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Abstract
The Chinese mitten crab (Eriocheir sinensis) is a prominent aquatic invader with substantial negative eco-
nomic and environmental impacts. The aim of the present study was to re-evaluate the genetic diversity of 
mitten crabs throughout their native and invaded ranges based on publicly available sequence data, and 
assess if multiple introductions or rapid adaptation could be responsible for biologically divergent mitten 
crabs in Northern Europe. We assembled available genetic data of a fragment of the mitochondrial cy-
tochrome c oxidase subunit one gene (COI) for all species of the genus Eriocheir. We applied phylogenetic 
and population genetic analyses to compare native and invasive populations, and to identify possible source 
populations. The phylogenetic reconstruction revealed that five COI sequences from Europe, morphologi-
cally identified as Chinese mitten crab, actually belong to the Japanese mitten crab (Eriocheir japonica), rep-
resenting the first indication of its presence in European waters. All other COI sequences from Europe could 
unambiguously be assigned to the Chinese mitten crab. In some Northern German populations of Chinese 
mitten crabs, genetic diversity was surprisingly high, due to seven unique haplotypes encoding several amino 
acid substitutions. This diversity may reflect a cryptic introduction from an unsampled native location, or 
rapid adaptation in the invaded range. Based on the genetic diversity shared between native and introduced 
range, Feiyunjiang, a tributary of the Yangtze River, emerges as a plausible source population for the original 
introduction of Chinese mitten crabs to Europe. This study highlights the complex and dynamic invasion 
processes of mitten crabs in Europe. We urge to further monitor mitten crab invasions using genetic tools.
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Introduction

Species invasions have altered the global ecological landscape dramatically in the past 
centuries. Their impacts are exemplified by the Chinese mitten crab (Eriocheir sinensis 
H. Milne Edwards, 1853), one of the taxa included in the list of the “world’s 100 worst 
invasive alien species” (Lowe et al. 2000). Native to Russia, China, Korea and Taiwan, it 
has been introduced to Europe at the beginning of the 20th century and subsequently to 
the United States via the ballast water of large shipping vessels (Panning and Peters 1933; 
Clark et al. 1998; Rudnick et al. 2000; 2003; Herborg et al. 2003, 2005; Dittel and 
Epifanio 2009). The economic and ecological effects of its invasion are staggering. While 
declining in abundance in its native range, where it is considered a delicacy and farmed 
extensively (Yuan 2005), it has become an unprecedented nuisance in its introduced 
range. During past mass occurrences, when thousands of crabs migrated from their adult 
inland freshwater habitats to marine spawning grounds, fishermen lost nets and even 
abandoned certain fishing grounds (Rudnick et al. 2000). River banks were destabilized 
due to the extensive burrowing activity of adult crabs (Rudnick et al. 2005). Moreover, 
ecological communities have the potential to be altered by competition with native crabs 
and crayfish (Rudnick et al. 2000; Gilbey et al. 2008; Dittel and Epifanio 2009).

Identifying the source or sources of such widespread invasions is an important 
task for risk assessment and species management. Assigning the geographic sources 
of invasive populations requires geographic differentiation within the native range. 
Such differentiation allowed, for example, to pinpoint the source populations of in-
troduced olive populations in Hawaii and Australia as South Africa and western or 
central Mediterranean, respectively (Besnard et al. 2007). In contrast, if native popu-
lations are genetically homogeneous, or the employed genetic markers are not variable 
enough to detect genetic structure, source populations can only be assigned to broad 
geographic regions. The European shore crab (Carcinus maenas), for example, has 
invaded the East coast of North America twice (Roman 2006). The source of each 
invasion could be broadly categorized as Northern and Southern European, respec-
tively, based on slight genetic structure in the native range and ecological differences 
of the two invading populations. More detailed assignment was hampered by broadly 
distributed common haplotypes of the studied marker in the native range, possibly 
caused by anthropogenic reshuffling of native diversity. In the case of another well-
dated species invasion, the source of introduction of the North American spiny-cheek 
crayfish (Faxonius limosus) to Poland in 1890 could not be determined because the 
invaded range is dominated by a haplotype common throughout the native range 
(Filipová et al. 2011). Similarly, Hänfling et al. (2002) were unable to pinpoint a 
source population for the mitten crab invasion to Europe due to apparent genetic 
homogeneity in the native range. This could have been due to small sample sizes (6 
to 10 individuals sampled per population) and observed low diversity (5 haplotypes 
only) of the employed genetic marker, a fragment of the mitochondrial cytochrome 
oxidase subunit one (COI). Under-sampling the native range is a general problem, 
not only with regard to the number of populations, but also with number of individu-
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als analyzed per population (Muirhead et al. 2008). If only a few individuals are sam-
pled, much of the genetic diversity present at any one site might be missed, obscuring 
assignment probabilities (Muirhead et al. 2008).

Since the initial assessment by Hänfling et al. (2002), several phylogeographic 
studies have characterized the genetic population structure of mitten crabs in their 
large native range (Sui et al. 2009; Wang et al. 2008; Xu et al. 2009). These studies 
detected five monophyletic lineages (Fig. 1). Some authors refer to these lineages as 
different species (e.g. Chu et al. 2003; Wang et al. 2008; Naser et al. 2012; Chen et 
al. 2017), others as subspecies or lineages (e.g. Tang et al. 2003; Xu et al. 2009, Zhang 
et  al. 2012). We do not aim to resolve these taxonomic issues, but use the species 
names as unambiguous labels throughout the text. These lineages have distinct but 
partially overlapping ranges (Komai et al. 2006; Xu et al. 2009): the Hepu mitten crab 
(Eriocheir hepuensis Dai, 1991) is present in Southern China from Hepu to Oujiang, 
the Chinese mitten crab from Tongan in China to Vladivostok in Russia including 
Korea, the Japanese mitten crab (Eriocheir japonica (De Haan, 1835)) is the only line-
age present in Japan, but occurs in Russia and Korea as well, Eriocheir ogasawaraen-
sis Komai, Yamasaki, Kobayashi, Yamamoto & Watanabe, 2006 is restricted to the 
Ogasawara Islands and an additional formally undescribed Japanese mitten crab line-
age is endemic to Okinawa (Fig. 1) (Wang et al. 2008). Based on combined sequence 
data for two mitochondrial gene fragments, population structure was significant in 
Chinese and Japanese mitten crabs, but less so in the Hepu mitten crab (Wang et al. 
2008 using cytochrome oxidase subunit two and cytochrome b as genetic markers; Xu 
et al. 2009 using COI and cytochrome b). The significant population differentiation 
of both Japanese and Chinese mitten crab provides a working baseline for assigning 
source populations. To date, Japanese mitten crabs have sporadically occurred outside 
their native range in the United States only (Benson and Fuller 2019; Jensen and 
Armstrong 2004), but have not been detected in Europe yet. Chinese mitten crabs, on 
the other hand, have invaded both Europe and the United States successfully. Popula-
tion genetic studies of Chinese mitten crabs from the invaded range came to quite 
discordant conclusions. Some studies found that populations within Europe were ad-
mixed (Hänfling et al. 2002; Czerniejewski et al. 2012), while others found significant 
levels of differentiation (Herborg et al. 2007; Otto 2012). In contrast, only a single 
COI haplotype of this species has been reported from the United States (Hänfling 
et al. 2002). While the source populations remained obscure, Hänfling et al. (2002) 
identified three haplotypes that were shared between the native and invaded ranges 
as well as a widespread invasive haplotype unknown in the native range, but found in 
both Europe and the United States. Given the presence of both invasive haplotypes 
detected in the native range as well as invasive haplotypes not detected in the native 
range, they concluded that multiple invasions occurred in Europe, and that the USA 
were likely invaded via Europe.

Invasive populations can become melting pots of novel genetic combinations 
with unforeseen adaptive potential (Geller et al. 2010). While species invasions are 
often associated with a loss of genetic diversity in the introduced range, either be-
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Figure 1. Native distribution of mitten crabs of the genus Eriocheir. Map redrawn from Xu et al. (2009), 
and species ranges interpolated around their sampling sites (marked by grey points) for each lineage to 
highlight range overlaps. Large shipping ports (marked by red asterisks) are most likely invasion sources.

cause only a few individuals invaded the range, and/or because genetic drift in these 
small populations subsequently reduces diversity (Nei et al. 1975), multiple inva-
sions can alleviate the effects of these founding events (Dlugosch and Parker 2008). 
The brown anole lizard (Anolis sagrei), for example, has invaded Florida multiple 
times from geographically distinct source populations. Each source population had a 
unique genetic makeup, and admixture in the invaded range led to genetic diversity 
higher than in populations of the native range (Kolbe et al. 2004, 2007). Similar 
observations have been made for the common ragweed (Genton et al. 2005). Each 
new invasion might bring in new genetic variation, accompanied by novel ecological 
and physiological strategies that warrant attention (Geller et al. 2010).

This could be the case for Chinese mitten crabs. Otto (2012) reported on a novel 
reproductive behavior and physiology in invasive mitten crabs. In contrast to earlier 
reports (Anger 1991), mitten crabs completed their life cycle in the brackish Baltic Sea, 
and post-spawning females migrated back into the rivers, and did not die as in other 
populations. Otto (2012) concluded that this novel behavior might have been caused 
by a cryptic invasion of mitten crabs with different physiological requirements, in line 
with an earlier conclusion of cryptic invasions based on genetic data (Hänfling et al. 
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2002). Both lines of evidence, however, allow for an alternative explanation: invasive 
mitten crabs could have adapted rapidly to the brackish water conditions of the Baltic 
Sea, leading to novel genetic, physiological and behavioral diversity.

Rapid adaptation is emerging as a common feature of species invasions (Card et al. 
2018; Dlugosch and Parker 2008; Prentis et al. 2008). In animals, hybridization be-
tween distinct introduced lineages, allele shifts due to bottlenecks and standing genetic 
variation are likely agents of rapid adaptation. Selection acts fastest on standing varia-
tion, and this process is suggested to be the most common driver of rapid adaptation 
(Prentis et al. 2008). The Burmese Python (Python molurus bivittatus), for example, is 
native to Southeast Asia and was introduced to Southern Florida in the early 1980s 
(Card et al. 2018). Despite several freezing periods that caused high python mortal-
ity, this species has become a successful invader into North America. Investigations 
showed that these freezing events resulted in a shift of python physiology caused by 
changes in allele frequencies in functional genes (Card et al. 2018).

The goal of this study was to re-evaluate the genetic diversity of mitten crabs 
of the genus Eriocheir throughout its native and invaded ranges, and to assess if 
multiple introductions or rapid adaptation might have caused the recent appear-
ance of biologically distinct mitten crabs in Northern Europe. Given a large body 
of previous work, we utilized publicly available mitochondrial sequence data. We 
employed different approaches to assign source populations to the invasive popula-
tions in Europe and the United States. First, we reconstructed phylogenetic rela-
tionships among Eriocheir sequences, grouping thereby invasive individuals into the 
evolutionary lineages known from the native range. In the next step, we assessed 
the native distribution of haplotypes also present in the introduced range. Then, we 
calculated genetic distances for all population pairs, which we use on the one hand 
to evaluate population genetic structure in the native range, and on the other hand 
to identify which native populations are most similar to introduced populations. 
We assume thereby that allele frequencies have not shifted significantly since the 
invasion, and that enough individuals invaded the new range to mirror native allele 
frequencies. Bayesian assignment tests have been proposed as a suitable alternative 
to assign invasive individuals to source populations (Geller et al. 2010). They may 
not assume that populations are in migration-drift-equilibrium (Aktas 2015), but 
are limited to detect very recent gene flow between populations within the past few 
generations (Herborg et al. 2007). Given that the initial invasion occurred around 
30 generations ago (generation times taken from Dittel and Epifanio 2009), neither 
the assumptions of genetic distance measures nor assignment tests are likely to be 
met. Thus, neither approach provides an ideal fit to the pattern of mitten crab inva-
sion, but our inferences are reinforced when several approaches point to the same 
source populations. Lastly, we assessed the potential for adaptive evolution in the 
investigated mitochondrial DNA fragment by identifying amino acid substitution 
patterns in the introduced haplotypes. Mitochondrial genes are not known to be 
directly involved in osmoregulations or other adaptations to low-salinity conditions, 
but the amino acid sequence is highly conserved, being under strong purifying se-
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lection (Meiklejohn et al. 2007; Pentinsaari et al. 2016). Any changes in the amino 
acid sequence we detect are at least unusual and warrant further investigation. Based 
on our findings, we form several hypotheses regarding the mitten crab invasions that 
should be followed up using expanded geographic sampling, genomic approaches 
and historical collections.

Methods

Data preparation

We downloaded all available sequences for the genus Eriocheir and for two outgroup spe-
cies, Neoeriocheir leptognathus and Platyeriocheir formosa (acc. nos. AF316537, AF317326; 
Tang et al. 2003), from NCBI GenBank (http://www.ncbi.nlm.nih.gov/Genbank), and 
sequences of the Chinese mitten crab from the Barcode of Life Data System (BOLD, 
http://www.barcodinglife.org), ignoring sequences already available in GenBank. An 
initial screening showed that most sequences were mitochondrial. Thus, we mapped all 
sequences to a complete mitochondrial genome sequence of a Chinese mitten crab (Gen-
Bank acc. KY041629) in Geneious v. 9.1.8 (Kearse et al. 2012). We chose the genetic 
locus for subsequent analyses for which data existed from both the native and introduced 
range, a fragment of the gene for the cytochrome c oxidase subunit one (COI).

For the phylogenetic reconstruction, we included COI sequences of all Eriocheir 
species and two outgroups. Most GenBank data consisted of haplotypes, not the actual 
sequences for each sampled individual. For the population genetic analyses, we recon-
structed original haplotype frequencies by replicating haplotype sequences according 
to the data reported in the publications, attaching locality information to these se-
quences, and excluding sequences without sampling site information.

Phylogenetic reconstruction

The first step was to assert the species affinities of all sequences within a phylogenetic 
framework. For this, we used all sequences available in GenBank and BOLD. We 
built a maximum likelihood tree with the PHYML (Guindon et al. 2010) plugin in 
Geneious v. 9.1.8 (Kearse et al. 2012) under the General Time Reversible substitution 
model, estimating the transition/transversion ratio, the proportion of invariable sites 
and the gamma distribution parameter. The number of substitution rate categories 
was set to four. Branch support was calculated from 100 bootstrap replicates. The goal 
of this phylogenetic reconstruction was not to understand interspecific evolutionary 
relationships, but to ensure the lineage affinities of the sequences given the recent taxo-
nomic confusion (Chu et al. 2003; Tang et al. 2003; Wang et al. 2008; Xu et al. 2009), 
and similar morphology of the species (Naser et al. 2012).

http://www.ncbi.nlm.nih.gov/nuccore/AF316537
http://www.ncbi.nlm.nih.gov/nuccore/AF317326
http://www.ncbi.nlm.nih.gov/Genbank
http://www.barcodinglife.org
http://www.ncbi.nlm.nih.gov/nuccore/KY041629
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Population genetic analyses: The search for invasion sources

All population genetic analyses were conducted in R version 3.3.3 (R Development 
Core Team 2018). We constructed a parsimony network of all haplotypes for each spe-
cies that was found in Europe or the United States with the function ‘haplotype’ in the 
R package ‘haplotypes’ (Aktas 2015), highlighting native and introduced populations. 
We visualized the geographic haplotype distribution in the native and introduced 
range by adapting available scripts for haplotype networks. We then identified haplo-
types found in both the native and introduced range and evaluated their distribution 
in the native range to identify possible sources for invasion.

For Chinese mitten crabs, the species with the most complex invasion history, we 
conducted further population genetic analyses to understand invasion patterns and get 
additional support for probable source populations. We compared haplotype and nucle-
otide diversity for all sampling sites, which we also refer to as populations. We wrote our 
own function to calculate haplotype diversity of each population based on the formula 
of Nei and Tajima (1981), and used the function ‘nuc.div’ of the ‘pegas’ package (Paradis 
2010) to calculate nucleotide diversity (Nei 1987). We assessed if diversity indices were 
significantly different between native and introduced populations using standard ANO-
VA. We calculated Tajima’s D, which may indicate population size changes or selective 
sweeps, using the function ‘tajima.test’ of the ‘pegas’ package (Paradis 2010). Significant 
deviations from zero were estimated based on a beta distribution (Tajima 1989).

We calculated genetic differentiation between all population pairs as Φst and Jost’s 
D with the functions ‘pairwiseTest’ of the package ‘strataG’ (Archer et al. 2016), and 
the function ‘pairwise_D’ of the ‘mmod’ package (Winter 2012), respectively. Φst is 
a derivative of the classical fixation index Fst, developed for mitochondrial haplotype 
data (Excoffier et al. 1992). We estimated significant deviations from zero (no differ-
entiation between population pairs) by comparison with an empirical distribution of 
Φst values based on 1000 permutations. Jost’s D provides a more accurate measure of 
population differentiation when genetic diversity is high and the number of unique 
alleles per population is large (Jost 2008). Significance was assessed by bootstrapping 
populations across 1000 replicates. Each measure of differentiation resulted in a large 
number of pairwise comparisons, which are difficult to interpret. Therefore, we visu-
alized overall population similarity with Metric Multidimensional Scaling, using the 
function ‘cmdscale’, and with hierarchical cluster analysis, using the function ‘hclust’. 
Both functions are part of the R package ‘stats’. The analyses of population structure 
served on the one hand to assess how differentiated the native populations were, and 
therefore to indicate how narrowly we might be able to pinpoint the sources of in-
troduction. On the other hand, we identified the native populations that were most 
similar to introduced populations as candidate source populations for the invasions.

We tested whether the native populations were sufficiently diverse to confidently 
assign individuals from the invaded range using the R package ‘assignPOP’ (Chen 
et al. 2018), which employs supervised machine learning to evaluate the discrimina-
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tory power of genetic or non-genetic data by resampling cross-validation. This means 
that individuals from each population were randomly divided into training and test 
sets, and assignment tests were repeated through resampling training individuals 100 
times. We used the R function ‘assign.MC’ to conduct Monte Carlo cross validation 
using 80% of individuals from each population as training data. The proportion of 
correctly assigned individuals provides an estimate of assignment accuracy, which we 
calculated with the function ‘accuracy.MC’. In case of sufficiently high discriminatory 
power, we would assign individuals from the invaded range to native populations us-
ing the function ‘assign.X’.

Amino acid substitutions: Indication of the potential for adaptation

We extracted the DNA sequence alignment for the haplotypes, which was generated 
during the construction of the parsimony network (function ‘haplotype’ of pack-
age ‘haplotypes’ and function ‘write.dna’ of package ‘APE’) (Aktas 2015; Paradis 
et al. 2004) and imported it into Geneious v. 9.1.8 (Kearse et al. 2012). We mapped it 
to the complete mitochondrial sequence of a Chinese mitten crab from China (Gen-
Bank acc. KY041629), and translated the DNA sequences to their amino acid se-
quence. This translation allowed us to identify amino acid substitutions. We assessed 
the directionality of change from the most parsimonious ancestral haplotype using the 
parsimony network constructed earlier.

Results

Data sources

On September 25, 2018, we downloaded a total of 1020 sequences for the genus 
Eriocheir from GenBank, including 11 complete mitochondrial genome sequences. 
From these, we extracted 106 COI sequences after aligning all sequences to the com-
plete mitochondrial genome sequence of a Chinese mitten crab from China (Li et al. 
2016). In addition, we included seven COI sequences of Chinese mitten crabs from 
BOLD that were not available in GenBank. Prior to analyses, we removed sequence 
AF317334 of a Hepu mitten crab because it had unusually many substitutions to-
wards one end of the sequence (a sign of poor sequence quality), and discarded se-
quence CBCC039-11 from BOLD because it was shorter than the other sequences, 
but otherwise of the same haplotype and sampling site as CBCC049-11. None of 
the remaining sequences translated any stop codons, which would have indicated 
sequencing errors or the presence of nuclear pseudogenes.

The final alignment for the phylogenetic reconstruction contained 141 COI se-
quences (553 bp long) deposited in GenBank and BOLD under the names of the 

http://www.ncbi.nlm.nih.gov/nuccore/KY041629
http://www.ncbi.nlm.nih.gov/nuccore/AF317334
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following species: 2 sequences of E. ogaswaraensis (Xu et al. 2009), 45 sequences of 
Japanese mitten crabs (Tang et al. 2003; Xu et al. 2009), 6 sequences of Hepu mitten 
crabs (Chu et al. 2003; Tang et al. 2003; Naser et al. 2012; Wang et al. 2016), 82 
sequences of Chinese mitten crabs (Hänfling et al. 2002; Chu et al. 2003; Tang et al. 
2003; Sun et al. 2005; Xu et al. 2009; Czerniejewski et al. 2012; Otto 2012; Zhang 
et al. 2015; Raupach et al. 2015; Li et al. 2016; Wang et al. 2016) and two sequences 
of the outgroup species.

For the population genetic analyses, we removed the following sequences without 
sampling site information: AF105247, FJ455507, NC_011597, and FJ455505. The 
final COI dataset for population genetic analyses contained 455 sequences of Chinese 
mitten crabs from 45 populations belonging to 20 haplotypes and 38 COI sequences 
of Japanese mitten crabs from 8 populations belonging to 14 haplotypes. We recon-
structed the population haplotype frequencies only for these two species because we 
wanted to infer the invasion sources of European and US invasions. The population-
specific sequence information for Japanese and Chinese mitten crabs are summarized 
in Suppl. material 1: Tables S1 and S2, respectively.

Phylogenetic reconstruction

Our phylogenetic reconstruction recovered five main lineages of the genus Eriocheir, 
in agreement with previous phylogenetic studies (Xu et al. 2009; Naser et al. 2012) 
(Suppl. material 2: Fig. S1). For legibility, we provide the phylogenetic reconstruc-
tion with haplotypes only, highlighting their occurrence in the invaded range (Fig. 2). 
Haplotypes from invasive individuals of Eriocheir belonged to Japanese mitten crabs 
(Europe), Chinese mitten crabs (Europe and North America) and Hepu mitten crabs 
(Western Asia). The invasion of Hepu mitten crabs into Iraq has been discussed in de-
tail elsewhere (Naser et al. 2012), and we focus our analyses on Chinese and Japanese 
mitten crab lineages.

The occurrence of Japanese mitten crabs outside of their native range has not 
been reported previously. The phylogenetic reconstruction recovered that five Euro-
pean individuals identified as Chinese mitten crab actually grouped with Japanese 
mitten crabs (Fig. 2). One crab was collected in Germany in 2009 (Raupach et al. 
2015), one in Poland in 2015 by Dagmara Wojcik-Fudalewska (BOLD acc. OZ-
IMP066-15), and three individuals caught in Holland and obtained from a seafood 
retailer were studied by Cristian Bernardi of the Universita degli Studi di Milano in 
2011 (BOLD acc. CBCC038-11, CBCC039-11, CBCC040-11). Sequences of the 
Polish and Dutch individuals were only available in BOLD (http://www.boldsys-
tems.org), not in NCBI GenBank, and have, to our knowledge, not been part of 
scientifically published studies. The origin of the latter was indicated in BOLD am-
biguously as “Italy, Holland” without geographic coordinates but clarified in direct 
communication with C. Bernardi.

http://www.ncbi.nlm.nih.gov/nuccore/AF105247
http://www.ncbi.nlm.nih.gov/nuccore/FJ455507
http://www.ncbi.nlm.nih.gov/nuccore/NC_011597
http://www.ncbi.nlm.nih.gov/nuccore/FJ455505
http://www.boldsystems.org
http://www.boldsystems.org
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Figure 2. Maximum likelihood tree of mitten crab COI haplotypes. Haplotypes found in the invaded 
range are color-coded based on the country of collection. Numbers on branches represent bootstrap sup-
port. Branches without numbers have less than 50% bootstrap support. We omitted the outgroups from 
the figure to save space.
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Population genetic analyses

We identified 14 haplotypes for Japanese mitten crabs, labelled H1 to H14 (Fig. 3B). 
The most common haplotype, H1, occurred in all populations but Shimonoseki, Ja-
pan. The invasive individuals found in Germany, Poland and Holland also had this 
haplotype, thus limiting our ability to assign a more detailed source population to 
invasive Japanese mitten crabs, and not meriting further population genetic analyses.

We identified a total of 20 haplotypes for Chinese mitten crabs (Fig. 3A). Of 
these, nine haplotypes were found only in the native range, seven haplotypes only 
in Europe and four haplotypes in both native and introduced ranges. The geo-
graphic distribution maps visualize that haplotypes found only in the native region 
(blue colors) are common in central and northern Asia (Fig. 4A). Most of Europe 
is dominated by three of the four haplotypes shared between the native and intro-
duced region (H1, H2, H4), which are more or less common in the native range: 
H1 was widespread in both the native and introduced range, thus providing little 
detail about the source of invasion (Fig. 4). H2 has a widespread distribution in 
its native range, found in two northern locations, Dalian City and Wuhu, and two 
central locations, Liaohe and an unspecified part of the Yangtze River (Fig. 4A, 
Suppl. material 2: Fig. S2).

In the introduced range, H2 was found in two individuals only, one sampled in 
the Weser river near Oldenburg and the other in the Elbe river in Brandenburg, sug-
gestive of its overall low frequency in the introduced range (Fig. 4D, Suppl. material 
2: Fig. S2). H3 was reported from several central Chinese locations (Feiyunjiang, 
Hangzhou, Nantong, Yancheng, and Xhenjiang), and was widespread in Europe 
(Fig. 4, Suppl. material 2: Fig. S3). H4 was also widespread in Europe but reported 
in the native range only from Feiyunjiang (Fig. 4, Suppl. material 2: Fig. S4). In 
summary, three widespread invasive haplotypes were found in Feiyunjiang, making 
it a plausible main source for the invasion. 

Several Northern German populations are genetically distinct: Aukrug, Eckernfo-
erde, Eider, Finkenwerder, Flemhude, Schlei, and Soholmer Au (marked with an aster-
isk in Fig. 4C, D). These populations contained most of the haplotypes not detected 
in the native range, which we colored in green (compare Fig. 4A and C). In contrast to 
the European populations, the documented diversity in the US populations is lower. 
The large, established populations of the West coast seem to consist of a single haplo-
type, H4 (Fig. 4B), while a single individual sampled from an unestablished popula-
tion on the East coast of the United States has a different haplotype (H3).

Overall haplotype diversity for Chinese mitten crabs was 0.832, and ranged from 
0 to 0.805 per population (Table 1). Overall nucleotide diversity was 0.00384, and 
ranged from 0 to 0.00475 (Table 1). Introduced populations did not have lower hap-
lotype diversity than native populations (Df = 1, F-value = 0.46, p-value = 0.505), nor 
did the nucleotide diversity between native and introduced populations differ (Df = 
1, F-value = 0.453, p-value = 0.508). Tajima’s D ranged from −1.159 to 2.315 per popu-
lation (Table 1), and was not significantly different from zero in all but one population 
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Figure 3. Parsimony networks for Chinese and Japanese mitten crabs. Each circle represents a haplotype, 
and the size of the circle is proportional to the abundance of this haplotype A Chinese mitten crab: The 
smallest circle (e.g. H8) contains a single sequence, while the largest circle (H1) contains 161 sequences 
B Japanese mitten crab: The smallest circle (e.g. H4) contains a single sequence, while the largest circle 
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invasive haplotype H2. Scale bars: 250 km (A, B, D). 25 km (c).

(Soholmer Au, D = 2.315, p-value = 0.021). In some cases, this could be the result of 
low sample size, which reduces the power to detect deviations from the null expectation.

A total of 9 haplotypes were private. They were distributed among four native 
sites (Liaohe: H6, H7, H8; Nantong: H9; Vladivostok: H18, H19; Geumgang: H20) 
and two introduced sites (Thames: H11; Eider: H15). Estimates of population dif-
ferentiation among native populations with five or more sampled individuals revealed 
significant population structure across the native range (Suppl. material 1: Table S3). 
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Table 1. Results of population genetic analyses of Chinese mitten crab (Eriocheir sinensis) populations 
from sampling sites with more than five sampled individuals.

Sampling site n h Haplotype 
diversity

Nucleotide 
diversity

Tajima’s D D p-value

Native range
Feiyunjiang, China 10 3 0.600 0.002 0.473 0.636
Hangzhou, China 6 3 0.733 0.003 −0.057 0.954
Liaohe, China 16 6 0.783 0.003 0.095 0.924
Nantong, Yangtze, China 10 4 0.778 0.004 1.032 0.302
Oujiang, China 11 1 0.000 0.000 NA NA
Tongan, China 8 1 0.000 0.000 NA NA
Zhenjiang, Yangtze, China 8 2 0.536 0.002 1.449 0.147
Vladivostok, Russia 10 2 0.467 0.003 1.229 0.219
Geumgang, China 15 2 0.133 0.000 −1.159 0.246
Invaded range
Thames, England 15 4 0.714 0.003 0.666 0.505
Aukrug, Germany 16 2 0.233 0.002 −0.744 0.457
Eckernfoerde, Germany 18 2 0.425 0.001 0.870 0.385
Eider, Germany 45 5 0.805 0.005 1.925 0.054
Finkenwerder, Elbe 40 4 0.729 0.003 0.758 0.448
Flemhude, Germany 53 6 0.766 0.004 1.171 0.241
Hemmelsdorf, Germany 10 1 0.000 0.000 NA NA
Laascher See, Germany 15 3 0.676 0.002 1.386 0.166
Oldenburg, Weser, Germany 14 4 0.648 0.002 0.683 0.495
Osterholz, Elbe, Germany 15 3 0.676 0.002 1.386 0.166
Schlei, Germany 11 3 0.655 0.004 0.821 0.412
Soholmer Au, Germany 36 3 0.679 0.005 2.315 0.021
Tagus, Portugal 16 3 0.342 0.001 −0.708 0.479
Sacramento, USA 7 1 0.000 0.000 NA NA
San Francisco, USA 18 1 0.000 0.000 NA NA

Abbreviations: n: number of available sequences/individuals sampled; h: number of haplotypes.

Jost’s D ranged from 0 to 0.215 and Φst from 0 to 1 (Suppl. material 1: Table S3). The 
overall pattern of relative differentiation was very similar between the two measures 
(Suppl. material 1: Table S3). Vladivostok in Russia and Geumgang in South Korea 
were significantly differentiated from all other native populations, and from each other. 
Some populations were undifferentiated with either distance measure, and clustered 
closely: 1) Oujiang and Tongan, both monotypic for haplotype H1, and 2) Hangzhou, 
Nantong and Liaohe.

We used these pairwise genetic distances to identify which introduced populations 
were genetically similar to native populations, representing potential sources of the 
invasion. In general, populations dominated by the same haplotype cluster together. 
The two monotypic Chinese populations, Oujiang and Tongan, cluster together with 
the German populations from Hemmelsdorf, Tagus and Eckernfoerde (Fig. 5). A 
second large cluster consists of several non-native populations from Germany and 
England and the Chinese population from Feiyunjiang and Zhenjiang (Fig. 5). These 
populations are undifferentiated with regard to Jost’s D, which ranged from 0 to 
0.003, and Φst, which ranged from 0 to 0.035. The Northern German populations 
Aukrug, Eckernfoerde, Schlei and Soholmer Au are significantly differentiated from 
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Figure 5. Visualization of genetic population similarity based on pairwise genetic differences calculated 
as Jost’s D values. A multi-dimensional scaling plot B hierarchical cluster analysis dendrogram. Asterisks 
denote Northern German populations that are dominated by haplotypes not found in the native range.

each other and all other populations. In the MDS plot of the first two coordinate 
axes (Fig. 5A), the Schlei population appears to lie within the first large cluster, but it 
is differentiated well by the third axis (Suppl. material 2: Fig. S5). Similarly, the US 
populations are differentiated from all other populations. In the introduced range at 
large, Jost’s D ranged from 0 to 0.234, and Φst from 0 to 1. Within Europe, Jost’s 
D ranged from 0 to 0.234, and Φst from 0 to 0.691, making European populations 
much more differentiated than native populations.

The Monte Carlo cross validation procedure revealed little power to discriminate 
between source populations with assignment tests. The assignment accuracy averaged 
across replicates was 0.032. Thus, we did not attempt to assign invasive individuals to 
any particular native population with this method.

Amino acid substitutions

Amino acid substitutions took place in eight COI haplotypes: H5, H9, and H12 to 
H17 (Suppl. material 2: Fig. S6). Of these, the haplotypes H5 and H9 were only 
found in China, while H12 to H17 were the haplotypes only detected in Northern 
Germany. Based on the parsimony network, most substitutions occurred convergently. 
Only H15 evolved directly from H17. We can further infer the directionality of these 
substitutions from the haplotype network. It stands out that both proline and threo-
nine evolved repeatedly in this small fragment of the COI gene.
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Discussion

The Japanese mitten crab entered the European stage more than a decade ago

To our knowledge, we provide the first report of Japanese mitten crabs (Eriocheir japon-
ica) outside their native range. Our phylogenetic reconstruction placed five sequences 
identified as Chinese mitten crabs clearly within the Japanese mitten crab lineage. The 
sequences were collected in Holland, Germany and Poland between 2009 and 2015. 
The German individual was collected inland in the Rhine river, and may not have 
necessarily migrated successfully to the North Sea for reproduction. The Dutch and 
Polish individuals were collected closer to the North and Baltic Sea, suggestive of an 
established, reproducing population of Japanese mitten crabs in Europe for the past 
ten years or more.

At first, it seems surprising that this invasion of Japanese mitten crabs has remained 
cryptic for at least a decade, but the morphological similarity between Chinese and 
Japanese mitten crabs did not make it obvious (Fig. 6) (Guo et al. 1997; Jensen and 
Armstrong 2004; Naser et al. 2012). Moreover, all European sequences of Japanese 
mitten crabs were generated as part of sequencing efforts of between one and a few 
Eriocheir specimens (see BOLD records), diluting the meaning of the high genetic dis-
similarity to other Chinese mitten crab sequences. Raupach et al. (2015), for example, 
actually discussed the high intraspecific genetic diversity of mitten crab sequences in 
their large barcoding study from German waters. They noted that the observed high 
genetic distances in their sample of Chinese mitten crabs were caused by a single speci-
men, which we assigned to the Japanese mitten crab based on its COI sequence. Mor-
phological species identification placed this individual clearly as a Chinese mitten crab 
(Raupach et al. 2015). Similarly, according to the shape of the interocular carapace rim, 
the Dutch individuals would be identified as Chinese mitten crabs (Guo et al. 1997), 
but their COI sequences belong to Japanese mitten crabs. Interestingly, the Barcoding 
of Life Data System itself recognized that the five sequences in question clustered with 
Japanese mitten crabs, not with Chinese mitten crabs (http://www.boldsystems.org/
index.php/Public_BarcodeCluster?clusteruri=BOLD:AAA8754). This discordance be-
tween morphology and mitochondrial sequence data may be due to the taxonomic 
confusion among Eriocheir species (Costa et al. 2007).

Cryptic morphology is a general problem in biological invasions that can only be 
resolved with molecular data. Bastrop and Blank (2006), for example, used mitochon-
drial sequence data to show that in addition to the invasive polychaete Marenzelleria 
neglecta, two more species of the genus had invaded the Baltic Sea unnoticed. The 
invasive populations of the virile crayfish consist completely of a lineage not yet iden-
tified in the native North American range (Filipová et al. 2010). The cosmopolitan 
reed Phragmites australis represents an unusual case of cryptic invasion, where a non-
native haplotype is currently replacing the native genetic diversity in North America 
(Saltonstall 2002). The hypothesis of cryptic morphology is therefore clearly appealing 

http://www.boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:AAA8754
http://www.boldsystems.org/index.php/Public_BarcodeCluster?clusteruri=BOLD:AAA8754
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Figure 6. Mitten crabs collected in Holland in 2011. A Individual carrying mitochondrial DNA (mtD-
NA) of the Japanese mitten crab, morphologically identified as Chinese mitten crab, (BOLD accession: 
CBCC040-11, museum catalogue no: Universita degli Studi di Milano, Ispezione degli Alimenti di Orig-
ine Animale MALAC:00040) B Chinese mitten crab (BOLD accession: CBCC037-11, museum cata-
logue no: Universita degli Studi di Milano, Ispezione degli Alimenti di Origine Animale MALAC:00037). 
Photographs by Cristian Bernardi published under CC BY-NC 3.0 license.

and plausible. However, it is puzzling that all individuals identified as Japanese mitten 
crab at the sequence level were morphologically undoubtedly identified as Chinese 
mitten crabs. This discordance could hint at hybridization and subsequent introgres-
sion between Chinese and Japanese mitten crabs, resulting in morphological Chinese 
mitten crab hybrids carrying Japanese mitten crab mitochondrial genomes. This hy-
bridization could have taken place either in the native or the invaded range. In such 
a case, pure Japanese mitten crabs do not necessarily have to form a stable population 
in Europe. Rather, their mitochondrial genomes would occur in some proportion of 
individuals with predominantly Chinese mitten crab genomes. Interspecific hybridiza-
tion of another global invader has been confirmed for the Shore crab genus Carcinus 
using a combination of mitochondrial sequence data and nuclear microsatellite data 
(Darling 2011). To understand the current distribution of Japanese mitten crabs, pos-
sible hybrids between Japanese and Chinese mitten crabs or introgressed individuals in 
Europe, future systematic sampling, mitochondrial and nuclear sequencing of mitten 
crabs is highly warranted.

Significant genetic structure in the native and introduced range of Chinese 
mitten crabs

Much work has been conducted on the phylogeography of mitten crabs in their native 
range (Hänfling et al. 2002; Wang et al. 2008; Sui et al. 2009; Xu et al. 2009; Zhang 
et al. 2012; Zhang et al. 2014). Our re-analysis was therefore only aimed at assessing 
how useful the COI marker alone is to differentiate between populations, a prerequi-
site for identifying source populations with certainty (Geller et al. 2010), and to com-
pare native and introduced diversity. We found that native populations are weakly but 



Sarah Hayer et al.  /  NeoBiota 50: 1–29 (2019)18

significantly differentiated, but this differentiation does not align with geography or 
river system, as noted previously (Sui et al. 2009). One reason might be the exchange 
of crabs for commercial farming. Their extended planktonic larval period could also 
contribute to weak levels of genetic differentiation. This somewhat "chaotic" distribu-
tion of haplotypes makes it impossible to extrapolate the geographic distribution of 
genetic diversity, and precludes the assignment of broader regions as source regions. 
We can only discuss specific sampling sites as being more or less likely sources of intro-
duction, as the genetic makeup of even the closest neighbor of any one site can be very 
different, e.g. in the case of Feiyunjiang and Oujiang. A more extensive sampling with 
regard to number of individuals and populations is certainly desirable to understand 
the patterns of diversity in the native range better. The fact that most populations were 
differentiated provides nonetheless a working baseline to assign source populations.

Most of the native populations had positive Tajima’s D values, albeit not signifi-
cantly different from zero, which is generally interpreted as populations being in muta-
tion-drift equilibrium. It suggests that populations did not expand, shrink, or undergo 
recent selective sweeps at the mitochondrial genome. This pattern of genetic stability is 
anticipated for native populations. That we find the same pattern in most introduced 
populations is unexpected. We would expect to find negative Tajima’s D values, indica-
tive of recent bottlenecks. It seems unlikely that the introduced populations are already 
at equilibrium. Instead, an invasion of sufficient number of individuals that brought 
over a substantial amount of the native diversity could explain the observed pattern, 
either in a single or in multiple introduction events. In concordance with this idea, ge-
netic diversity is not significantly lower in invasive populations, as would be expected 
when few individuals invade a new range.

The most distinct feature of the introduced range is the presence of seven hap-
lotypes that have not been sampled in the native range. These haplotypes appear re-
stricted to Northern Germany. Their distribution dominates the population structure 
in Europe, which divides populations with and without those unique alleles. We re-
covered more population structure than identified by Hänfling et al. (2002), and echo 
the findings of Otto (2012), who generated and analyzed the Northern German COI 
data initially. She did not take the other known data into account, however, thus limit-
ing her conclusions.

Plausible source populations of the Chinese mitten crab invasion

Hänfling et al. (2002) conducted the first search for source populations of the Euro-
pean and US invasion. Using COI sequence data, they identified five haplotypes that 
occurred in both China (three populations sampled) and Europe (five populations 
sampled). They did not find significant population structure in either the native or in-
troduced range, but observed a significant differentiation between those two. This was 
due to a haplotype common in all European and US populations, but absent in the na-
tive range. They used the presence of this haplotype as evidence for multiple introduc-
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tions into Europe, and a secondary introduction of the United States from Europe. We 
identified this haplotype (H4) in one site in the native range, in Feiyunjiang. The other 
two haplotypes from Feiyunjiang (H1 and H3) are also common in Europe and the 
US, making this location the most plausible source of the invasion of those sampled so 
far. Feiyunjiang is located between the large ports of Shanghai and Xiamen (compare 
Figs 1–5), which are suitable donor locations, each of the many departing commercial 
vessels from their ports acting as potential invasion vectors. The results of the analysis 
of pairwise population differentiation are concordant with these findings. Feiyunjiang 
clusters with several of the introduced populations, and is not significantly differenti-
ated from them. The last haplotype found in both native and introduced range is H2. 
It was not detected in Feiyunjiang, but was present in Dalian City, Wuhu, part of the 
Yangtze River and Liaohe. Any of these locations could therefore be the source popula-
tion of a second independent invasion into Europe. Unfortunately, the first three sites 
are only represented by two individuals each, making detailed comparisons of haplo-
type compositions between these native and invaded sites impossible. Alternatively 
to a second independent introduction event from a different location, this haplotype 
might occur in low frequencies in Feiyunjiang, but was not recovered there due to 
small sample sizes. In this case, the colonization of Europe by all the above-mentioned 
haplotypes could have been due to a single successful invasion event. Given the low 
frequency of the haplotype H2 in the invaded range, this is clearly a possibility. In gen-
eral, the large native range is under-sampled with regard to the number of individuals 
and number of populations (Muirhead et al. 2008; Geller et al. 2010). This becomes 
especially important given the weak and chaotic population structure across the native 
range, which limits our power to predict the region of origin. It is, however, highly 
unlikely that the northern range of Chinese mitten crabs, e.g. Russia and South Korea, 
where we recovered only haplotypes absent from Europe and the United States, was 
the source of the invasion.

The US populations of Chinese mitten crabs have been speculated to be second-
arily introduced from Europe (Hänfling et al. 2002). Based on our analyses, this re-
mains a possibility, as the West coast populations are of a single haplotype, which was 
only found in Feiyunjiang in the native range, but is widespread in Europe. However, 
whatever led to the successful invasion of Europe from Feiyunjiang (or another native 
population with similar haplotype composition) might also have led to the successful 
invasion of the United States. The low genetic diversity of these populations certainly 
argues for the invasion of few individuals. In contrast, the genetic diversity of Euro-
pean invaders is indicative of the invasion of several individuals. A single sequence 
available for a Chinese mitten crab from the East coast of the United States from an 
unestablished population (Benson and Fuller 2019) is genetically distinct from the 
monotypic West coast population, advocating for an independent invasion of the East 
coast. The East coast haplotype (H3) is present in Europe, but is also relatively wide-
spread in China, making both a secondary invasion from Europe, or a direct invasion 
from Asia, equally likely. A secondary invasion from the West coast of the United 
States is, however, highly unlikely.
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The analyses of genetic distances between populations echo on the one hand some 
of the results obtained by the comparison of haplotype identity between native and 
invaded ranges, and highlight, on the other hand, some of the difficulties associated 
with population genetic analyses of non-equilibrium scenarios pervasive during inva-
sions. We found two clusters of mixed native and introduced populations: the first 
cluster contained populations from across Europe and Feiyunjiang. In line with the 
results of haplotype identity, Feiyunjiang is therefore a plausible source population. 
The second cluster contains populations monotypic for the most widespread haplo-
type. In this case, the native populations of Tongan and Oujiang have the same genetic 
makeup as the introduced populations of Hemmelsdorf, Eckernfoerde and Tagus, but 
this similarity may well be due to small populations and strong drift in the introduced 
populations, which could have eradicated much of the genetic diversity. Thus the sec-
ond cluster of native and introduced populations cannot be interpreted as a separate 
introduction.

The distribution and origin of the uniquely Northern German haplotypes

The restricted distribution of the haplotypes H12 to H17 in northern Germany could 
either reflect a snapshot taken during an ongoing expansion or ecological restrictions. 
The most recent samples included in our analyses are those Northern German sam-
ples with unique haplotypes collected between 2008 and 2010 (Otto 2012). No sites 
outside of Northern Germany were sampled, which means these haplotypes may have 
already spread throughout the remaining European range. One indication of a recent 
origin or arrival of these haplotypes can be gained via a comparison with other studies 
that included sites close by. Hänfling et al. (2002) included a site in the Elbe river near 
Osterholz, from which they collected 15 crabs between 1999 and 2000 (see suppl. 
material 1: table S1). This site is downstream from the Finkenwerder site sampled by 
Otto (2012). None of the crabs collected in the Elbe between 1999 and 2000 had any 
of these uniquely Northern German haplotypes that were common between 2008 
and 2010. Herborg et al. (2007) analyzed six microsatellite markers for six European 
populations, including the same Osterholz site. Otto (2012) also analyzed her sam-
ples with microsatellite markers, including four of the markers analyzed by Herborg 
et al. (2007). The raw data are not available (as is so often the case for microsatellite 
data), but at the four common microsatellite loci, the Finkenwerder samples from 
2008–2010 show higher allelic richness (A = 9.2–10.2) than the Osterholz samples 
collected ten years earlier (A = 4.3–9.1) across all four loci. While this is suggestive 
of a recent addition of genetic diversity, it does not preclude a restricted distribution 
of those haplotypes either, as Chinese mitten crabs commonly show genetic structure 
within the same river systems (Herborg et al. 2007; Sui et al. 2009). A broad sampling 
of current mitten crab genetic diversity in the invaded range would clarify how widely 
distributed those haplotypes really are.
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The origin of the haplotypes only found in Northern Germany remains mysteri-
ous. If we interpret the absence of those haplotypes in the Osterholz samples, and the 
presence of two of these haplotypes in the Finkenwerder samples ten years later as the 
recent and simultaneous addition of these haplotypes to Europe, the most plausible 
scenario is a cryptic invasion from an unsampled native site. The source of such a cryp-
tic invasion might be located in the northern range of Chinese mitten crabs. Overall, 
the number of analyzed native populations was rather small given the large range of 
Chinese mitten crabs (Fig. 4A). The available data did not include some large ports, 
such as Tianjin, Nampo, Daesan and Hungnam, all located in the northern range 
of Chinese mitten crabs (Fig. 1), which could be suitable donor areas. Based on the 
known distribution of Chinese mitten crabs, the very large ports around Hong Kong 
can be excluded as the invasion source because Hepu mitten crabs, not Chinese mitten 
crabs, occur in southern China (Wang et al. 2008; Xu et al. 2009) (Fig. 1).

Under a scenario of multiple invasions, the amino acid substitutions we found in 
all of the uniquely Northern German haplotypes evolved in the native range, and were 
introduced during the cryptic invasion. Whether these haplotypes confer indeed a se-
lective advantage cannot be answered with certainty. They may carry, in fact, neutral or 
slightly deleterious mutations but have been swept to high frequencies during a recent 
strong selection event at a linked region of the genome (Smith and Haigh 1974). The 
contemporaneous discovery of a novel physiology and behavior in Northern German 
mitten crabs, which allows them to complete the larval cycle in the brackish Baltic 
Sea (Otto 2012), may not be a coincidence. The expected range expansion caused by 
this novel ecology has already been documented by the recent and widespread occur-
rence of ovigerous females in the Eastern Baltic Sea (Ojaveer et al. 2007). Similarly, 
the occurrence of mitten crabs throughout much of the freshwater system of Sweden 
was hard to explain, invoking long-distance migration of crabs from their North Sea 
spawning grounds (Drotz et al. 2010). We suspect that these crabs belong to the same 
physiological type as the crabs investigated by Otto (2012), and are able to complete 
their larval cycle in the Baltic Sea.

Alternative hypotheses to a novel introduction can explain the origin of these 
uniquely Northern German haplotypes. In our opinion, the second most likely expla-
nation is that the unique haplotypes evolved in the introduced range. Given that all of 
these haplotypes had one to three AAS, these haplotypes might have evolved rapidly 
in the introduced range in response to novel ecological conditions. Moreover, all of 
these uniquely Northern German haplotypes are closest related to a haplotype that was 
already present in Northern Europe (Fig. 3A). An argument against this hypothesis is 
that we would have expected to find some temporal sequence of haplotype evolution, 
with at least a few of the haplotypes occurring in earlier samples. Another hypothesis 
is that these haplotypes have been in Europe since the initial introduction, but either 
only recently increased in abundance, or were always restricted to Northern Germany, 
which had not been sampled before 2008. While genetic structure among sites or sam-
pling years of the same river system exists (Herborg et al. 2007; Sui et al. 2009), crabs 
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have to migrate along rivers to get to their marine mating and breeding grounds. Thus 
some mixing of haplotypes should occur along the river. Given the small sample sizes 
of older sites, a recent expansion of these haplotypes from standing variation is clearly 
possible. It is not obvious, however, why these haplotypes would have remained at very 
low frequencies for about 100 years, since their introduction.

Lastly, we cannot ignore the fact that all sequences with uniquely Northern Ger-
man haplotypes were collected by Otto (2012). If she had fallen prey to sequencing 
errors, we might expect randomly changed bases throughout each sequence, leading 
to many haplotypes present only once, and/or to the presence of stop codons. The fact 
that she sequenced many individuals with the same haplotype, and these translate to 
functional amino-acid sequences, makes sequencing error an unlikely source of these 
haplotypes. Furthermore, DNA fragments with uncertain base calls were sequenced 
in both directions (Otto 2012), which should remove possible sequencing artifacts 
caused by faulty sequencing chemistry (Wares, pers. comm.).

At this point, we cannot determine if the high and unique haplotype diversity of 
Northern Germany is due to novel, potentially adaptive mutations that occurred after 
introduction, or due to multiple invasions. To clarify the origin of the unique haplo-
types, we propose three approaches. Firstly, a more extensive sampling of the native 
range should identify if these haplotypes are present in the native range. Such sampling 
has already taken place (Tang et al. 2003; Sun et al. 2005), but we were unable to incor-
porate these data into our study because they used genetic markers not yet applied to 
the introduced populations. Thus we propose that future genotyping efforts of invasive 
specimens should include these genetic markers as well. Secondly, population genetic 
analyses of invasive mitten crabs from museum collections could identify the temporal 
pattern of haplotype appearance. A sudden appearance of all unique haplotypes during 
the invasion history would hint at a new invasion event, while a stepwise appearance 
of novel haplotypes would be consistent with their evolution within the introduced 
range. Such pattern would, however, also be consistent with multiple additional inva-
sion events, each introducing one or a few novel haplotypes. Lastly, population genom-
ic analyses of native and invasive mitten crabs might reveal if the potentially adaptive 
haplotypes arose within invasive populations, in which case most of the genome of 
introduced Chinese mitten crabs should be undifferentiated and only small regions 
be highly differentiated. In contrast, a second introduction should show a more or less 
even differentiation across the genome. These efforts are aided by the recent publica-
tion of the nuclear genome of Chinese mitten crabs (Song et al. 2016) as well as the 
complete mitogenomes of several mitten crab species (Liu et al. 2015; Li et al. 2016).

Conclusions

This study uncovered complex population genetic pattern of invasive mitten crabs. 
Some of our findings are unambiguous, such as the presence of the mitochondrial 
genome of a second mitten crab species, the Japanese mitten crab, in Europe, suggest-
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ing either a cryptic invasion of this species or previous hybridization between Chinese 
and Japanese mitten crabs. This new European addition was only revealed by our data 
synthesis, which included barcoding data collected from various entities of a few in-
dividuals. The genetic diversity within European populations of Chinese mitten crabs 
remains puzzling, including the presence of several amino acid substitutions in hap-
lotypes found only in Northern Germany. Taken together with the contemporaneous 
occurrence of a novel physiology and behavior in the same populations, it is possible 
that carriers of this haplotype have an adaptive advantage. Given the negative impacts 
of mitten crabs as an invasive species, we can only urge to monitor these invasive 
populations closely, using genetic tools such as the commonly used barcoding locus 
COI (Darling and Blum 2007). Simultaneously, genomic and historical data could 
greatly enhance our understanding of the invasion process. We show that mitten crabs 
in Europe are melting pots of genetic diversity (Geller et al. 2010), making them prime 
targets to study cryptic invasions and possibly also rapid adaptations.
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