experts within the European RINSE (Reducing the Im-
pacts of Non-native Species in Europe) project.

Particular care was thereby taken to avoid and counteract any bias towards par-
ticular countries. For example, the lack of a national database on non-native species
in France was targeted by inclusion of an additional 11 grey-literature sources from
France, which we obtained through our local RINSE partners ("Le Conservatoire
Botanique National de Bailleul. Liste des plantes exotiques considérées comme enva-
hissantes en Picardie"; Agence de I'eau Artois Picardie and Conservatoire Botanique
National de Bailleul 2005; Agence de I'eau Rhin Meuse 2005; Costa 2005; Delbart et
al. 2007; Conseil General du Finistere 2008; Lacroix et al. 2008; Paradis et al. 2008;
Zambettakis and Magnanon 2008; Reseau regional des Gestionnaires des Milieux
Aquatiques Paca 2009; Hudin and Vahrameev 2010).



Registry of non-native species in the Two Seas region countries 71

Table I. The main 12 web- and print-based sources per taxa used for compiling the registry of non-native
species in the Two Seas region countries Great Britain, France, Belgium and the Netherlands.

Acronyms and abbreviations of online databases: "DAISIE - Delivering Alien Invasive Species Inven-
tories for Europe”, "ISSG - Invasive Species Specialist Group. Global Invasive Species Database”, "CABI
- Centre for Agricultural Bioscience International. Invasive Species Compendium. Wallingford, UK: CAB
International”, "FAO - Food and Agriculture Organisation (United Nations). Fisheries and Aquaculture top-
ics. Introduction of species. Database on Introductions of Aquatic Species. In: FAO Fisheries and Aquaculture
NOBANIS - North European and Baltic Network on Invasive Alien Species. Gateway
to Information on Invasive Alien species in North and Central Europe”, "NNSS - GB Non-native Species

"o

Department. Rome",
Secretariat. GB Non-native Species Information Portal”, "BFIS - Belgian Forum on Invasive Species. Har-
monia database”, "Waarnemingen. Belgian daughter website of the Global Biodiversity Recording Project”,
"Waarneming. Dutch daughter website of the Global Biodiversity Recording Project”, "Naturalis. Nederlands

Soortenregister, version 2.0", "BFIS - Belgian Forum on Invasive Species. Harmonia database”

Other abbreviations: na, not applicable because no data on presence of species within the respective
phylum/division in the four countries were available from this source; N, source not used with regard to
respective phylum/division; Y, all taxa of respective phylum that this source lists to be present in one or
more of the four countries were included; Y ex T, all taxa except terrestrial ones of respective phylum that

this source lists to be present in one or more of the four countries were included.

2 APILEIEIE Y

= = 2 2] o
= z R RS
5 ¢ | ®
o Viruses na | na | Y | na | nm Y na | na | N | na | na |na
% g g Firmicutes na | na | na | na | na Y na | na | N | na | na |na
§ ch E Proteobacteria na Y | na | na na na | na | N | na | na |na
Cercozoa Y na | na | na | nma Y na | na | N | na Y | Y
Dinoflagellata Y | na | na | na | na Y Y | Y| N |n | Y |Y
° Haptophyta Y | na | na | na | na Y Y Y | N | na| Y |na
% Heterokontophyta| Y Y Y Y | na Y Y Y | N | na | Y |Y
Chlorophyta Y Y Y Y | na Y Y Y N | n | Y |Y
Rhodophyta Y Y | Y Y | na Y Y Y | N |n | Y |Y
Marchantiophyta | Y | na | na | na | na | na | N | N | N | na | na | ma
Bryophyta Y | na| Y | na | na na N | N | N | na| na|na
§ Lycopodiophyta | Y | na | na | na | na Y N | N | N | na| na|na
= Pteridophyta Y | na| Y | Y | na Y N | N | N | Y | na|na
Pinophyta Y | na| Y | na| nm N N | N | N | na| na|na
Angiospermae Y Y Y Y Y [YexT| N | N | N Y Y | Y
Chytridiomycota | Y | na | na | na | na | na N | N | N | na| na|na
E Zygomycota na | na | na | na | nm Y N | N | N | na| na|na
2 Ascomycota Y Y Y | na | m na N | N N | na | na | na
Basidiomycota Y Y Y | na | m na N | N | N | na| na|na
Porifera Y | na | na | na| na Y Y Y Y | nma| Y |Y
o Cnidaria Y | ma| Y Y | na Y Y Y Y | ma | Y |Y
:Té Ctenophora Y | na| Y | na | na Y Y Y Y | na| Y | nm
‘g Platyhelminthes | Y | na | na | na | na Y Y | Y| Y |nma|Y|Y
= Rotifera Y | na | na | na | na na Y Y Y | na | na | na
Bryozoa Y Y Y na | na Y Y Y Y na | Y |Y
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=1 .
& o &n = I
73 [T} Yt ] (=) ~
e | 21252/ 5§ B ¢ EIE<
a z g z RS
s | B s | B
Entoprocta na | na | na | na | na Y Y Y Y | na | na | na
Nemertea Y na | na | na | na na Y Y na | na | na | na
Mollusca Y Y Y na Y Y Y Y na | Y |Y
Annelida Y Y Y Y na Y Y Y Y na | Y |Y
Nematoda Y na Y na | na Y Y Y Y na Y Y
Arthropoda Y Y Y Y na |[YexT| N N Y Y Y Y
Chordata Y Y Y Y Y Y Y Y Y Y Y | Y

Additional 17 sources were used for following groups:

Angiospermae: Agence de I'eau Artois Picardie and Conservatoire Botanique
National de Bailleul (2005), Agence de I'eau Rhin Meuse (2005), Costa (2005),
Delbart et al. (2007), Conseil General du Finistere (2008), Lacroix et al. (2008),
Paradis et al. (2008), Zambettakis and Magnanon (2008), Reseau regional des
Gestionnaires des Milieux Aquatiques Paca (2009), Hudin and Vahrameev (2010),
"DAISIE - Delivering Alien Invasive Species Inventories for Europe. 100 of The
Worst", "EPPO - European and Mediterranean Plant Protection Organisation.
EPPO list of invasive alien plants”, "Le Conservatoire Botanique National de Bail-
leul. Liste des plantes exotiques considérées comme envahissantes en Picardie”,
"Q-bank. Invasive Plants database. Comprehensive databases on quarantine plant
pests and diseases”

Arthropoda: Rabitsch (2008), Roques et al. (2010), "DAISIE - Delivering Alien
Invasive Species Inventories for Europe. 100 of The Worst"

Heterokontophyta, Chlorophyta, Rhodophyta, Lycopodiophyta, Pteridophyta
and Pinophyta: Plantlife (2010)

Furthermore, all volumes of the three journals Neobiota (vol. 9-20), Aquatic Inva-

sions (vol. 1-8) and Biolnvasions Records (vol. 1-2 and vol 3 in press articles) available
by February 2014 were thoroughly and systematically scanned for relevant studies that
potentially provided further information on species’ presence in the RINSE countries.
This was done by reading the titles and, in case that indicated potential relevance to
our database, reading the abstract and complete manuscript. In total, the following
19 studies were thereby included in the registry: Copp et al. (20006), Kerckhof et al.
(2007), Sjetun et al. (2008), Kai and Soes (2009), Wijnhoven and Dekker (2010),
Zigba et al. (2010), Vaate and Beisel (2011), Brylinski et al. (2012), Faasse and Gian-
grande (2012), Marescaux et al. (2012), Faasse (2013a), Faasse (2013b), Heiler et al.
(2013), Kessel et al. (2013), Lavesque et al. (2013), Minchin et al. (2013), Pinder et al.
(2013), Scalone and Rabet (2013), and Soors et al. (2013).



Registry of non-native species in the Two Seas region countries 73

Finally, apart from collecting basic data on non-native species present in at least one
of the four Two Seas region countries, additional presence in the other three countries of
concern was checked using the following seven geographic distribution gateways: "GBIF
- Global Biodiversity Information Facility. GBIF Data Portal", Hopkins (2012), "In-
tergovernmental Oceanographic Commission of UNESCO. The Ocean Biogeographic
Information System OBIS", "Muséum national d'Histoire naturelle. INPN Inventaire
national du Patrimoine Naturel”, "NBN - National Biodiversity Network. National
Biodiversity Network's Gateway", "NLBIF - Netherlands Biodiversity Information Fa-
cility. Data portal of the Dutch national node of the Global Biodiversity Information
Facility (GBIF)", and Verloove (2006). This was done for all taxa except those terrestrial
Angiospermae and Pinophyta that were listed as present by the DAISIE portal but not
by any of the other databases consulted. In the registry, these species are indicated by
the phrase “data based solely on DAISIE portal” in the final column (headed “Notes”).

After compilation of the database was completed, we checked for errors through
the process of blind repetition of data-compilation for 1% of the dataset (i.e. for 34
species or 136 data points (34 species x 4 countries)). This revealed an error rate of
0.007% (i.e. 1 of 136 data points was incorrect).

The present database will be sustained in the future by periodically conducting a
systematic literature review on new invasions in the four countries. This could be done,
for example, by a Web of Science or Google Scholar search using keyword combina-
tions such as “non-native OR exotic OR invasive AND Britain OR UK OR Neth-
erlands OR France OR Belgium”, and/or a systematic scanning of the most relevant
journals such as Nebiota, Aquatic Invasions and Biolnvasions Records.

4. Project personnel
Principal investigators:

Alexandra Zieritz. Aquatic Ecology Group, Department of Zoology, University of
Cambridge, Downing St. CB2 3E], Cambridge (UK)

Belinda Gallardo. Aquatic Ecology Group, Department of Zoology, University of
Cambridge, Downing St. CB2 3E], Cambridge (UK)

David C. Aldridge. Aquatic Ecology Group, Department of Zoology, University of
Cambridge, Downing St. CB2 3E], Cambridge (UK)

Associated investigator:

Eduard Jones. Aquatic Ecology Group, Department of Zoology, University of Cam-
bridge, Downing St. CB2 3E]J, Cambridge (UK)

Supervisor:

David C. Aldridge. Aquatic Ecology Group, Department of Zoology, University of
Cambridge, Downing St. CB2 3E], Cambridge (UK)
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Data set status and accessibility

A. Status

1. Latest update.
28/02/2014.

2. Metadata status
Metadata are complete.

B. Accessibility

1. Storage location and medium.

Original data files exist on the authors’ personal computers in MS Excel® format.

2. Contact Persons

Alexandra Zieritz: alexandra.zieritz@cantab.net

Belinda Gallardo: galla82@hotmail.com

3. Copyright restrictions

None.

4. Proprietary restrictions

None.

b. Citation

Data were provided by the RINSE (Reducing the Impacts of Non-native Species in
Europe) project (http://www.rinse-europe.eu/).

Data structural descriptors

A. Data set file

1. Identity
The data set comprises one file (MS Excel® document) named Table_RegistryNonNa-
tiveSpecies.xls. The file contains two worksheet:

1.1. The “Registry” worksheet comprises the registry itself, listing all non-native
species that were recorded as non-native in at least one of the four countries of the Two
Seas region (Great Britain, France, Belgium and Netherlands). For each species, the
phylum/division, class, genus and species name, environment, as well as its status in
each of the four countries is given.

1.2. The “Summary of data” worksheet provides 3 tables, grouping the non-native
species of the registry according to their 1.2.1. Phyla, 1.2.2. Presence in each Two Seas
region country, and 1.2.3. Environment inhabited. Three simple graphs visualising
these tables are also provided.
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2. Size

The size of the file is 389 KB. The table lists 6,661 species, subspecies and hybrids. In
total and including headers, the “Registry” worksheet therefore contains 66,620
cells. The “Summary of data” worksheet contains 92 cells.

3. Format and storage mode

The file type is MS Excel®. No compression scheme was employed.

4. Header information

A single header row includes the species’ phylogenetic classification (i.e. four headers:
phylum/division, class, genus and species name), status in the four countries inves-
tigated (i.e. present, native, extinct or not confirmed), environment (i.e. terrestrial,
freshwater, marine, freshwater+terrestrial, marine+freshwater or terrestrial+marine),
and Notes.

5. Alphanumeric attributes

Alphabetic character fields.

B. Variable information

I:Varla'xble 2. Variable definition 3. Units of |4a. Storage 4b. List and definition of variable codes
identity measure-ment|  type
Ph.y llu.m / Tax?r.no.mic p hylufn o N/A Character |N/A
Division division of species
Class Taxonomic class of specics N/A Character incertae sedis - taxonomic placement currently
unresolved
Genus Genus name N/A Character |N/A
Species Species name N/A Character |sp. - taxon not identified to species level
. Status of species in Great extinct - non-native species was present in
Great Britain BE;itain N/A Character the wild in GB/ Franci/ Belgium/p Netherlands
France Status of species in France N/A Character |at some time but is no longer present in the
Belgium | Status of species in Belgium N/A Character | fespective country
native - species native to GB/France/Belgium/
Netherlands
not confirmed - presence of non-native species
not confirmed for GB/France/Belgium/
Netherlands
present - non-native species has been recorded
Status of species in the in the wild in GB/France/Belgium/Netherlands
Netherlands Nethgrlands N/A Character and is likely to exist there at tﬁis time
present/extinct - non-native species listed as
“present” by one source but as “extinct” by
another source
present/native - non-native species listed as
“present” by one source but as “native” by
another source
Environment Envlronment(s). inhabited N/A Character |N/A
by species
data based solely on DAISIE portal - taxon
listed as present by the DAISIE portal but
Notes Additional notes to data N/A Character |t by any of the other databases consulted;
source no additional portal was consulted regarding
geographical distribution (also see Methods
section)
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5. Data format
a. Columns Start column, end column
Start column = Phylum/Division, End column = Notes
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Abstract

Various aspects of uncertainty have become topical in pest risk modelling discussions. A recent contribu-
tion to the literature sought to explore the effect of taxonomic uncertainty on modelled pest risk. The case
study involved a high profile plant pathogen Puccinia psidii, which causes a major disease of plants within
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in the biosecurity and pest risk modelling communities. We found the study by Elith et al. (2013) includ-
ed a number of methodological issues that limit some of the specific and general conclusions reached in
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limitations of modelling species potential distributions across novel climates, and to be able to appreciate
the meanings and limitations of models framed in different ways.
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Introduction

In a recent issue of Australasian Plant Pathology, Elith et al. (2013) presented modelling
results on the high profile plant pathogen Puccinia psidii, which causes a major disease
of plants within the Myrtaceae family. The disease is commonly referred to as guava or
eucalyptus rust. This case study was used to explore the effects of taxonomic uncertainty
on pest risk assessments for the Australian continent, and it was concluded that the
estimation of pest risk can be highly sensitive to different taxonomic delimitations
of the organism under investigation. The model variations either considered Uredo
rangelii (commonly referred to as myrtle rust) a different species to P. psidii sensu
stricto (s.s.), or a minor morphological variant within the broader species complex P.
psidii sensu lato (s.l.) (Simpson et al. 2006; Carnegie and Cooper 2012). Our aims
with this comment are to contribute constructively to modelling best practice for pest
risk assessments, and to highlight our concerns with using the results presented in
Elith et al. (2013) as a basis for estimating geographical pest risks from P. psidii. We
first highlight what we consider to be a number of methodological limitations in the
models of Elith et al. (2013), and give context to the attribution of causation that
follows. Considering the importance of, and interest in this pathogen in Australia and
worldwide, we also discuss the implications of the results and conclusions presented in
Elith et al. (2013) for biosecurity management.

Taxonomic historical context

Foratleast one hundred years, several names had been applied to different populations
of the rust fungus found on Myrtaceae in South America, now all regarded as P, psidii
s.l. About thirty years ago, it was found that two different types of urediniospores
are present in voucher specimens of P psidii (Walker 1983). In some cases, the
urediniospores are echinulate all over their surface; in the others, there is a smooth
patch (called a tonsure) free of spines on the spores. These observations led to the
proposition that 2 psidii may be a complex composed of different morphological,
and perhaps physiological, forms. In 2006, Simpson et al. (2006) named the entity
within P psidii with tonsured urediniospores Uredo rangelii, based only on two
herbarium specimens that did not have teliospores. This new species determination is
controversial, since the presence of a tonsure on urediniospores in some populations
(with or without teliospores present) is the only distinct morphological variant
found within P psidii s.1. It is widely believed that more research on the morphology,
host range and molecular characteristics of different populations is necessary before
it can be decided if the variant with tonsured urediniospores and other putative
variants should be considered as different varieties or distinct species. Until these
questions are resolved, the rust on Myrtaceae can be referred to as 2 psidii s.l., or
the P psidii complex.
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Methodological issues and concerns

The modelling system (MaxEnT; Phillips et al. 20006) that Elith et al. (2013) used to
support the sensitivity analysis of pest risk maps is a commonly used correlative model.
MAaxENT fits maximum entropy statistical models to relate geographical distribution
points to spatial covariates. There are three issues worth elaborating regarding the
development of the models presented in Elith et al. (2013), and consequently the
interpretations drawn from them.

Unstable covariate importance rankings

The covariate importance rankings in the MAxENT models of Elith et al. (2013) varied
substantially and inconsistently between taxonomic treatments. In order to assess the
stability of the covariate rankings we applied Kendall’s rank discordance test (Zar 1984)
to the MAXENT permutation importance scores for covariates of the Elith et al. (2013)
models (we believe this to be a more relevant score than percent importance; Table 3
in Elith et al. 2013). The value of 0.21 for Kendall’s coeflicient of concordance, W,
indicates that the ranking of the weighting of the covariates is highly discordant across
the models. Instead of fitting modified response functions to the single set of covariates,
MAaxENT fitted functions to different sets of covariates or weighted them significantly
differently. Rodda et al. (2011) commented on the instability of a MAXENT model of
the Indian Python described by Pyron et al (2008). Rodda et al. (2011) criticised the
“data dredging” practice employed in MaxEnt using the default settings as a factor
contributing to this form of model instability, leading to the virtually certain generation
of “spurious results”. Even using a modest number of covariates as Elith et al. (2013)
did, model instability can arise if the covariates are highly correlated or if the model is
being challenged to discriminate distribution patterns using covariates poorly related
to the ecological processes giving rise to the observed species distribution pattern. An
instability in the covariate importance rankings in this type of analysis provides an
indication that the model may be unsound, particularly where they are in response to
small changes in the training dataset.

Choice of background layers

MAaXENT requires the modeller to specify pseudo-absence data in the form of a defined
background layer that spans the known positives, and to a greater or lesser degree, regions
in which there are no presence records (Barbet-Massin et al. 2012). The MaxEn~T
algorithm then fits multivariate functions to selected covariates to try to explain the
observed pattern of presence and (pseudo-)absence within the geographical range of
the defined background. Although formally defined as the “available environment in



84 Darren ]. Kriticos et al. / NeoBiota 23: 81-93 (2014)

the region of study” (Phillips et al. 2009) or the “full environmental range of the species
and exclude[ing] areas that definitely have not been searched” (Elith et al. 2011), in
practice the creation of background layers is an arbitrary process. There is a growing
appreciation of the sensitivity of modelling results to the definition of the background
(VanDerWal et al. 2009; Rodda et al. 2011; Webber et al. 2011), but yet no universally
satisfactory method for doing so.

In framing the modelling treatments, Elith etal. (2013) presented four distribution
data subsets from within the known distribution records of P. psidii s.1. (referred to as
Puccinia_94). Elith et al. (2013) then prepared different backgrounds for the subsets
identified as U. rangelii and those of P. psidii (s.s. or s.l.), though clear definitions
of these backgrounds were not presented in either the main document or the online
supporting materials. Irrespective of this oversight, from an experimental design
perspective, we believe that the various taxonomic treatments subsequently modelled
in Elith et al. (2013) are potentially confounded by the interplay between model
background definition, the covariate space of distribution data, and the subsequent
response curve characteristics and form.

It may be argued that the taxonomic iz silico experimental treatments in Elith et
al. (2013) are inherently compound treatments when considered in MAXENT, and that
it is unrealistic or inappropriate to change the input data points without also changing
the background definition. Whilst we have sympathy with this argument, modifying
the arbitrary background between distribution data subsets interferes with attribution
of causality when considering model results. This methodological issue arises with all
correlative models that require pseudo-absence inputs, questioning their suitability for
representing or explaining the real world differences in pest threat from the different
taxonomic delimitation treatments.

Covariate values and extrapolation

Figure 2 of Elith et al. (2013) indicates that the xeric and alpine regions of Australia are
‘suitable’ for U. rangelii, which, on the balance of evidence seems highly improbable.
We suspect that both the cold and dry tolerance limits in the MaxEnt Uredo models are
strongly influenced by a single misleading location record in north-western Argentina
that was included in the training dataset. This record appears to be a coarsely geocoded
point location representing the centroid of Tucuman, a small province that spans a large
altitudinal (and temperature and rainfall) range at the base of the Andes. We think it is
likely that the centroid falls in colder and drier conditions in the gridded climatology
than where the specimen was observed. Similar improbable projections for the rest of
the world (Elith et al. 2013, Online Appendix 3) are also not discussed, despite their
potential implications for pest risk management outside Australia.

MaxEnt requires the modeller to specify how the model should fit covariate re-
sponse functions beyond the range of conditions experienced by the training dataset
(Fig 8 in Webber et al. 2011; Webber et al. 2012). In the examples presented in Elith
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Figure I. Risk maps of modelled climate suitability and selected fitted response curves from Elith et al.
(2013), for two models: Ured_27 (trained with 27 locations from records classified as Uredo rangelii) and
Pucc_94 (trained with 94 location records for specimens classified as Pruccini psidii). See Elith et al. (2013) for
further methodological details. The cross-hatched areas are novel compared with the covariate background
used to generate the respective models (based on MESS map analysis; Elith et al. 2010), indicating areas of

model extrapolation. Maps and fitted response curves have been annotated with examples to indicate the

c)

likely impacts of the chosen clamping and model response curve constraints; a aridity b precipitation of
the driest month ¢ and d minimum temperature of the coldest month. Inland areas of the Ured_27 model
are modelled unfeasibly as having areas of relatively high suitability in excessively dry climates. In ¢ and d,
the fitted quadratic response functions asymptote, rather than intersect the origin, leading to biologically
unfeasible modelled climate suitability in excessively cold areas (Kriticos et al. 2013).

et al. (2013; Fig. 3, Online Appendix 5), it is clear that the “clamping” option was
chosen. This choice means that the fitted response value for the most extreme covariate
value was held constant when the model was extrapolated beyond the training data.
Biologically, this default option in MaxEnt defies the Law of Tolerance (reviewed in
Shelford 1963). Furthermore, no threshold was set to divide modelled suitability val-
ues into ‘suitable’ and ‘unsuitable’ regions. To explore the implications of these choices
and the form of the response curves more generally, we constructed a conceptual sketch
of how projections might have been influenced by the modelled relationships (Fig. 1).
In doing so, we recognise that the MaxEnt ‘Explain’ tool is also particularly informa-
tive for this type of interrogation, should all the input data be available.

Developers of MaxEnt have called repeatedly for “extreme care” when extrapolat-
ing to novel climates (e.g. Elith et al. 2011), going as far as stating that extrapolation
is “inherently risky” (Elith and Leathwick 2009; Elith et al. 2010). As such, like many
correlative species distribution models, it has been shown to be poorly suited to address-
ing questions concerning novel climates, such as encountered in biosecurity and climate
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change applications (e.g., Kriticos and Randall 2001; Sutherst and Bourne 2009; Rod-
daetal. 2011; Webber et al. 2011). MESS maps (sezsu Elith et al. 2010) and the ExDet
tool (Mesgaran et al. 2014) provide an informative way to visualise regions where the
model is extrapolating, and therefore, where any model interpretations should be done
extremely cautiously. Elith et al. (2013) state “we have evidence that the models do not
need to extrapolate in our regions of interest”. However, the MESS maps presented in
the paper (their Online Appendix 4) are based on the extent of the backgrounds (rather
than the extent of the known presence points), only identify model extrapolation due
to covariate range, (ignoring changes in the relationships between covariates), and use
an ambiguous colour scheme to depict extrapolation in the geographical regions where
biologically implausible areas are modelled as suitable within the “area of interest” (Aus-
tralia; Fig 1). These choices and the form of the fitted model response curves result in
potentially unsuitable environments being modelled as suitable beyond the putative
physiological limits of the species concerned (i.e. commission errors).

Concerns with possible impacts on policies

Elith et al. (2013) states “we use the Australian incursion of myrtle/guava rust as an
example, not to argue which taxonomic interpretation, data set or model is correct, but
to highlight the impact of taxonomic belief on modelled predictions”. However, there
is no denying that the results presented will attract the attention of many biosecurity
managers, both within Australia and worldwide. These results, therefore, fall within
the context of a discussion about the degree of risks Australia faces from a recently
discovered, high profile, non-native pathogen whose taxonomic status is uncertain.
Maps are potent communication devices, and two aspects of the way they have been
presented in Elith et al. (2013) could have significant impacts on how they are inter-
preted by biosecurity practitioners. Firstly, the white regions in the maps in Figs. 2 and 4
in Elith etal. (2013) may imply that a modelled suitability threshold of 0.05 was chosen,
particularly as white was also used for the ‘no data’ class. Discussions with the authors
confirmed that this is not the case, and the classification threshold was an arbitrary carto-
graphic choice; hence, there were no explicit assumptions made about where biosecurity
managers should ‘stop worrying’ about the threat of establishment of P. psidii s.I. These
models, therefore, provide limited information for delimiting areas at risk of establish-
ment or invasion (compare Fig. 1 of this paper with Fig. 4 of Elith et al. 2013).
Secondly, a reasonable interpretation of these maps appears to be that the extent of the
geographical area of concern, ar all levels of modelled suitabilizy, is likely to be greater from
U. rangelii than P. psidii s.1., despite U. rangelii distribution records having a narrower
geographical range. Indeed, this is the interpretation intended by Elith et al. (2013:49):
“Recognition of P. psidii sensu lato (Puccinia_94) would lead managers to
place lower priority on surveillance and containment in Western Australia, and to
increase the focus of activities in Australia’s northern and eastern neighbours (e.g.
New Caledonia). Recognition of U. rangelii (e.g. Uredo_27) would lead managers
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to increase the priority for these activities in New Zealand, Tasmania and Western

Australia (Fig. 2).”.

According to both set theory and ecological reasoning this result and conclusion are
implausible. In ecological terms, based on the critical assumptions underlying cor-
relative modelling methods and niche theory, the broader the range of environmental
tolerances encompassed by an organism in its native range, the broader the range
of conditions we might suppose it is at least capable of inhabiting in an introduced
range. That is, if Area and Area, refer to the environmental space occupied by
taxa with a smaller or larger environmental envelope respectively, the corresponding
environmental space projected to be suitable (potential niche breadth, Habitat and
Habitat, ) should conform to the same inequality i.c., because Area < Area

then Habltat ..y © Habitat, . The results presented in Elith et al. (2013) indicate the
opposite, and are most surely a modelling artefact, due to the reduced information in
the smaller datasets in relation to the background definition. Importantly though, the
manner in which the MAXENT model assigns probabilities to cells means that the map
classes in the different maps in Fig. 2 and Fig. 4 in Elith et al. (2013) do not, strictly
speaking, represent the same level of modelled suitability. That is, the values of mod-
elled suitability represented in these maps cannot be compared directly between maps.
This limitation is a subtlety which is not conveyed in the figure captions or body text
of Elith et al. (2013), and we contend is not something that would be generally ap-
preciated within the risk assessment community. Taken together, policies based on the
prima facie results of the comparative modelling presented in Elith et al. (2013) would
be in the wrong direction in terms of the perceived geographical extent of the threats.

From ecological theory, we expect that closely-related species (such as U. rangelii
and P. psidii s.s., if they are eventually confirmed as being different species) may
competitively exclude each other from otherwise suitable habitat (Hardin 1960;
Mitchell and Power 2003), though for some species including an overlapping hybrid
zone. This principle underlies the Enemy Release Hypothesis (Keane and Crawley
2002), which describes the direction of expected niche changes when organisms are
freed of the effects of their natural enemies, including that of competitors. Evidence
of this may be found in comparisons of habitat suitability from non-native and native
ranges (Kriticos and Randall 2001). It also underpins cautions to pest risk analysts to
consider interactions with other species (Davis et al. 1998) and the effects of land use
in modifying the apparent climatic response (Bourdét et al. 2013).

A corollary of this theory is that the inferred differences in climatic preferences
based on native range sampling relate only to the realised niche (Hutchinson 1957; So-
berén 2007); the fundamental niche of closely-related sympatric species may overlap
strongly. Hence, for such species, taxonomic hair-splitting when selecting presence
records for modelling is likely to produce conservatively-biased results. This method
may be attractive for conservation-oriented modelling; however, the costs associated
with errors regarding biosecurity risks are asymmetric. That is, the consequences
of underestimating the potential range of an invasive alien species are that it could
become established, creating perpetual unwanted pest impacts. The consequences of
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overestimating the risk are unwarranted resource allocation to biosecurity exclusion
efforts. Ideally, both types of errors would be minimised when informing biosecurity
policies, but overestimating the risks is generally to be preferred to underestimating
them. However, the overestimates should result from ecologically robust modelling
projections, rather than from modelling artefacts.

Based on their modelling, Elith et al. (2013) argue that significant resources
should be devoted to resolving the taxonomic imbroglio of this rust fungus. We agree
that it is critical generally for ecological modellers to attempt to clarify the taxonomy
of the organism being modelled. This applies equally to geographical distribution data
(Kriticos et al. 2003; Dupin et al. 2011; Baker et al. 2012; Bourdot et al. 2013) as it
does to other biological data about the taxon of concern. However, from a pragmatic
biosecurity management perspective, attempting to narrow the perceived pest risks from
P. psidii s.l. to those from U. rangelii faces two distinct challenges. Firstly, our ability
to readily detect and distinguish samples of P. psidii s.1. and U. rangelii are impractical,
and secondly, the management responses would be no different depending on which
of these taxa are posing an invasion threat. We contend that in cases of taxonomic
uncertainty, robust decision making in the biosecurity arena (sezsz Simon 1991) is
therefore best informed by assuming the broader taxonomic delimitation of P. psidii
s.1., as has been done in Australia and elsewhere to date for surveillance and monitoring
efforts. The expenditure of significant resources on taxonomic differentiation for pest
risk assessments may result in considerable time and resource savings for some systems
such as the Tephritids (Schutze et al. 2012), but for P. psidii s.1. it would seem of little
practical value within a pest risk management context.

In order to better gauge the biosecurity implications of taxonomic uncertainty
(avoiding the pitfalls in the MAXENT example discussed here), we may be better off
using true presence-only correlative models such as BIOCLIM/ANUCLIM (Booth
et al. 2014) or CLIMEX Regional Match Climates (Kriticos 2012) that are likely
to respond to changes in taxonomy in an ecologically conformal manner. Further,
because all correlative bioclimatic models rely upon geographical data solely to infer
climate suitability, they are inherently naive with respect to competitive exclusion and
the effects of enemy release. Their ability to extrapolate into novel climates is unreliable
because they are not constrained to fit biologically meaningful covariate response
functions (Austin 1987), and may over-fit to biased samples (Kriticos and Randall
2001; Rodda et al. 2011; Webber et al. 2011). Another option is to develop more
mechanistic models using packages such as CLIMEX Compare Locations (Sutherst
et al. 2007b) or NicheMapper (Kearney and Porter 2009), that have been designed
specifically for producing ecologically plausible results when projected to novel
climates (Sutherst and Maywald 1985; Magarey et al. 2007; Sutherst et al. 2007b;
Kearney and Porter 2009; Sutherst and Bourne 2009; Webber et al. 2011; Sutherst
2013). Nonetheless, even armed with models well-suited to the task, it may be difficult
or impossible to calibrate models of closely-related taxa sufficiently well to understand
accurately the invasion risks they each pose (Sutherst et al. 2007a).
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Concluding remarks

Pest taxonomy is a subject that continues to challenge biosecurity agencies (deWaard
et al. 2010; Collins et al. 2012; San Jose et al. 2013). Pest risk modelling clearly has
a potential role alongside molecular biology in unravelling such taxonomic puzzles,
testing taxonomic hypotheses against biogeographical data (Thompson et al. 2011).
However, to earn and maintain this role, the modelling should be reliable, and founded
solidly in ecology. In the case of P psidii s.l., it is our opinion that the modelled
taxonomic sensitivity of pest risks presented in Elith et al. (2013) reflect significant
modelling artefacts.

The specific issues we raise in this paper fall within the context of a relatively
immature, rapidly evolving field of science, where methods are being adapted,
developed and tested at such a rate that a consensus view of best practices has yet to
emerge. As has been so carefully emphasised in the past by the authors of both this
paper and Elith et al. (2013), modellers need to match the question being addressed
with the most appropriate techniques available. Whilst this need applies generally, it
is particularly pertinent for studies involving biological invasions or climate change
where modellers are challenged with unstable range dynamics and projecting results for
novel environments (Sutherst and Bourne 2009; Webber et al. 2011). The complexity
of biological invasions and the related risk management questions mean that this
matching process demands a significant level of modelling experience and expertise.

Some recent developments in computing technologies have been focused on
making ecological modelling tools accessible to the masses (e.g., Graham et al. 2010).
Even casual scans of ecological modelling discussion-lists reveal the alarming frequency
with which scientists with little or no prior experience or training in ecological
modelling grasp these techniques and apply them as a means of ‘rounding out their
studies’. The dire consequences are apparent in the proliferation of poorly-founded
and ecologically-implausible models appearing in the recent species distribution
and niche modelling literature. Clearly, making it easier to generate models does
not ensure that the models will be meaningful or fit-for-purpose. Modelling species’
current and potential distributions is a complex, difficult task, and there are few formal
opportunities for learning appropriate modelling skills.

For end users there is a need to become more familiar with how various modelling
choices affect the meaning and utility of the model results. Moreover, modellers have
a responsibility to foster an effective understanding of these issues amongst biosecurity
risk managers. For example, it is not possible to look at a map of a modelled species
distribution, and to know instinctively what it means in terms of pest risks. There
are many different ways in which the risk modelling problem can be framed, and the
meaning of the model results changes accordingly.

There is clearly still much work to be done in this space, and we will need
contributions from both the ecological modelling and biosecurity communities to
achieve our goals of advancing best practice for pest risk modelling.
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Kriticos et al. (2014) discuss a recent paper of ours (Elith et al. 2013). While we agree
with several of the points they raise, in this brief response we focus on clarifying a sub-
set of issues around improving pest risk modelling. We do so because several of their
suggestions are based on misunderstandings of technical details and will not, as they
hope, lead to improved modelling practice.

Elith et al. (2013) used the Puccinia psidii complex as a case study to explore the
impact of taxonomic uncertainty on modelled predictions. The work was clear in stat-
ing that it did not intend to provide definitive predictions and advice for biosecurity
managers. This position is clear in the title and in statements in Elith et al. (2013) such
as “The purpose of this study is to explore the implications of taxonomic uncertainty
for the management of a new invasive pathogen. We use the Australian incursion of
myrtle/ guava rust as an example, not to argue which taxonomic interpretation, data
set or model is correct, but to highlight the impact of taxonomic belief on modelled
predictions.” We discussed how to make risk weighted decisions that accommodate this
kind of uncertainty. We created 5 datasets of species records that were either the full
set of available presence records for the P psidii complex (“Pucc94”) or subsets of that,
each of which accorded with a different taxonomic interpretation.

The Kriticos et al. (2014) commentary primarily uses for illustration the Pucc94
dataset (94 records) and the Ured27 dataset — a subset of Pucc94 comprising 10 re-
cords of Uredo rangelii (variously viewed as a separate species or a member of the
complex) and an additional 17 records from similar environments (see Elith et al.
2013 for details). Elith et al. (2013) emphasised that “we recognise that the basis for

Copyright J. Elith, MA. Burgman. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
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these groupings could be debated and that future evidence might prove them wrong.
Our aim ... is not to argue that the specific choices are indisputable, but to create five
distinct datasets with reasoning behind each, and to use these to model and predict”.
In other words, we were not trying to model these entities definitively, but to explore
the effect on predictions of different perspectives on the group’s taxonomy. We used
the modelling software Maxent (Phillips et al. 2006, Phillips and Dudik 2008) and 7
covariates selected for their likely ecological relevance to model these five datasets.

Kriticos et al. (2014) note that the covariate rankings in the five models vary, which
they interpret as ‘unstable’. They state “instability in the covariate importance rankings
in this type of analysis provides an indication that the model may be unsound”. In
Maxent, variable importance is estimated in two ways — one during model building
and the other on permutation tests on the final model. Kriticos et al. (2014) focus on
the second and expect similar covariate rankings across all 5 datasets. We agree that
repeated random samples of the full distribution of a species are likely to lead to similar
covariate rankings, provided there are enough samples to reliably model the species and
provided the entity is in fact a single species. We emphasise, though, that we were not
taking repeated random samples. Many circumstances could lead to different covariate
rankings. These include different datasets representing different species or subspecies,
a random sample that happened to be biased to one part of covariate space, or highly
correlated variables. In the latter case, different covariate rankings may lead to very
similar predictions because covariates are largely interchangeable. There is no reason to
impose an « priori expectation that covariate rankings should be similar across our 5
datasets, not the least because we were exploring the possibility that some subsets dis-
play different environmental constraints because they represent different taxa. Kriticos
et al.’s arguments are pre-conditioned on the assumption that we are dealing with one
species. We held no such presumption.

Kriticos et al. (2014) used Rodda et al. (2011) as a support for their argument
regarding the stability of covariate rankings. We fail to see the connection with our
work. Rodda et al. (2011) discussed rote use of Maxent with default settings and the
commonly available suite of 19 Worldclim variables. They specifically stated that their
remarks did not apply to “execution of Maxent with different (i.e. customised) set-
tings”. We did not use default settings and 19 variables, and even explored the effects
of our choices on the modelled outcomes.

Kriticos et al. (2014) note that the choice of background affects model output.
They see this — together with the other issues they address - as such a problem that they
suggest instead using presence-only methods that do not require background points.
It is well established that choice of background affects model outcome (e.g. Elith et al.
2010, Elith et al. 2011, Elith 2014). In Elith et al. (2013), we described our approach
to selecting the background and mapped examples of the background extent. We used
a strategy consistent with the approach of an informed user (Elith et al. 2013 Fig 1,
grey areas). We did not mention the extent of mapping in the figure legend. We agree
that this omission was an oversight, and that generally authors should be specific about
their choice of background. We tested the effect of varying the background on model
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results during model construction and found that it was insubstantial. We agree that it
would be better to include such results in appendices.

However, the solution to this issue is not to do as Kriticos et al. (2014) suggest
and resort to presence-only methods that do not require background points. Methods
that do not take a background sample are ignorant of environmental conditions in the
region in which the model is trained. This confounds the frequency of environments
at occupied locations with the frequency of environments in the region, an issue that
is difficult to overcome and that leads to decreased predictive performance, at least in a
number of tested equilibrium situations (Elith et al. 2006). We are left with the prob-
lem that choice of background is to some extent subjective, and we suggest that good
practice includes exploring the effect of choices on modeled results.

Kriticos et al. (2014) question covariate values and extrapolation, in particular
the process of clamping predictions in novel environmental domains. We agree that
clamping will affect predictions in novel space. That is the intent. Clamping is the de-
fault choice and is quite commonly used, including by one of the authors of Kriticos
etal. (2014) in Thompson et al. (2011). It is a sensible default because it ensures that
predictions outside the sampled range are at least consistent with those made at the
most similar sampled environment.

Nevertheless, we agree that predictions in novel environmental space should be
treated very cautiously. In Elith et al. (2013), our interpretation and interest was fo-
cused on areas of relatively high predictions in Australasia and none of these were in
novel space. To guard against unintended uses of our results, we could have masked
out all regions with any amount of extrapolation, to make it clearer that (1) we were
not focusing on any of these areas, and (2) we do not trust predictions in extrapolated
areas. Instead, we took the more conventional path of including numerous messages
throughout the manuscript and its appendices that showed the reader that extrapola-
tions are inherently uncertain and should be treated cautiously.

Rather than dealing with every issue in the Kriticos et al. (2014) commentary, we
now address a remaining important point regarding areas and extents. As Kriticos et
al. (2014) note, Maxent (and other methods for modeling presence-background data)
outputs relative probabilities or relative intensities. We agree that it would have been
useful in Elith et al. (2013) to remind readers of this point specifically, in case they
were inclined to misinterpret them as probabilities of occurrence. Nevertheless, the
treatment in Elith et al. (2013) was consistent because it focused on relatively suitable
locations, those with the highest relative predictions for each taxon. We have discussed
this with Kriticos et al. in person, so it is disappointing to find that they persist in stat-
ing that Elith et al. (2013) focused on extent.

Regarding “Predicted area”, Kriticos et al. (2014) appeal to “both set theory and eco-
logical reasoning” when discussing “Area” and “Habitat”. They then apply their reasoning
— largely posed in environmental space — to our results, which they interpret in geograph-
ic space. They state “the broader the range of environmental tolerances encompassed by
an organism in its native range, the broader the range of conditions we might suppose it
is at least capable of inhabiting in an introduced range”. The discussion in Kriticos et al.
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(2014) on this point seems at least unclear if not wrong. In fact, range in geographic space
depends on the environments available in each region, and that the tolerances of taxa,
even closely related ones, are not necessarily nested in environmental space.

Consider this situation: species A and B exist as native species in a certain region. A
might be widespread, and B more narrowly distributed. Only a subset of environments
that species A occupies in its native range might exist in a new region, whereas all the
environments occupied by species B might exist — in fact, in the new region more en-
vironments suitable for B might exist than were available in the native range. Thus it
is possible (though completely dependent on the relationships between environmental
and geographic space) that species A may tolerate a wider range of environmental con-
ditions than B in their native ranges, but species B may have a wider geographic range
in a new region. Thinking further about relationships between environmental and
geographic space (see the excellent discussion of these issues by Colwell and Rangel
2009): the same suitable environments might be repeated many times in geographic
space (the biotope) in a new region, implying that geographic areas are difficult to
predict conceptually from environmental thinking. We will not take this argument
further since it is difficult to discuss fully in a short reply. Our main point is that whilst
Kriticos et al. (2014) might want to interpret our results in terms of areas, we did not
make inferences about areas, and their arguments regarding ranges in environmental
and geographic space are neither necessary nor sufficient.

Predicted area is not necessarily identifiable from presence-only data. Some au-
thors use ‘thresholding’ (setting all values above some predicted value to 1 and all
below to zero). However, this is not a remedy, since this merely serves to decrease the
amount of information available. In Elith et al. (2013) we discussed the effect of small
sample sizes (generally predictions will be less well differentiated with small samples)
and interpreted the results accordingly.

Lastly, Kriticos et al. (2014) raise a general theme that the results in Elith et al.
(2013) will be (mis-)used for other ends. This of course is possible. Elith et al. (2013)
focused on the influence of taxonomic uncertainty on the predicted location of the
most suitable sites for a set of putative taxa. Those wanting to use the results for other
purposes should do so thoughtfully. Our hope is that people wanting to use the predic-
tions in other contexts would either know about or inform themselves about the mod-
elling methods sufficiently that they can make competent interpretations or contact
the authors of the original work and ask about their interpretation.

In conclusion, while we appreciate the motivation of Kriticos et al. (2014) was to
improve modelling practice and we agree with several of the points they raise about
clarity and completeness of descriptions, we find that their main methodological
complaints are based on misunderstanding of the technical details of the methods
themselves. Our concern and motivation in responding is that their advice is broadly
misguided. We agree with some of their concerns regarding the limitations of using
correlative methods to model distributions of invasive species (see Elith 2014 for a
detailed discussion). The difficulties in predicting species distributions in novel envi-
ronments remain open and important questions.
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