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Abstract
Halyomorpha halys (Stål) (Hemiptera, Pentatomidae) was accidentally introduced to North America and 
Europe, becoming a key pest of many important crops. In its native range, it is attacked by egg parasitoids, 
including Trissolcus japonicus (Ashmead), considered to be the main species, and T. mitsukurii (Ashmead) 
(Hymenoptera, Scelionidae). Trissolcus japonicus was detected in North America in 2014 and Europe in 
2017, while T. mitsukurii was detected in Australia in the early 20th century and in Europe in 2016. Both 
species now appear established in the new areas. The present study used the MaxEnt algorithm to clarify 
the geographic dimension of the potential interaction between H. halys and these two parasitoid species, 
and to indicate where the release of one or the other parasitoid species is more likely to be effective. We 
found that the suitability for the two parasitoids overlaps the H. halys native range completely. In invaded 
areas, T. japonicus showed higher potential habitat suitability at the global scale, compared to T. mitsuku-
rii, and also higher potential suitability at lower latitudes at continental and national scales. These results 
can substantially improve the effectiveness of biological control against H. halys, by targeting the releases 
of parasitoids to the areas where each species is most likely to succeed.
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Introduction

The brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera, Pentato-
midae), is a polyphagous and invasive pest native to Asia (China, Japan, Korea, and 
Taiwan) (Lee et al. 2013), which was accidentally introduced to North America and 
Europe in the late 1900s and early 2000s, respectively (Leskey and Nielsen 2018). In 
invaded areas, it has become a key pest causing severe economic losses on many impor-
tant crops (e.g., Gariepy et al. 2014; Maistrello et al. 2017; Bosco et al. 2018; Leskey 
and Nielsen 2018; Moore et al. 2019). It was also detected in Chile (Faúndez and Rid-
er 2017) and often intercepted at the Australian and New Zealand borders (Charles et 
al. 2019; Horwood et al. 2019). In addition, possible further spread in North America, 
Europe, and in many regions in the Southern Hemisphere has been suggested (Kriticos 
et al. 2017), and simulations with climate change scenarios indicate that H. halys has 
the potential to further expand its range (Stoeckli et al. 2020).

Crop protection in the invaded areas mainly relies on chemical control based on 
broad-spectrum insecticides, which are not always able to keep H. halys infestations 
below the economic injury level. This failure is mainly due to multiple factors, such 
as the low direct and residual toxicity to H. halys of several insecticides. Moreover, the 
frequent application of insecticides, even considering the restrictions in place for the 
use of some broad-spectrum active ingredients, may cause secondary pest outbreaks, in 
addition to negative effects on human and environmental health (Leskey and Nielsen 
2018). Therefore, biological control has been considered a promising alternative to 
chemical control in IPM programs, with an emphasis on egg parasitoids that are the 
main natural enemies in the native range (Lee et al. 2013).

Both in North America and in Europe, few native parasitoids were found to de-
velop on H. halys eggs successfully (Abram et al. 2017; Balusu et al. 2019b, a; Costi 
et al. 2019; Konopka et al. 2019; Stahl et al. 2019c; Moraglio et al. 2020; Scaccini et 
al. 2020). In Europe, the generalist Anastatus bifasciatus (Geoffroy) (Hymenoptera, 
Eupelmidae) was the main species emerging from both field-laid and sentinel H. halys 
egg masses in Italy and Switzerland (Haye et al. 2015a; Roversi et al. 2017; Costi et al. 
2019; Moraglio et al. 2020), while Trissolcus kozlovi Rjachovskij (Hymenoptera, Sce-
lionidae) was a promising but rare parasitoid emerging from H. halys eggs in northern 
Italy (Scaccini et al. 2020; Moraglio et al. 2021a; Zapponi et al. 2021). Both these 
native parasitoids were considered for an augmentative release strategy, but without ef-
fectively suppressing the pest so far (Stahl et al. 2019a; Moraglio et al. 2021b; Iacovone 
et al. 2022).

Adventive populations of Trissolcus japonicus (Ashmead) (Hymenoptera, Scelio-
nidae), a species that is considered the main parasitoid of H. halys eggs in China and 
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Japan (Yang et al. 2009; Lee et al. 2013; Zhang et al. 2017; Kamiyama et al. 2022), 
have been found both in North America and in Europe (Talamas et al. 2015; Abram 
et al. 2019; Stahl et al. 2019b). Additionally, adventive populations of Trissolcus mit-
sukurii (Ashmead), another egg parasitoid of H. halys in Japan (Arakawa and Namura 
2002; Arakawa et al. 2004; Kamiyama et al. 2022), have been recently found in Europe 
(Sabbatini Peverieri et al. 2018; Scaccini et al. 2020; Bout et al. 2021). These two Asian 
species are candidates for classical biological control in the invaded range (Charles et al. 
2019; Lara et al. 2019; Haye et al. 2020; Sabbatini Peverieri et al. 2020, 2021; Giovan-
nini et al. 2022). In addition to being field released in some areas, T. japonicus is now 
established in North America, Switzerland, and Italy, where T. mitsukurii is also estab-
lished, and both species are now spreading to other countries in Europe (Lowenstein et 
al. 2019; Milnes and Beers 2019; Scaccini et al. 2020; Zapponi et al. 2020, 2021; Bout 
et al. 2021; Dieckhoff et al. 2021; Rot et al. 2021; Mele et al. 2022).

Despite the great interest in this parasitoid-host interaction, many aspects are still 
poorly investigated. One of these aspects is the geographic dimension of this interac-
tion, which is crucial for planning parasitoid releases because their success largely de-
pends on the released species’ local suitability. Some studies analyzed the potential dis-
tribution of H. halys at both global (Zhu et al. 2012, 2016; Haye et al. 2015b; Kriticos 
et al. 2017) and local scales (Zhu et al. 2017; Malek et al. 2018; Tytar and Kozynenko 
2020; Streito et al. 2021), and a few others focused on the potential distribution of 
T. japonicus (Avila and Charles 2018) and of T. mitsukurii (Yonow et al. 2021). How-
ever, none explored the spatial dimension of the H. halys–parasitoid interactions.

The present study has the ambition to fill this gap, focusing specifically on the spa-
tial overlap in suitability for H. halys and its parasitoids. Habitat suitability is necessary 
for establishing viable populations and thus for activating interspecific interactions, 
and so we adopted a data-driven approach based on distribution models and com-
pared suitable areas at three geographical scales: global, continental, and national. This 
approach will be able to identify the areas where the risk of H. halys invasion is high, 
where such invasion can be effectively countered by the natural spread or augmentative 
release of its parasitoids, and where the release of T. japonicus is expected to be more ef-
fective than that of T. mitsukurii, and vice versa. These results can substantially improve 
the effectiveness of the biological control against this invasive pest, driving the release 
of parasitoids toward the areas where each species has the highest probability of success.

Materials and methods

Source of data

Geographic records of distribution of H. halys were retrieved from Global Biodiversity 
Information Facility (GBIF.org 2022). Geographic records of T. japonicus and T. mit-
sukurii were retrieved from GPS latitude and longitude coordinates of: i) monitor-
ing sites of DISAFA (University of Turin, Italy) and DAFNAE (University of Padova, 
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Italy), ii) available data on Hymenoptera Online database (HOL 2021), and iii) lit-
erature data (Suppl. material 1: table S1). Localities lacking geographic coordinates 
were georeferenced using Google Maps. Records with doubtful species identification, 
unspecified or unknown localities were deleted. In localities where T. japonicus was 
used in augmentative release programs as a biological control agent (BCA) of H. halys, 
data for a year were considered valid if confirmed by observations during the fol-
lowing spring-summer, indicating wasp overwintering after the release. These various 
sources provided a total of 14,489, 393, and 356 point locations recorded for H. halys, 
T. japonicus and T. mitsukurii, respectively (Suppl. material 4: fig. S1).

Species distribution modelling

In order to verify the absence of potential divergences in the climatic niches of popula-
tions in primary and secondary ranges, which are sometimes introduced by bottleneck 
effects in introduced populations, we analyzed the climatic preference of the three spe-
cies across their distribution ranges (Fig. 1). The results suggested that we should try to 
model the distribution of the three species using the entire global dataset rather than 
considering native and invaded ranges separately.

We used the distribution data for modeling habitat suitability for H. halys, 
T. japonicus, and T. mitsukurii at three spatial scales. All three species’ global data were 
used to fit the models at the three scales. These models were fitted with three different 
spatial resolutions and projected into three different geographic areas. The maps were 
obtained from data combined and processed at different resolutions. Therefore, the 
global, European and Italian scale maps are the result of different processing. We used 
environmental predictors with a resolution of 10 minutes of geographic degrees (i.e., 
pixels about 20 km large) for predicting the habitat suitability at the global scale, 5 
minutes (i.e., about 10 km) for the European scale, and 2.5 minutes (i.e., about 5 km) 
for the Italian scale. In order to mitigate the geographical bias associated with the 
non-random process of data collection, presence data were thinned to remove dupli-
cate points in the pixels (Verbruggen et al. 2013). This multi-scale approach provided 
practical recommendations for managing the H. halys invasion and simultaneously 
overcoming the ‘tyranny of the local’ (Groves 2003), which consists of overlooking 
important areas at the large scale when reserves are planned locally.

We used several parameters representing climate, land morphology, land cover, 
and water availability as predictor variables. Climate variables were downloaded from 
the WorldClim 2.1 databank (Fick and Hijmans 2017). We selected a subset of non-
correlated climatic variables for fitting the models by calculating the variance inflation 
factor (VIF) (Belsley 1991) and excluding those with VIF ≥ 5 (Dormann et al. 2013). 
Thus, we used eight, seven, and eight climatic variables at global, continental, and na-
tional scales, respectively. Land morphology variables were calculated from the altitude 
information associated to the WorldClim climatic data (Fick and Hijmans 2017). In 
particular, we calculated slope, roughness, eastness (calculated as the sine of terrain 
aspect), and northness (cosine of terrain aspect) (Kumar et al. 2006) for each pixel 
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by comparing elevation values of the pixel with those of the eight surrounding pixels. 
The land cover was downloaded from the GLC2000 database (European Commission 
Joint Research Centre 2003), which is available at the resolution of 1 km at Equator. 
Data on water availability were extracted from the Digital Global Map of Irrigation 
Areas (Siebert et al. 2013). In addition, for the two parasitoids, we incorporated the 
effect of the interaction with H. halys by adding the suitability for the stink bug as a 
predictor. Each variable was resampled at the three resolutions, tested for collinearity 
(see Suppl. material 2: table S2), and used for fitting and projecting the models.

The habitat suitability for the three species at the different scales was calculated us-
ing the MaxEnt algorithm (Phillips et al. 2004, 2006). MaxEnt minimizes the relative 
entropy between the probability densities in the covariate space estimated from the 
presence data and from the background (Elith et al. 2011). In order to correctly define 
unsuitable conditions, we defined the background conditions by selecting a number 
of random points across the study area (i.e., the globe) equal to five times the number 
of presence points. In order to account for the uncertainty in the definition of the 
background conditions associated with the randomicity of the background points, we 
repeated the analysis 100 times and generated a final consensus calculating the average 
value from the 100 models. All the models were 10-fold cross validated by deriving the 
Area Under the ROC Curve (AUC) value (Fielding and Bell 1997; Faraggi and Reiser 
2002) and the Boyce index (Boyce et al. 2002). The AUC value can be interpreted as 
the probability that a presence site, randomly chosen from the dataset, has a higher 
predicted value than an absence site (Elith et al. 2006). The Boyce index measures how 
much model predictions differ from random distribution of the observed presences 
across the prediction gradients and is an appropriate metric for presence-only models 
(Hirzel et al. 2006).

To derive discrete categories from the continuous values of habitat suitability, we 
used a data-driven multi-thresholds approach (Nenzén and Araújo 2011). For each 
model we applied five different binarization criteria. First, the highest threshold at 
which there is no omission (Cantor et al. 1999). Second, the threshold at which the 
sum of the sensitivity (true positive rate) and specificity (true negative rate) is highest 

Figure 1. Climatic preferences of Halyomorpha halys (A), Trissolcus japonicus (B), and T. mitsukurii (C) in 
the native range (i.e., Asia) and invaded range. Colored dots represent the climatic conditions in the spe-
cies presence sites and gray shade indicates the climatic conditions available across the species distribution.
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(Cantor et al. 1999). Third, the threshold at which sensitivity and specificity are equal 
(Fielding and Bell 1997). Fourth, the threshold at which the modeled prevalence is 
closest to the observed prevalence (Dormann et al. 2008). Fifth, the threshold at which 
the sensitivity of the model is equal to 0.5 (Cantor et al. 1999). These thresholds were 
used for dividing the suitability values in six categories of increasing suitability, from 
no suitability (not suitable according to all five criteria) to high suitability (suitable ac-
cording to all five criteria).

In order to explore the geographic dimension of the interaction between H. halys 
and its parasitoids, we generated the ‘host-parasitoids co-suitability maps’ by overlap-
ping the habitat suitability models of the three species. In these maps, pixels are catego-
rized based on their contemporary suitability for H. halys and for the parasitoids. We 
defined: (1) areas with scarce suitability for all the three species, (2) areas with scarce 
suitability for H. halys but good suitability for one or (3) two parasitoids, (4) areas with 
good suitability for H. halys but scarce suitability for the two parasitoids, and (5) areas 
with good suitability for H. halys and for one or (6) two parasitoids. In addition, for 
clarifying which parasitoid has the highest probability of success in the different areas, 
we produced conflict maps by overlapping the habitat suitability of the two Trissolcus 
species. In particular, we defined areas with scarce suitability for both the two species, 
areas with good suitability for one species and scarce for the other, and areas with 
good suitability for both the species. In the host-parasitoids and in the parasitoids co-
suitability maps, we defined pixels with scarce suitability as those considered suitable 
according to less than three criteria and defined good suitability pixels as those con-
sidered suitable according to three criteria or more. In addition, we summarized the 
overlaps at the three scales by continent/country/region as the percentage of surface in 
the different conditions. All the analyses, as well as these maps, were done in R (R Core 
Team 2021), using the packages dismo (Hijmans et al. 2021), raster (Hijmans 2022), 
rgdal (Bivand et al. 2022), rJava (Urbanek 2021), and usdm (Naimi et al. 2014).

Results

We obtained very robust habitat suitability models for all three species at all three scales 
(mean ± st. dev. AUC: 0.987 ± 0.01; Boyce index: 0.994 ± 0.09). At the global scale, 
the highest suitability for H. halys was estimated to occur in East Asia (which is the spe-
cies’ primary range), southern Europe, and eastern North America (Fig. 2A). Further 
areas with low or medium-low suitability were identified around the abovementioned 
core areas (in southern Asia, Europe, and North America) as well as in South America 
(from southern Brazil to northern Argentina and along the Chilean coast), in Australia 
(in the South-East and South-West of the country), and in New Zealand (both North 
and South Islands). Suitable areas for T. japonicus were limited to East Asia, southern 
Europe, and eastern North America, by and large following the same pattern of the core 
areas for H. halys (Fig. 2B). In contrast, suitable core areas for T. mitsukurii were limited 
to East Asia and southern Europe. However, additional areas with partial suitability oc-
cur in eastern North America, South America, Australia, and New Zealand (Fig. 2C).
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At the European scale, the entire study area was at least partially suitable for H. halys 
(Fig. 3A); nevertheless, the highest suitability occurred in France, Italy, Greece, and in 
scattered areas of Germany, the Netherlands, and the Balkan Peninsula. The main 
mountain chains and other areas in the extreme north and south are excluded from 
this large area. The patterns of the suitable areas for T. japonicus and T. mitsukurii were 
rather similar to each other and were also quite similar to the core areas for H. halys 
(Fig. 3B, C). However, a certain tendency of T. japonicus to prefer lower latitudes 
compared to T. mitsukurii was observed. The suitable areas for the former species were 
indeed mainly limited to the southern part of Europe, while those for the latter ex-
tended as far north as southern England, Denmark, Germany, and southern Sweden.

At the Italian scale, the most suitable areas for H. halys were basically restricted to 
the Venetian Plain, the central and western Po River Plain, the northern slope of the 
Tuscan-Emilian and Umbrian-Marchigian Apennines, and the Tuscan Hills (Fig. 4A).

Nevertheless, areas with medium-high suitability extended these core areas as far 
south as Campania and in isolated spots in western Sardinia, eastern Sicily, eastern 

Figure 2. Habitat suitability for Halyomorpha halys (A), Trissolcus japonicus (B), and T. mitsukurii (C) at 
the global scale. Suitability is represented via six categories of increasing suitability, from no suitability (not 
suitable according to all five criteria) to high suitability (suitable according to all five criteria).



Francesco Tortorici et al.  /  NeoBiota 85: 197–221 (2023)204

Calabria, and southern Apulia; in addition, most of the peninsula (with the exclu-
sion of the highest mountain massifs) and Sardinia had medium suitability for the 
stink bug. As at the European scale, the patterns of the suitable areas for T. japonicus 
and T. mitsukurii were rather similar to each other and to the core areas for H. halys 
(Fig. 4B, C) but, even at the Italian scale, the tendency of the former species to prefer 
lower latitudes was evident.

The ‘host-parasitoids co-suitability areas’ basically reflect the core areas for suitabil-
ity but some interesting differences can be evidenced. At the global scale, the East Asian 
core area for H. halys is surrounded by zones where the suitability for the parasitoids was 
good but the suitability for the stink bug was scarce. On the contrary, in the colonized 
zones in Europe and North America, the suitable area for H. halys was larger than the 
suitable zones for the two Trissolcus species (Fig. 5A and Suppl. material 3: table S3). 

Figure 3. Habitat suitability for Halyomorpha halys (A), Trissolcus japonicus (B), and T. mitsukurii (C) at 
the European scale. Suitability is represented as six categories of increasing suitability, from no suitability 
(not suitable according to all five criteria) to high suitability (suitable according to all five criteria).
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This was particularly true for the North American invaded range, where most of the 
suitable area for H. halys (especially in the south of the area) was not suitable for the 
two parasitoids. At the European scale, areas with good suitability for the stink bug and 

Figure 4. Habitat suitability for Halyomorpha halys (A), Trissolcus japonicus (B), and T. mitsukurii (C) at 
the Italian scale. Suitability is represented as six categories of increasing suitability, from no suitability (not 
suitable according to all five criteria) to high suitability (suitable according to all five criteria).
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the parasitoids were spread from northern Spain to eastern Ukraine and from southern 
Scandinavia to Sicily (Fig. 6A and Suppl. material 3: table S3). Nevertheless, many 
zones of this range, especially in the periphery, were suitable for H. halys but not for the 
Trissolcus species. On the contrary, few areas in northern Europe, northern and eastern 
Spain, northern Italy, and the Hungarian Plain were suitable for the Trissolcus species 
but not for H. halys. Similarly, at the Italian scale, the good contemporary suitability for 
the bug and its parasitoids corresponded approximately to the Po River Plain and the 
Venetian Plain, the Adriatic coast and the western slope of the north-central Apennines, 
the hills of Tuscany, northern Latium and Campania, and the Ionian coast (Fig. 7A and 
Suppl. material 3: table S3). Despite their suitability for H. halys, all the Apennines (the 
highest massifs excluded), the Tyrrhenian coast, and most of Sardinia and of the south-
ern peninsular Italy were not suitable for T. japonicus and T. mitsukurii. On the other 
hand, a few zones on the Alps were suitable for the parasitoids but not for the stink bug.

As expected, the map of the co-suitability of T. japonicus and T. mitsukurii fol-
lowed a similar general pattern as the previous maps. However, it provided interesting 
insights into the specificities of the two parasitoids. At the global scale, the suitable area 
was good for T. japonicus but not for T. mitsukurii in North America, and generally 
good for both the species in Europe, while in East Asia it was good for T. japonicus in 
the north, for both in the center, and for T. mitsukurii in the south (Fig. 5B and Suppl. 
material 3: table S3). In addition, small areas that were suitable for T. mitsukurii but 
not for T. japonicus also occur in the southern hemisphere (in South America, Mada-
gascar, Australia, and New Zealand). At the European scale, the northern borders of the 
suitable area, such as in northern and western France, Belgium and the Netherlands, 

Figure 5. Map of the co-suitability of Halyomorpha halys and its two parasitoids (A) and the map of the 
co-suitability of Trissolcus japonicus and T. mitsukurii (B) at the global scale. Pixels are considered with 
scarce suitability if suitable according to less than three criteria and with good suitability if suitable ac-
cording to three criteria or more.
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Denmark, Germany, and Scandinavia, generally appeared good for T. mitsukurii only, 
the central part appeared good for both the species, while the southern borders, such as 
in southern Spain, central France, southern Italy, and Greece, generally appeared good 
for T. japonicus only (Fig. 6B and Suppl. material 3: table S3). The same general rule 
is also evident at the Italian scale, where the northern and upper boundaries along the 
Alps and Apennines were generally suitable for T. mitsukurii but not for T. japonicus, 
the core area was suitable for both the species, and the southern and lower boundaries 
in Sardinia, Sicily, and south-central peninsular Italy were suitable for T. japonicus only 
(Fig. 7B and Suppl. material 3: table S3).

Discussion

Model strength

A fundamental phase in species distribution modelling is the validation of the outputs, 
which measures how accurately the model predicts the presence or absence of the spe-
cies. All our models have been 10-fold cross-validated; this means that each model was 
fitted 10 times with 90% of the available data, randomly chosen at each repetition, and 
used the remaining 10% as pseudo-independent data for validating the predictions. To 

Figure 6. Map of the co-suitability of Halyomorpha halys and its two parasitoids (A) and the map of 
the co-suitability of Trissolcus japonicus and T. mitsukurii (B) at the European scale. Pixels are considered 
with scarce suitability if suitable according to less than three criteria and with good suitability if suitable 
according to three criteria or more.
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do that, the true positive and the false positive rates (i.e., how many presence or absence 
points are correctly predicted) were measured for different thresholds, and the definite 
integral of this curve was calculated. This value represents the AUC index, which is one 
of the most frequently used methods for model validation and varies between 0 (no test 
point is correctly predicted) and 1 (100% of the test points are correctly predicted). 
In addition to this, we also calculated the Boyce index, which is an appropriate metric 
for presence-only models and varies between -1 and +1, with positive values indicat-
ing predictions that are consistent with the distribution of presences in the evaluation 
dataset (Hirzel et al. 2006). Our models obtained, on average, an AUC score of 0.987 
(± 0.01) and a Boyce index of 0.994 (± 0.09), these results indicate an extremely high 
ability to predict the species presence/absence correctly.

An update of the potential distribution of H. halys and its parasitoids

While the GBIF dataset of H. halys can be considered robust, thanks to a large num-
ber of reliable records (citizens usually identified this stink bug with good accuracy), 

Figure 7. Map of the co-suitability of Halyomorpha halys and its two parasitoids (A) and the map of the 
co-suitability of Trissolcus japonicus and T. mitsukurii (B) at the Italian scale. Pixels are considered with 
scarce suitability if suitable according to less than three criteria and with good suitability if suitable ac-
cording to three criteria or more.
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the distributional data of T. japonicus and T. mitsukurii needed a careful review due 
to the high risk of misidentification. Avoiding erroneous data is, therefore, crucial. 
Consequently, we performed a detailed screening of the bibliographic records (Suppl. 
material 1: table S1), also taking into account the historical taxonomic complications 
presented by Talamas et al. (2017) and Buffington et al. (2018). The dataset was sup-
plemented by many directly verified field collections.

As expected, the model of potential distribution of H. halys here proposed is simi-
lar to models previously estimated using both MaxEnt (Zhu et al. 2012) and CLIMEX 
(Kriticos et al. 2017; Yonow et al. 2021). At a global scale, our model shows lower suit-
ability for expansion of this pest to tropical regions (Fig. 2A) than reported by using 
CLIMEX. At the European scale, compared with lower climate suitability proposed by 
Kriticos et al. (2017) and Yonow et al. (2021), our model shows that the habitat suit-
ability for H. halys largely reaches a medium-high level (Fig. 2D) with patterns of high 
suitability in eastern France, northern Italy, Slovenia, and Croatia, as confirmed by 
several field studies (Hemala and Kment 2017; Streito et al. 2021; Delbac et al. 2022; 
Hess et al. 2022). In Italy, our model shows high potential suitability and distribution 
of the pest mainly in the north, aligning with observations of economic damage from 
previous studies (Bosco et al. 2018; Moraglio et al. 2018; Francati et al. 2021). The 
maps produced at different scales are not simple zooms of the same model. Rather, 
they are different models, fitted and projected at different resolutions. Thus, they used 
differently aggregated data and, as a consequence, their outputs are not perfectly iden-
tical. Nevertheless, the general pattern is congruent among different models.

Avila and Charles (2018) and Yonow et al. (2021) made assumptions on the po-
tential distribution of T. japonicus – also supported by data on the wasp distribution in 
North America and Europe (Talamas et al. 2015; Milnes et al. 2016; Sabbatini Peveri-
eri et al. 2018; Abram et al. 2019; Stahl et al. 2019b) – resulting in a similar finding as 
reported by our study, except for Spain and the entire Mediterranean coast, where our 
model indicates low or no suitability.

According to our results, T. mitsukurii has a broad, but low, suitability in Australia, 
New Zealand, North and South America (Fig. 2C). Nevertheless, the potential suit-
able extent we predicted is more limited with respect to the assumptions provided in a 
previous study (Yonow et al. 2021). The rapid expansion of adventive populations of 
T. mitsukurii in Europe (Sabbatini Peverieri et al. 2018; Scaccini et al. 2020; Bout et 
al. 2021; Rot et al. 2021; Mele et al. 2022) confirmed our hypothesis of a high level of 
potential habitat suitability: this species has the potential to spread throughout Europe 
and beyond.

In Italy, T. japonicus shows greater potential for range expansion at lower latitudes 
in southern Italy and the islands of Sardinia and Sicily than T. mitsukurii, due to denser 
patterns from medium to high habitat suitability (Fig. 4B, C). The expectation for the 
future could be the potential spread of both species in these areas, even considering 
the current presence at lower latitudes of H. halys (Cianferoni et al. 2018; Tassini and 
Mifsud 2019).
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Co-suitability maps: a tool for control applications

The co-suitability map of parasitoids against H. halys at a global scale (Fig. 5A) shows 
that areas with good suitability for H. halys and scarce suitability for Trissolcus spp. are 
absent in the Asian region where, instead, there is a predominance of areas with good 
suitability for the host and for one or two parasitoids (marked with light blue and 
dark blue patterns, respectively), and areas with scarce suitability for H. halys but good 
suitability for one or two parasitoids (marked with light red and dark red patterns, 
respectively). The lack of yellow zones (i.e., good suitability for H. halys but scarce for 
Trissolcus spp.) in the Asian region means that the host distribution area completely 
overlaps the suitable areas of the parasitoids. It is possible that the two parasitoids and 
their host, all native to eastern Asia, show a more complex interspecific interaction. In 
native areas, the two parasitoids are able to exploit a larger host range (Zhang et al. 
2017). Confirming this, in Australia, where H. halys was only intercepted and eradi-
cated (Horwood et al. 2019; Hess et al. 2022), and shows low suitability (Fig. 2A), the 
presence of T. mitsukurii has been known since at least 1914 (Caron et al. 2021), sug-
gesting the possible establishment of this parasitoid by exploiting other yet unknown 
hosts. Concerning T. japonicus, information on possible secondary hosts in the new 
areas in Europe and the United States is still scarce (Haye et al. 2020; Moraglio et al. 
2020; Zapponi et al. 2021). Certainly, further investigations are needed to identify 
possible secondary hosts of both parasitoids, especially to assess their attractiveness in 
comparison with the coevolved host and, consequently, to track the new interactions 
that will be established in favorable areas for parasitoid establishment.

The areas where one or both parasitoids show suitability to coexist with H. halys 
(marked with light blue pattern and with dark blue pattern, respectively; Fig. 5A) re-
veal good chances of success in controlling the pest using them as BCAs. This means 
that the use of either one of the two parasitoids (light blue pattern, in the map) or both 
(dark blue pattern) can be effective in controlling H. halys depending on the individual 
habitat suitability (Fig. 2). Trissolcus japonicus shows a higher potential habitat suit-
ability than T. mitsukurii at a global scale (Fig. 2B, C). Moreover, in Europe and Italy, 
where more structured surveys of the two parasitoids were performed (Zapponi et al. 
2021), and according to the co-suitability map (Fig. 6), T. japonicus shows greater 
potential suitability than T. mitsukurii at lower latitudes. Therefore, these results fur-
ther support the decision to field release T. japonicus as a part of a three-year national 
program initiated in northern Italy and extended throughout the peninsula (MATTM 
2020). In light of the parasitoid co-suitability map (Fig. 6), the recent proposal to re-
lease T. mitsukurii against H. halys in the Northwest of France (Martel G., Hamidi, R., 
Thomas M., ANPN-RIPPOSTE, Région Nouvelle-Aquitaine, France, N° 15994520), 
in the area where this parasitoid was found in 2020 (Bout et al. 2021), appears to be 
the best solution considering its higher suitability, especially if compared with the 
lower suitability of T. japonicus in most of that country.

The predominance of the yellow and blue pattern (Fig. 5B) in the adventive range 
in Europe and North America suggests the possibility of successfully using one of the 
two Trissolcus species as a BCA, also from the perspective of a classical biological control 
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program. To optimize the success of any BCA at the local scale, this model should be 
supplemented with an assessment of the local climatic parameters best suited to the 
parasitoid species. In particular, this is even more important in areas characterized by 
high habitat richness, in terms of geographic and climate variables (Cervellini et al. 
2021), such as in the Iberian and Scandinavian peninsulas, eastern Europe, southern 
Greece (Fig. 6B), and, at Italian scale, in Sardinia and most of southern peninsular 
Italy (Fig. 7B).

Environmental factors play an important role in the performance of a BCA, be-
cause they can determine the success of any biological control program. Therefore, 
preliminary studies on the species habitat suitability can help to choose better perform-
ing BCAs to introduce into an ecosystem in a classical biological control program. 
Predicting suitable ecological niches for H. halys and its two parasitoids is a critical 
approach for crop management and biological control of this pest. The suitable core 
areas for T. japonicus and T. mitsukurii are quite similar to each other. The niches of 
these species are generally smaller than the area indicated by model-based predictions, 
and this is due to, among others, climatic variables that are not the only determinants 
of habitat suitability. Several natural and anthropogenic factors can also influence the 
potential habitat distribution of these species as well as their interaction. Therefore, 
the information provided by the model can help in the selection of the parasitoid to 
be used in relation to the suitability of the area, but it will still need to be substantially 
validated through field surveys, which can also further document the spatial intensities 
of the parasitoid species in potentially suitable areas.
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