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Abstract
Context-dependency is prevalent in nature, challenging our understanding and prediction of the potential 
ecological impacts of non-native species (NNS). The presence of a top predator, for example, can modify 
the foraging behaviour of an intermediate consumer, by means of non-consumptive effects. This raises the 
question of whether the fear of predation might modulate consumption rates of NNS, thus shaping the 
magnitude of ecological impacts. Here, we quantified the functional feeding responses of three non-native 
crayfish species – red swamp crayfish Procambarus clarkii, rusty crayfish Faxonius rusticus and virile crayfish 
Faxonius virilis – compared to the native analogue signal crayfish Pacifastacus leniusculus, considering the 
predation risk imposed by a top fish predator, the globally invasive largemouth bass Micropterus salmoides. 
We applied the comparative functional response (FR) approach using snails as prey and exposing crayfish 
to water containing predator and dietary chemical cues or not. All crayfish species presented a destabilising 
Type II FR, regardless of the presence of chemical cues. Predation risk resulted in significantly longer han-
dling times or lower attack rates in non-native crayfish; however, no significant differences were observed 
in signal crayfish. We estimated per capita impacts for each species using the functional response ratio 
(FRR; attack rate divided by handling time). The FRR metric was lower for all crayfish species when ex-
posed to predation risk. Rusty crayfish demonstrated the highest FRR in the absence of chemical cues, fol-
lowed by signal crayfish, virile crayfish and red swamp crayfish. By contrast, the FRR of signal crayfish was 
nearly twice that of rusty crayfish and virile crayfish and ten times greater than red swamp crayfish when 
chemical cues were present. The latter result agrees with the well-recognised ecological impacts of signal 
crayfish throughout its globally-introduced range. This study demonstrates the importance of consider-
ing the non-consumptive effects of predators when quantifying the ecological impacts of intermediate 
non-native consumers on prey. The direction and magnitude of the modulating effects of predators have 
clear implications for our understanding of NNS impacts and the prioritisation of management actions.
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Introduction

Non-native species (NNS) are a primary driver of environmental change, with negative 
impacts on individuals to entire ecosystems and severely disrupting important services 
provided by nature (Ricciardi et al. 2013). Economic burdens are also concerning, 
with estimated costs to prevent and control NNS impacts exceeding a hundred million 
dollars per year globally (Pyšek et al. 2020; Diagne et al. 2021), possibly increasing in 
the future (Ahmed et al. 2022). Management and policy strategies rely on identify-
ing the most impactful species to help target prevention efforts and allocate limited 
resources to control or eradicate burgeoning populations. Still, this task is challenging 
due to variations in NNS impacts, based on ecosystem, geographical location, time 
since establishment and individual values (Závorka et al. 2018; Santos et al. 2019). 
Considering the increasing rate of invasions, comparative studies of the context-de-
pendency of NNS impacts will help prioritise which species should be managed in the 
future (Lockwood et al. 2007; Dick et al. 2017a; Seebens et al. 2017).

Quantifying per capita effects of NNS remains central to most frameworks evalu-
ating their ecological impacts (Parker et al. 1999; Kumschick et al. 2015; Griffen et 
al. 2020). Given the challenges of estimating per capita effects, focus has shifted to 
the use of experiments to quantify resource consumption rates as a proxy (Dick et al. 
2017b). Non-native consumers often consume resources more efficiently than their 
native counterparts (Funk and Vitousek 2007; Salo et al. 2007; Paolucci et al. 2013), 
making comparative rates of consumption between native and NNS a useful currency 
to anticipate negative impacts from species introductions (Dick et al. 2014).

The fundamental ecological concept of functional responses (FR) – resource use 
as a function of availability – provides a measurable estimate of the per capita effect 
of a consumer on a given resource (Solomon 1949; Holling 1959; Dick et al. 2014). 
Type I FR describes a linear relationship between consumption and resource availabil-
ity, typical of filter-feeding species (Jeschke et al. 2004). Type II FRs are destabilising 
due to high consumption rates at low resource densities, while Type III FRs promote 
stabilising effects due to low consumption rates when resources are scarce (Oaten and 
Murdoch 1975). The utility of FRs lies in comparing the maximum consumption rate 
between NNS and native trophic analogues in the same environmental context (Dick 
et al. 2014, 2017a), making this approach increasingly applied to quantify and predict 
ecological impacts of NNS (Faria et al. 2023).

The comparative FR approach enables the evaluation of per capita effects in dif-
ferent contexts, allowing more realistic and practical impact assessments (Dick et al. 
2017a; Dickey et al. 2020). Despite this, investigations involving trophic levels be-
yond the focal consumer-resource interaction remain limited (e.g. Barrios-O’Neill 
et al. (2014); Paterson et al. (2015)). Foraging behaviour and consumption rates of 
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consumers are sensitive to the presence of higher-order predators, which invoke trade-
offs in resource acquisition versus mortality risk by predation (Lima and Dill 1990; 
Brown and Kotler 2004). Fear of predation can shape entire ecosystems through trait-
mediated indirect effects (TMIEs) on prey traits, such as behaviour and physiology 
(Werner and Peacor 2003; Peckarsky et al. 2008; Laundré et al. 2010). In some cir-
cumstances, the non-consumptive effects of predators are thought to be as strong as di-
rect consumption for population dynamics, leading to greater system stability (Brown 
et al. 1999) or even causing trophic cascades (Schmitz et al. 2004; Preisser et al. 2005; 
Peckarsky et al. 2008).

Trait-mediated indirect effects are particularly prominent in freshwater ecosys-
tems, likely due to the effective transmission of visual and chemical cues indicating 
predator presence (Preisser et al. 2005). For example, the presence of largemouth 
bass (Micropterus salmoides) altered the foraging behaviour and habitat use of bluegill 
sunfish (Lepomis macrochirus) prey leading to cascading changes in zooplankton com-
munities (Turner and Mittelbach 1990). In another example, rusty crayfish (Faxonius 
rusticus) displayed greater consumption of macrophytes when exposed to chemical 
cues from largemouth bass, suggesting a robust effect of predation risk on crayfish 
foraging behaviour (Wood et al. 2018).

Despite the strong effects of non-consumptive effects in shaping communities, they 
are relatively underexplored compared to consumptive effects in the context of quan-
tifying NNS impacts. Applying the comparative FR approach, we aim to test whether 
the non-consumptive effects of a top predator, the non-native largemouth bass, medi-
ate the consumptive impacts of three non-native crayfish species (Procambarus clarkii, 
Faxonius virilis and F. rusticus) and a native analogue (Pacifastacus leniusculus) preying 
on snails. We hypothesise that non-consumptive effects of a top predator will reduce 
consumption rates of all crayfish species, but to a lesser extent for non-native crayfish 
with a shorter evolutionary history with the predator. The differential response to pre-
dation risk imposed by the largemouth bass may explain the expected higher per capita 
effects of non-native consumers compared to native analogue species.

Methods

Study system

Our study system is a three-level food chain composed by a non-native top predator, 
the largemouth bass, an intermediate consumer represented by non-native or native 
crayfish (Table 1) and native freshwater snails (Gastropoda, Planorbidae) as the basal 
resource. Crayfish are known to be highly sensitive to different chemical cues such as 
predator odour, dietary and alarm cues (Beattie and Moore 2018; Wood et al. 2018; 
Wood and Moore 2020a, b) and these cues show utility in assessing TMIEs (Paterson 
et al. 2013). Thus, we used a combination of predator and dietary chemical cues to 
provide the biological context of predation risk in our comparative FR approach.
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The geographic context of the study is the Pacific Northwest region of the US, 
where all species were sourced (Table 1). The apex predator largemouth bass has a 
native distribution that extends from north-eastern US to northern Mexico (Brown 
et al. 2009), with a long history of intentional introduction for recreational fishing 
in many regions of the US and the world, including the study region dating back 
to the beginning of the 20th century (Stein 1970). The non-native crayfish used in 
this study have a varied history of introductions in the region (Table 1) and are 
amongst the most widespread and harmful invasive crayfish species in the world 
(Twardochleb et al. 2013). Signal crayfish is the most widely distributed native 
crayfish species in the region (Larson and Olden 2011) and also highly invasive 
outside its native range (Usio et al. 2007; Twardochleb et al. 2013; Vaeßen and 
Hollert 2015). All crayfish species used in this study are omnivorous and noctur-
nal, presenting maximum feeding or growth rates between 20 and 30 °C (Crandall 
and Buhay 2008; Westhoff and Rosenberger 2016; Rodríguez Valido et al. 2021; 
Ruokonen and Karjalainen 2022).

Table 1. Crayfish species examined in this study, including scientific and common names, history of in-
troduction in the Pacific Northwest region, sampled populations (coordinates) and carapace length (CL) 
and mass, presented as the mean (SD), of the individuals used in the experiments.

Crayfish Scientific 
name

Common name Estimated time 
of introduction

Sampled population CL 
(mm)

Mass 
(g)

Pacifastacus 
leniusculus

Signal crayfish Native Skykomish River, WA 
(47.8482, -121.8403)

50.2 
(4.3)

36.9 
(10.3)

Procambarus 
clarkii

Red swamp 
crayfish

1970s Pine Lake, WA 
(47.5907, -122.0389)

53.6 
(5.7)

39.7 
(13.0)

Faxonius 
rusticus

Rusty crayfish 2005 Magone Lake, OR 
(44.5486, -118.9119)

41.1 
(3.1)

25.9 
(5.3)

Faxonius 
virilis

Virile crayfish 1980s Rattlesnake Lake, WA 
(47.4308, -121.7715)

46.0 
(3.5)

32.6 
(7.6)
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Animal collection and maintenance

Largemouth bass were collected using electrofishing from Lake Washington, WA 
(47.6469, -122.2991) in October 2022. A total of 33 fish were captured and trans-
ported to the lab facility at the University of Washington, where they were maintained 
in a circular tank of approximately 800 l without shelter (hereafter stimulus tank), aer-
ated and continuously filled with water from Lake Washington, in an open circulation 
system (mean total length = 194 mm, SD = 53). Fish were acclimatised to the stimulus 
tank for two weeks before the beginning of the trials.

A total of 433 crayfish were sampled using baited traps deployed overnight from 
lakes in Washington and Oregon States in October 2022 (Table 1). Crayfish were kept 
in tanks of 256 l separated by species, with a maximum stock density of 30 individuals 
per tank. Stock tanks were continuously filled with water from Lake Washington, in 
an open circulation system and contained abundant structure for shelter. Crayfish were 
fed daily with commercial algae pellets until satiation and were acclimatised for at least 
two weeks before being used in the experiment. Snails used as prey were obtained from 
various commercial pet retailers (shell length mean = 10.3 mm, SD = 2.4). Snails were 
kept in a separate tank, in the same conditions as crayfish.

Functional response experiments

Native and NNS of crayfish were tested for differences in their predatory rate of snail 
prey supplied in seven different initial densities (2, 4, 8, 12, 16, 24 and 40 snails) 
under the presence or absence of waterborne predator and dietary chemical cues (here-
after, predator treatment and control, respectively). Experiments were conducted in 
a fully-randomised design with respect to crayfish species and initial prey densities 
assigned to predator treatment and control. Experimental arenas were round opaque 
tanks (44.5 cm diameter, 42.5 cm height) filled with 10 l of water and no substrate or 
shelter were provided (Fig. 1A). At the predator treatment, water was supplied from the 
stimulus tank containing water from Lake Washington and bass (Fig. 1B), whereas un-
der the control, just water from Lake Washington was supplied (as in the stock tanks) 
(Fig. 1C). Lake Washington water is piped directly from 10 m depth where largemouth 
bass and other fish species are at low abundance. Water was supplied continuously by 
dripping through small hoses (5 mm diameter) to ensure that chemical cues were pre-
sent throughout the experiment (Fig. 1D). Water temperature in experimental arenas 
and stock tanks were similar, all demonstrating natural diel ranges of 12.5°–18.5 °C.

Fish were starved for a week and then fed every other day a diet of crayfish before 
and during the experiments. Small individuals of all crayfish species were supplied 
simultaneously until satiation to enhance the response of crayfish to conspecific di-
etary cues released by the fish (Beattie and Moore 2018; Wood et al. 2018). Crayfish 
were starved in a separate tank for 48 h before use in experiments to standardise hun-
ger levels. After the starvation period, an individual crayfish was allocated to each 
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experimental arena containing one of the seven initial densities of prey and allowed to 
forage for 24 h. The number of remaining prey was recorded at the end of the trials, 
along with the number of attacked, but uneaten prey. Crayfish sex, carapace length 
(CL) and mass were recorded, as well as the water temperature at the end of the trial.

There were seven replicates for each combination of crayfish species, initial density 
of prey and treatment. At least five replicates of each combination were performed in 
the absence of crayfish to account for any background mortality of prey. Prey survi-
vorship in these replicates was 99.9%, thus all prey deaths during experiments were 
attributed to crayfish predation. Crayfish were not reused in the experimental trials 
and replicates where crayfish moulted during the trial or one week after were repeated.

Data analysis

All statistical analyses were carried out in R version 4.1.2 (R Core Team 2021). Func-
tional response analyses were conducted using the number of prey consumed as the 
response variable, under the frair package (Pritchard et al. 2017). For each crayfish 
species × treatment combination, FR type was determined by logistic regression of 
the proportion of prey consumed against initial prey density (Juliano 2001). If the 
proportion of prey consumed decreases with increasing prey density, it produces a 
significantly negative first-order term, indicating a Type II FR; if otherwise, a signifi-
cantly positive first-order term is obtained then it indicates a Type III FR (Juliano 
2001). When the results of the logistic regression were not conclusive, different FR 

Figure 1. Experimental setup used in the functional response trials A experimental arena with a signal 
crayfish and snail prey during a trial B water from the tank containing largemouth bass (left) was pumped 
to a head tank (upper right) and C distributed to the experimental arenas in the predator treatment 
(upper-left row) or water was supplied directly from Lake Washington to the control arenas (lower-right 
row). Blue tanks in the background were stock and starvation tanks where crayfish were kept before being 
used in trials D the water from both treatments was supplied to each experimental arena via individually 
controlled hoses.
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models were fitted directly and compared using Akaike’s Information Criterion (AIC) 
(Pritchard et al. 2017).

Based on these analyses, all FRs were then modelled as Type II. Maximum Like-
lihood model fitting was used to fit data to the Rogers’ random predator equation 
(Rogers 1972) that accounts for the depletion of prey along the experimental duration:

Ne N0 1 exp Neh T

where Ne is the number of prey consumed, N0 is the initial density of prey, a is the at-
tack rate, h is the handling time and T is the time available for predation in days (i.e. 
experimental duration). As Ne is obtained experimentally, the estimated FR parameters 
are attack rate and handling time, representing a measure of successful attacks and the 
time needed for a predator to handle and ingest a prey item, respectively. The Lambert 
W function is implemented to solve the fact that Ne appears on both sides of the equa-
tion (Bolker 2008).

To compare FR parameters a and h between predator treatment and control, we 
used the indicator variables method (Juliano 2001; Pritchard et al. 2017), as:

0 N0 N0exp{ }D j { h Dh j Ne T} Ne

where j is an indicator variable that takes value 0 for control and 1 for predator treat-
ment. The parameters Da and Dh estimate the differences between treatments in the 
value of the parameters a and h, respectively. If Da and Dh are significantly different 
from zero, then the estimated FR parameters differ between treatment and control 
(Juliano 2001). The maximum feeding rate of each crayfish species × treatment com-
bination was calculated as 1/(hT) indicating the maximum number of prey that one 
crayfish can consume in one day (T = 1 day). Additionally, the functional response 
ratio (FRR) was calculated, as a comparative metric of the ecological impact of NNS 
(Cuthbert et al. 2019), dividing the attack rate parameter by the handling time (a/h). 
High values of FRR are indicative of strong per capita impacts, while low values indi-
cate less impactful predators (Cuthbert et al. 2019).

Potential differences in the trial’s water temperature amongst species and initial 
densities of prey were evaluated through Kruskal-Wallis tests, as well as differences 
in crayfish weight and carapace length (CL) amongst species and initial densities 
of prey. Water temperature in trials did not vary amongst species (Kruskal–Wallis 
Χ2(3) = 7.366, p = 0.06) nor in association with the initial densities of prey tested 
(Kruskal–Wallis Χ2(6) = 11.339, p = 0.08). Crayfish mass and carapace length varied 
amongst species (Mass: Kruskal–Wallis Χ2(3) = 96.73, p < 0.001; CL: Kruskal–Wal-
lis Χ2(3) = 224.73, p < 0.001). The effect of crayfish size and sex on the proportion 
of prey consumed was investigated with Spearman’s correlation and Mann-Whitney 
tests, respectively. Crayfish size (Mass: r = 0.01, p = 0.84; CL: r = -0.08, p = 0.12) 
and sex (Mann-Whitney U = 14828, p = 0.74) had no relation to the proportion of 
prey consumed.
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Results

All crayfish species presented a destabilising Type II FR towards snail prey, regardless of 
the presence of chemical cues (Fig. 2). This was confirmed by the significantly negative 
first-order term of the logistic regression, except for red swamp crayfish under predator 
treatment and rusty crayfish under control, where the estimates were non-significant 
(Table 2). For these two specific cases, the FR type was determined by comparing the 
AIC of different model fittings. For red swamp crayfish, Type I had a lower AIC (∆AIC 
= 0.8), while for rusty crayfish, Type II presented a better fit (∆AIC = 1.1) compared 
to other models (generalised FR model, Type I and Type III).

Non-consumptive effects were observed for all non-native crayfish species, except 
for native signal crayfish (Fig. 2). Predation risk lowered the magnitude of the FR, 
which reflects reduced maximum consumption rates estimated in the predator treat-
ment compared to the control (Table 2). These differences were driven by significantly 
longer handling time of snails for virile crayfish (Dh = -0.03 ± 0.008, p < 0.001) and 
rusty crayfish (Dh = -0.02 ± 0.008, p = 0.01) (Fig. 3A) and significantly lower attack 
rate displayed by red swamp crayfish (Da = 0.25 ± 0.09, p = 0.006) (Fig. 3B) in the 
presence of chemical cues. No significant differences in handling time or attack rates 
were evidenced for signal crayfish between treatment and control.

Native signal crayfish demonstrated a greater consumption rate when exposed to 
predation risk compared to non-native crayfish (Fig. 2). Per capita effects of signal 
crayfish on snails, according to the FRR, was nearly twice that of rusty crayfish and 
virile crayfish and ten times greater than red swamp crayfish (Fig. 4, Table 2). By con-
trast, rusty crayfish demonstrated the highest FRR in the control, followed by signal 
crayfish, virile crayfish and red swamp crayfish (Fig. 4, Table 2).

Discussion

Predators can exert non-consumptive effects on prey that are comparable in magni-
tude to consumptive effects (Werner and Peacor 2003; Preisser et al. 2005). Despite 
that, non-consumptive effects remain largely under-studied in evaluations of ecologi-
cal impacts of NNS (Sih et al. 2010). Here, we quantified rates of snail predation by 
multiple non-native and a native crayfish species in the presence or absence of chemical 
and dietary cues from a higher-order predator. We found that predation risk reduced 
maximum consumption rates of snails due to longer handling times or lower attack 
rates, but did not alter the shape of the FR curve. Reduced foraging activity is a com-
mon antipredator behavioural response of crayfish when exposed to predation risk 
(Gherardi et al. 2011b; Beattie and Moore 2018; Kenison et al. 2018). For example, 
red swamp crayfish significantly reduces the time spent feeding by adopting a lowered 
posture after being exposed to largemouth bass cues (Gherardi et al. 2011b).

Native signal crayfish was the only study species demonstrating little evidence for 
the effect of predation risk on the FR magnitude. This outcome is supported by a body 
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of literature suggesting that the response of signal crayfish to predation risk is highly var-
iable and context-dependent (Stebbing et al. 2010; Gherardi et al. 2011b; Beattie and 
Moore 2018; Wood and Moore 2020b). For instance, Stebbing et al. (2010) observed 
altered behaviour as raised posture in signal crayfish exposed to the chemical cues of 
European eels (Anguilla anguilla), but not to European perch (Perca fluviatilis), whereas 
Hirvonen et al. (2007) reported crayfish reduced shelter use when exposed to eel odour. 

Figure 2. Functional responses of native and non-native crayfish feeding on snails under predator treat-
ment and control A native signal crayfish B non-native red swamp crayfish C non-native rusty crayfish 
and D non-native virile crayfish. Lines represent model fit (solid line: predator treatment, dashed line: 
control). Points represent mean consumption and error bars represent ± SE per density (filled circles: 
predator treatment, open circles: control; n = 7 per initial density × treatment combination).
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These studies were performed in the invaded range of signal crayfish; thus, unexpected 
behavioural responses were attributed to naïve juvenile individuals with a lack of evo-
lutionary history with these predators (Hirvonen et al. 2007; Stebbing et al. 2010). 
However, this may not be the case in our study where signal crayfish is native and has 
experience with largemouth bass in the region for over a hundred years. This suggests 
that signal crayfish may better assess the risk posed by a familiar predator using both 
chemical and visual cues (Blake and Hart 1993), whereas all three non-native crayfish 
species responded in a more conservative manner to the presence of chemical cues 
alone in a novel environment (Gherardi et al. 2002; Hazlett et al. 2003). Another 
possible mechanism is related to the larger body sizes of signal crayfish compared to 
other species (both in the wild and individuals used in this experiment: Table 1). There 
is evidence that crayfish can assess predator size through chemical cues (Wood and 
Moore 2020a; Wagner and Moore 2022); thus, the size of the largemouth bass in the 
experiment may have been too small relative to signal crayfish to elicit an antipredator 
behaviour resulting in reduced foraging rates.

All crayfish species presented a Type II FR, which is deemed to destabilise re-
source populations. This result aligns with the known impacts of these species on bio-
mass and abundance of benthic invertebrates, particularly snails (Twardochleb et al. 
2013). Moreover, when applying an FR-based metric to evaluate impacts, our native 

Table 2. Functional response estimates of native and non-native crayfish species under predator treat-
ment and control. The 1st order term of the logistic regression (see Methods), the functional response (FR) 
type, estimated parameters attack rate (a) and handling time (h), the maximum feeding rate (1/hT) and 
the functional response ratio (FRR). * = significant results.

Treatment/ Species 1st order term 
(p-value)

FR 
type

a ± SE (p-value) h ± SE (p-value) 1/hT FRR

Predator 
Signal crayfish (native) -0.0617 

(> 0.001)*
II 2.26 ± 0.23 

(> 0.001)*
0.04 ± 0.004 

(> 0.001)*
28.02 63.5

Red swamp crayfish -0.0078 
(0.29)

I† 0.25 ± 0.05 
(> 0.001)*

0.04 ± 0.037 
(0.271)

24.81 6.1

Rusty crayfish -0.0283 
(> 0.001)*

II 1.16 ± 0.14 
(> 0.001)*

0.03 ± 0.006 
(> 0.001)*

31.37 36.3

Virile crayfish -0.0411 
(> 0.001)*

II 1.64 ± 0.23 
(> 0.001)*

0.05 ± 0.006 
(> 0.001)*

19.81 32.5

Control
Signal crayfish (native) -0.0358 

(> 0.001)*
II 2.08 ± 0.24 

(> 0.001)*
0.03 ± 0.004 

(> 0.001)*
37.53 78.2

Red swamp crayfish -0.0142 
(0.022)*

II 0.50 ± 0.08 
(> 0.001)*

0.04 ± 0.015 
(0.021)*

28.59 14.3

Rusty crayfish -0.0101 
(0.086)

II 1.14 ± 0.13 
(> 0.001)*

0.01 ± 0.006 
(0.061)

94.99 108.0

Virile crayfish -0.0252 
(> 0.001)*

II 1.43 ± 0.15 
(> 0.001)*

0.02 ± 0.005 
(> 0.001)*

47.95 68.8

†Despite being categorised as Type I using AIC, we fitted data to the Type II model to allow comparison of parameters 
between treatment and control.
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comparator species generally showed a higher FRR than non-natives, which con-
tradicts the pattern of invaders being more impactful than their native counterparts 
(Cuthbert et al. 2019). Nevertheless, signal crayfish is itself highly invasive in Europe, 
Japan and the south-western United States, usually reaching higher abundances than 
those observed in its native range (Larson and Olden 2013) and causing significant 
impact through their omnivorous feeding habits (Usio et al. 2009; Twardochleb et 
al. 2013; Vaeßen and Hollert 2015). Our results also align with a previous study that 

Figure 3. Estimated functional response parameters of native and non-native crayfish species under 
predator treatment and control A handling time parameter h and B attack rate parameter a. Points rep-
resent the mean estimate of the model (filled circles: predator treatment, open circles: control) and error 
bars represent ± SE. *p < 0.1 and **p < 0.05.
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experimentally compared the predation rate of signal crayfish and non-native crayfish 
towards Chinese mystery snail (Bellamya chinensis), where native signal crayfish con-
sumed significantly more snails of all size classes than did non-native crayfish (Olden 
et al. 2009). Indeed, previous studies that used the comparative FR approach to assess 
the impacts of signal crayfish where it is non-native found that the species generally 
present higher FR magnitude when compared to European native analogues, such as 
white-clawed crayfish (Austropotamobius pallipes) and noble crayfish (Astacus astacus), 
although impact varied with prey type (Haddaway et al. 2012; Rosewarne et al. 2016; 
Taylor and Dunn 2018; Chucholl and Chucholl 2021). Differences in experimental 
systems, such as diverse prey types and arena sizes, preclude us from comparing the na-
tive signal crayfish findings here to those of invasive populations of the species. Future 
comparative studies of the FRs of native and non-native populations are recommended.

We found significant differences amongst NNS predatory impacts towards prey. 
Rusty crayfish and virile crayfish showed consumption rates similar to those of native 
signal crayfish, whereas red swamp crayfish demonstrated the lowest feeding rate, despite 
the latter species being considered one of the most impactful invasive crayfish in the 
world (Lodge et al. 2012; Twardochleb et al. 2013). Even though all crayfish are con-
sidered omnivorous or polytrophic, there are marked differences in their predominant 
trophic ecology (Reynolds et al. 2013). For instance, red swamp crayfish has a lower 
trophic position than signal crayfish, which is consistent with the perceived impact on 
macrophyte communities of the former species (Matsuzaki et al. 2009; Larson et al. 
2017). Similarly, Madzivanzira et al. (2021) also reported a lower FR magnitude of red 
swamp crayfish preying on catfish fry compared to a native analogue crab. Despite this, it 

Figure 4. The functional response ratio (FRR) of native and non-native crayfish species under predator 
treatment and control. The calculated FRR (a/h) is represented as bars (solid bars: predator treatment, 
shadowed bars: control) and error bars represent propagated standard errors of original estimates of pa-
rameters attack rate a and handling time h.
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has been demonstrated that invasive populations of red swamp crayfish in Europe present 
ontogenetic niche shifts and have opportunistic feeding habits, adjusting its diet to differ-
ent biotic and abiotic contexts, which further explains its success as an invader (Correia 
2002, 2003; Carreira et al. 2017; Jackson et al. 2017). Additionally, red swamp crayfish 
has weaker chelae closing force compared to other decapods, which helps explain its 
preference for feeding on softer resources (South et al. 2020). Our findings support previ-
ously observed impacts of rusty crayfish and virile crayfish on snail communities where 
they are invasive (Dorn and Wojdak 2004; McCarthy et al. 2006; Kreps et al. 2012). The 
greater consumption rate of invasive crayfish is likely associated with selected traits, such 
as boldness and foraging voracity in NNS populations, which are known to differ from 
their native range (Pintor and Sih 2009; Reisinger et al. 2017; Glon et al. 2018).

Previous studies that investigated TMIEs using the FR approach reported mixed 
outcomes. Considering simple habitats, the presence of predator cues reduced con-
sumption rates of the amphipod Echinogammarus marinus, an intermediate predator, 
towards isopod prey (Alexander et al. 2013). By contrast, fish cues did not influence the 
FR’s magnitude of two amphipod species (the native Gammarus duebeni and the inva-
sive Gammarus pulex) towards three different invertebrate preys (Paterson et al. 2015). 
Our study reinforces the need for considering the wider biological context of ecological 
interactions when quantifying the impacts of NNS. Moving forward, we suggest three 
primary ways that future studies could further explore context-dependencies.

First, the effect of abiotic contexts, such as habitat complexity and presence of 
shelter, continues to be a research need. The Type II FR curves reported here align with 
general expectations from the broader literature (Jeschke et al. 2004); however, the 
lack of habitat complexity in experimental arenas may prevent the observation of more 
stabilising Type III responses (Alexander et al. 2012; Griffen 2021). Likewise, gravel 
substrate has been reported to reduce crayfish consumption of pelagic, but not benthic 
prey (Vollmer and Gall 2014; South et al. 2019). Additionally, shelter use is a common 
behavioural response of crayfish to predator cues (Blake and Hart 1993; Garvey et al. 
1994) and could have further magnified the observed differences between the predator 
treatment and control reported in our study.

Second, it would be valuable to evaluate additional biotic contexts, such as alter-
native resource availability, the presence of intra- and inter-specific competitors and 
effects of visual predator cues. For instance, prey preference for different resources, 
such as macrophyte or detritus, could have a significant effect on FRs for omnivorous 
crayfish (Cuthbert et al. 2018; Médoc et al. 2018), ultimately defining their ecologi-
cal impacts when invasive (South et al. 2019; Chucholl and Chucholl 2021). Better 
incorporating the effects of competitive interactions in FR experiments are also fun-
damental to more realistic scaling of NNS per capita effects in the wild (Dickey et al. 
2020; Latombe et al. 2022). As crayfish can respond to predation risk using a variety of 
different cues, the relative importance of visual and alarm cues can also be investigated 
using FRs (Blake and Hart 1993; Ramberg-Pihl and Yurewicz 2020). Third, future 
research investigations discussed above would benefit from the linking of mesocosms 
experiments with in-situ field studies to ensure robust scaling of our understanding 
(Iacarella et al. 2018).
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Conclusions

Ecological impacts of NNS are notoriously challenging to anticipate given a myriad 
of biotic and abiotic context-dependencies that can affect the organismal performance 
in nature. The comparative FR approach has been used to incorporate these context-
dependencies to predict the impact of NNS, through relative comparisons of per capita 
effects (Dick et al. 2014; Cuthbert et al. 2019; Faria et al. 2023). Here we showed that 
the presence of a higher-order predator can alter important parameters of FR, with 
direct effects on maximum consumption rates and predicted impact of intermediate 
non-native consumers. These findings suggest that the broader biological context in 
which consumer activities take place should not be overlooked if we aim to understand 
the ecological impacts of NNS. Likewise, biogeographic origin alone is not the sole 
indicator of impact, as we found that native signal crayfish demonstrated the highest 
estimated impact on prey in the presence of predation risk by a fish predator.

The ecology of fear predicts that the cost of anti-predator behaviour is associated 
with reduced offspring, thus modulating consumer abundance (Zanette and Clinchy 
2019). Given the immense challenges in eradicating and controlling invasive crayfish 
populations (Gherardi et al. 2011a; Manfrin et al. 2019), this raises the interesting 
question of whether chemical cues could be used as an additional management tool 
to reduce their short-term ecological impacts, while other control strategies are being 
implemented. We encourage more research on which and how chemical components 
of predator and dietary cues trigger behavioural responses in crayfish, as these are not 
entirely elucidated (Mitchell et al. 2017), but have potential management applications.
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