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Abstract
While the Galápagos Archipelago is known for its endemic flora and fauna, many introduced species have 
also become naturalised there, especially on the human-inhabited islands. The only amphibian species 
known to have established on the islands, the Fowler’s snouted treefrog (Scinax quinquefasciatus), is thought 
to have arrived about two decades ago. Since then, this treefrog has substantially extended its range to the 
islands of Santa Cruz and Isabela. Our study explores the potential influence of this introduced amphibian 
on native trophic systems on Santa Cruz and identifies potential antagonists likely to control larval frog 
populations. To understand the impact of S. quinquefasciatus as a predator of local invertebrate fauna, we 
performed a stomach-content analysis of 228 preserved adult specimens from seven different localities on 
Santa Cruz. Of the 11 macroinvertebrate orders recorded, Lepidoptera constituted more than 60% of the 
contents. We also identified active predators of S. quinquefasciatus tadpoles: larvae of the endemic diving 
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beetle (Thermonectus basillarus galapagoensis). To determine the efficiency of this predator, we conducted 
predator-prey experiments in ex situ conditions. Tadpole predation was highest after first exposure to the 
predator and significantly decreased over time. Our experimental results demonstrate that although T. b. 
galapagoensis larvae are effective tadpole predators, their feeding saturation rates are likely inadequate for 
frog population control. Our findings provide the first baseline data necessary to make informed ecological 
impact assessments and monitoring schemes on Santa Cruz for this introduced treefrog.
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Introduction

Introduced species, which often transition to invasive species, are considered to be a 
major threat to global biodiversity (Early et al. 2016). The negative impacts of invasive 
species on native biota are particularly severe in insular ecosystems with high influxes 
of human trade and travel (Courchamp et al. 2003), such as the Hawaiian Archipelago 
(Beard and Pitt 2006), Guam (Christy et al. 2007) and Taiwan (Jang-Liaw and Chou 
2015). The Galápagos Archipelago is no exception, with over 1500 established intro-
duced species, many of which are invasive (Toral-Granda et al. 2017). Worldwide, frogs 
represent the highest proportion of the 322 herpetological reported invasions (Kraus 
2009). However, apart from a few well-known examples, such as the cane toad (Rhinella 
marina) or the American bullfrog (Lithobates catesbeianus) (e.g. Laufer et al. 2008; Mea-
sey et al. 2016; Kosmala et al. 2017), amphibian invasions and their impacts on native 
biota are not well studied. Fowler’s snouted treefrog, Scinax quinquefasciatus (Fowler 
1913), represents one of these cases. Basic data on this species are still lacking, despite its 
comparatively long introduction history (Cisneros-Heredia 2018): S. quinquefasciatus 
is assumed to have been introduced to Galápagos in the late 1990s (Snell et al. 1999).

Of the four human-inhabited islands of the Archipelago, S. quinquefasciatus is 
only known to occur on Santa Cruz and Isabela. It was formerly also present on San 
Cristóbal (Cisneros-Heredia 2018), but this could not be confirmed in a recent assess-
ment (Ernst et al. unpubl. data) and breeding populations have never been reported 
on the island.

Pazmiño (2011) reported a close genetic relationship between the population on 
Isabela and several populations in the lowlands of western Ecuador (north of Guayas, 
south of the Manabí and Los Rios Provinces). At least two independent colonisation 
events took place on the islands (Pazmiño 2011); further investigations of these intro-
duction events are currently underway (Ernst et al. in prep).

The ecology and potential impact of S. quinquefasciatus on the native ecosystems 
of Isabela have previously been addressed in Zurita (2004), Vintimilla (2005) and 
Mieles (2006). No information of this kind currently exists for Santa Cruz, which has 
recently experienced agricultural intensification and rapid urbanisation of rural areas 



Trophic interactions of the introduced frog Scinax quinquefasciatus in Galápagos 19

(CGREG 2016). These land-use changes have resulted in the expansion of irrigation 
systems, including water reservoirs that now provide large permanent freshwater habi-
tats. Since these human developments are likely facilitating the successful establish-
ment and spread of S. quinquefasciatus on Santa Cruz, there is an urgent need to study 
the impacts of this species on the resident fauna.

Invasive species often disrupt predator-prey interactions: as a new predator that 
consumes native prey (Krisp and Maier 2005), as a new prey item for native predators 
(Petrie and Knapton 1999; Bulté and Blouin-Demers 2008) or both (Holway et al. 
2002). Here, we address both sides of this trophic relationship by (1) determining and 
quantifying the dietary preferences of adult S. quinquefasciatus via stomach-content 
analysis and (2) identifying potential native tadpole predators and quantifying their 
predation capacity in controlled ex situ experiments.

Methods

Study Area

Our study was conducted in the highlands of Santa Cruz, located at the centre of the 
Galápagos Archipelago (Fig. 1). The first settlers arrived in the highlands between 1910 
and 1938 (Lundh 1995, 1996), subsisting on agriculture and fishing. Over time, the 
human population grew and spread due to fishing and tourism (Epler 2007). Popula-
tion growth, combined with the associated plant invasions, led to the degradation of 
approximately 86% of the highland ecosystems (Trueman et al. 2013).

The highlands of Santa Cruz support greater biodiversity and thus productivity 
than the lowlands, which are more extensive, but drier (Porter 1984). The annual mean 
climatic values for the study sites in the highlands of Santa Cruz for the years 1987 to 
2019 were: 1380 mm for precipitation, 22.2 °C for temperature and 90.3% for rela-
tive humidity (Charles Darwin Foundation, unpubl. data). However, the means for 
these parameters can vary considerably from year to year, due to the El Niño-Southern 
Oscillation (ENSO) phenomenon (Snell and Rea 1999).

This study was conducted from April to May 2017–during the rainy season-at one 
ranch and six agricultural sites in the highlands of Santa Cruz (Fig. 1). Our core site, 
Rancho El Manzanillo, is located 3 km off the main road that connects the airport 
ferry port with the town of Puerto Ayora. This traditionally agricultural ranch has re-
cently become a popular ecotourism destination for spotting wild giant tortoises (Che-
lonoidis porteri) in their natural habitat. In the late 1990s, landowners created several 
artificial ponds to attract tortoises; these water sources now also provide reproductive 
habitats for S. quinquefasciatus. We collected adult frogs and predatory beetle larvae 
within or near water features at Rancho El Manzanillo (hereafter ‘core locality’) and six 
similar agricultural sites (B, C, D, E, F, G; Fig. 1). We conducted the predatory capac-
ity experiments at the core locality.
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Figure 1. Study area and collection sites (red dots) of Scinax quinquefasciatus specimens in the highlands 
of Santa Cruz, Galápagos, Ecuador. A = Rancho El Manzanillo (core locality). B – G = additional collection 
sites within the agricultural area (grey shading) of the island. 1.1) Larvae of the endemic diving beetle Ther-
monectus basillarus galapagoensis. 1.2) Adult of the introduced frog Scinax quinquefasciatus. Not to scale.

Stomach-content analyses

We captured adult and sub-adult individuals of S. quinquefasciatus using Visual (VES) 
and Acoustic Encounter Surveys (AES), as described by Rödel and Ernst (2004), from 
8 pm to 12 am, for 14 consecutive nights. All frogs were euthanised with liquid lido-
caine and fixed in 70% ethanol no more than five hours after capture. Samples were 
then transported to the Charles Darwin Research Station (CDRS), where their diges-
tive tracts were removed following procedures described in Döring et al. (2016). Prey 
items were examined under an Olympus Stereo Microscope SZ61-RT and identified 
to order, using reference material from the Terrestrial Invertebrate Collection of the 
CDRS (ICCDRS 2020). We examined the stomach and intestine content of 228 frogs, 
156 from the core locality and 72 from the six other agricultural sites.

Predatory capacity experiments

For five consecutive days, we surveyed potential larval habitats, including seasonal 
and artificial ponds, for the presence of tadpoles and their potential aquatic predators. 
While we observed Anisoptera (dragonfly) larvae-known to be effective tadpole preda-
tors elsewhere-in some water bodies, they never co-occurred with S. quinquefasciatus 
tadpoles. Since we only observed the endemic diving beetle Thermonectus basillarus 
galapagoensis in the same water bodies, we chose this species as the target organism for 
the following predation experiments.
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In order to (1) ensure that tadpole exposure to beetle predators was novel and 
(2) minimise ontogenetic and interpopulation differences in larval predation re-
sponse (Narayan et al. 2013), we reared the tadpoles used in our experiments rather 
than collecting them from available ponds. To do so, we first captured four amplec-
tant S. quinquefasciatus couples at the core locality and kept them in plastic contain-
ers with 100 ml of mixed water (75% rainwater and 25% pond water). After the 
females had spawned, eggs were transferred to different plastic containers with 200 
ml of mixed water. Hatched tadpoles were used in experiments after they reached 
Gosner stages 21–25 (Gosner 1960). From two different ponds at the core locality, 
we captured 28 T. b. galapagoensis beetle larvae (mean length: 1.59 ± 0.18 cm) with 
a strainer. Larvae were transferred to plastic containers with 200 ml of mixed water 
prior to the experiment. In order to equalise their feeding motivation, we fed beetle 
larvae with two tadpoles from our hatchery every four hours for 24 hours and then 
deprived them of food for another 24 hours prior to experimentation. To prevent 
predation events from external predators, all plastic containers were covered prior 
and during experimentation.

Our experiments consisted of one treatment (predatory capacity) and two survival 
control experiments (tadpole survival and beetle larvae survival). For the predatory 
capacity experiments (N = 14), we introduced one food-deprived beetle larva into a 
plastic container with 20 tadpoles from our hatchery. For the tadpole survival experi-
ments (N = 14), we transferred 20 tadpoles into one plastic container under the same 
conditions as the previous treatment, but without beetle larva. Finally, for the beetle 
survival experiments (N = 14), we added one food-deprived beetle larva to one plastic 
container under the same conditions, but without any tadpoles. Treatments and con-
trol experiments were run at the same time over the course of four days.

We monitored experiments and recorded data every two hours during each 12-
hour period. Fourteen experiments were conducted from 12:00 am until 12:00 pm 
over four consecutive days (day 1 = four replicates, day 2 = three replicates, day 3 = four 
replicates and day 4 = three replicates), according to the number of tadpoles and beetles 
ready to be introduced into an experiment. We then measured mortality in tadpole 
survival experiments and both control treatments. Dead, but physically intact tadpoles 
with no signs of injury/attack were not included in the predation mortality totals. In-
dividual beetle larvae and tadpoles were only used once.

Statistical analyses

To estimate the overall dietary composition of S. quinquefasciatus in the agricultural 
areas of Santa Cruz, we calculated two indices for each taxon found in the stomach 
contents: (1) numerical percentage of each prey consumed and (2) frequency of occur-
rence. Numerical percentage estimates the quantity of ingested prey items by dividing 
the total stomach contents from a specific order by the total number of prey items 
(according to the method of Calver and Wooller 1982). Frequency of occurrence es-
timates the per-taxa breakdown within the diet by dividing the number of digestive 
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tracks containing a specific taxon by the number of stomachs containing food content. 
Frogs with empty stomachs were not included in the analysis.

Since we sampled frogs in the breeding season, we also hypothesised that the pres-
ence of prey in the stomach (vs. an empty stomach) would differ based on sex. We 
conducted an analysis of variance (ANOVA) to compare the amount of stomachs with 
prey items amongst males and females. We previously checked for homogeneity of 
variances amongst groups by using a Hartley’s Fmax test.

To determine if the predation-related mortality in tadpoles was time-dependent, 
we used a Generalised Estimating Equation (GEE). The GEE tests for subject (trial 
number) and within-subject (time-interval) effects in a repeated-measure experimental 
design, considering these as random factors. In our model, the response variable was 
cumulative predation-related mortality, while the explanatory variable was time inter-
val. We only counted the experimental units in which the predator remained alive until 
the end. After running the model, we used a post-hoc Bonferroni test (α = 0.05) to 
determine which time intervals were responsible for significant differences in cumula-
tive predation-related mortality.

We used another GEE test to determine if cumulative non-predation-related 
mortality was significantly different between tadpole survival (control) and predatory 
capacity experiments. Since mortality was not normally distributed, we chose a nega-
tive binomial distribution with a logarithmic link function for the model. Cumulative 
non-predation-related mortality was selected as the response variable, while experiment 
type (predatory capacity vs. tadpole survival) and time intervals were set as explanatory 
variables. Subject and within-subject effects were the same as in the previous analysis. 
All statistical analyses were performed with SPSS, version 22 (IBM Corp. 2013).

Results

Stomach-content analyses

Out of the 228 captured individuals (136 males, 79 females and 13 subadults), 54 
had stomach content (34 males, 18 females–16 of which were gravid-and 2 sub-
adults). Of those, 36 were collected from the core locality and 18 from the addi-
tional agricultural sites (Fig. 1). Five of the seven collection sites had individuals with 
ingested terrestrial invertebrates (Core location, B, C, D and E). Adult males were 
more frequently collected than either females or sub-adults. The stomachs of 5.8% 
of the collected specimens contained food items with a high degree of digestion, 
forming an amorphous substance for which identification of individual invertebrates 
was not possible.

The 54 specimens found in S. quinquefasciatus stomachs consisted mostly of Lepi-
dopterans (numerical percentage [NP]: 30%, frequency of occurrence [FO]: 61.11%), 
followed by Acarina (NP: 44.38%, FO: 5.56%). In total, 160 macroinvertebrates from 
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11 orders were identified as prey items (Table 1). The Hartley’s Fmax test verified the as-
sumption that variances were equal across groups. We found no significant differences 
in the number of stomachs with prey items between males and females (ANOVA: F 
[1,8] = 0.40, p < 0.05).

Predator-prey experiments

Nine out of the fourteen predator capacity experiments were included in the final 
model, since we only used the trials in which the beetle predator survived the entire 
experiment duration (4 days). Cumulative predation-related mortality significantly de-
creased over time (Wald Chi-Square = 125.92, df = 5, p = 0.001, Fig. 2). The post-hoc 
Bonferroni test (α = 0.05) showed that during the first two-hour interval, the number 
of predated tadpoles was the highest, with a mean value of 4.89 tadpoles. This was 
significantly different from the third-, fourth-, fifth- and sixth-time intervals (Table 2).

There was no significant difference in tadpole mortality between the non-predation 
deaths that occurred in the predatory capacity experiments versus those that occurred 
without the presence of a predator (Wald Chi-Square = 1.61, df = 1, p = 0.20, Fig. 2). 
Tadpole mortality was not significantly different over time (Wald Chi-Square = 5.03, 
df = 3, p = 0.17, Fig. 2). Only four of the tadpole control trials ended with one or two 
dead tadpoles; none died in the other ten experiments. Beetle larvae died before the 
end of the experiment in eight of the larvae control trials.

Table 1. Description of prey items identified in Scinax quinquefasciatus individuals, classified by order. 
Total number of prey items represents the total number of individual invertebrates in each order con-
sumed by collected frogs (multiple individuals could be found in the same stomach). Frequency of con-
sumption represents the number of stomachs in which a specific order was found. Numerical percentage 
is the number of prey items (per order) divided by the total number of prey items (n = 160). Frequency of 
occurrence represents the number of stomachs that contained a specific taxon (frequency of consumption) 
divided by the total number of stomachs with food content (n = 54).

Order Total number of prey 
items

Frequency of 
consumption

Numerical 
percentage

Frequency of 
occurrence

Lepidoptera 48 33 30 61.11
Acarina 71 3 44.38 5.56
Araneae 6 5 3.75 9.26
Blattodea 1 1 0.63 1.85
Neuroptera 2 2 1.25 3.70
Hymenoptera 9 6 5.63 11.11
Orthoptera 5 5 3.13 9.26
Hemiptera 2 2 1.25 3.70
Isopoda 9 2 5.63 3.70
Coleoptera 5 4 3.13 7.41
Dyptera 2 1 1.25 1.85
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Figure 2. Boxplots depicting comparisons of cumulative mortality rates in predator-prey experiments 
over time (predator = Thermonectus basillarus galapagoensis larvae; prey = Scinax quinquefasciatus tadpoles) 
A cumulative non-predation-related mortality of tadpoles in predatory capacity experiments B cumula-
tive predation-related mortality of tadpoles in predatory capacity experiments C cumulative larvae mor-
tality in survival control experiments D cumulative non-predation-related mortality in tadpole survival 
experiments. Empty circles outside boxplots represent outlier values (1.5 times higher than box height). 
Asterisks represent extreme outlier values (3 times higher than box height).

Discussion

One way to determine the trophic effect of an introduced species is to carry out a 
stomach-content analysis. In this study, Scinax quinquefasciatus in the highlands of 
Santa Cruz are shown to have a diet that consists mostly of Lepidopterans, followed 
by Acarina (Table 1). These results are consistent with those found by Mieles (2006), 
who found that Lepidopterans were also one of the most common prey orders of S. 
quinquefasciatus on Isabela. However, that study did not specify the frequency of Lepi-
doptera consumption.

This apparent preference for Lepidopterans is likely due to their availability in 
the environment. Anurans are typically diet generalists (Duellman and Trueb 1994), 
which enables them to compete with native species that are likely specialised to local 
biotic conditions. Abiotic factors could also influence the availability of certain in-
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sects. In the highlands of Santa Cruz, various sources of artificial light (i.e. street light-
ing or home-generated light) attract a significant number of nocturnal Lepidopterans 
(Rydell 1992; Hölker et al. 2010), facilitating their predation (Rydell 1992; Tihelka 
2019). In addition, the presence of rainwater repositories for irrigation purposes serve 
as an egg repository for many Lepidopteran insects (e.g. Noctuidae), thus supply-
ing additional resources for their biological development (Roque-Albelo 2006). Since 
community compositions of terrestrial invertebrates vary across the Galápagos Is-
lands (Peck 2001), we expected that results from the stomach analysis in our study 
would be different from those obtained on Isabela (Mieles 2006). However, despite 
presumed differences in the diets of S. quinquefasciatus on the two islands, this was 
shown to not be the case.

Sex did not influence the likelihood that a frog’s stomach contained prey: 22.8% 
of females and 25% of males had prey items in their stomachs. This may be related to 
the fact that we sampled during the S. quinquefasciatus mating season (rainy season, 
December-May), when both sexes are expending energy on breeding. In many frog 
species, males invest more energy in behaviour related to reproduction than foraging 
during the breeding period (Wells 1978; Given 1988). The abundance of prey items in 
this anthropogenic system may mitigate the trade-off between eating and reproducing.

Even though most studies on introduced species focus on their effect on native 
prey communities (Fritts and Rodda 1998; Ricciardi and Cohen 2007), their role as 
prey is equally important. This study provides the first record of a S. quinquefasciatus 
predator in Galápagos: the endemic diving beetle Thermonectus basillarus galapagoen-
sis. Our controlled predator-prey experiments indicated that the beetle larvae had a 
significant influence on the mortality rates of S. quinquefasciatus tadpoles. Studies in 
other ecosystems have also provided evidence of tadpole vulnerability to aquatic beetle 

Table 2. Results of the Bonferroni post-hoc test (α = 0.05), describing differences between time intervals 
in the cumulative number of Scinax quinquefasciatus tadpoles predated on by the beetle larvae Thermonec-
tus basillarus galapagoensis during the execution of 12-hour predator capacity experiments (N = 9). Aster-
isks indicate significant differences between mean values of predated tadpoles with a 95% confidence level.

Time intervals Cumulative # of predated 
tadpoles

Difference in predated tadpoles between 
time intervals

Significance

(mean value across trials)
1st 4.89 0–2 h vs. 2–4 h -2.44
0 h – 2 h
2nd 7.33 0–2 h vs. 4–6 h -4.89 *
2 h – 4 h
3rd 9.78 0–2 h vs. 6–8 h -5.11 *
4 h – 6 h
4th 10 0–2 h vs. 8–10 h -6 *
6 h – 8 h
5th 10.89 0–2 h vs. 10–12 h -6.67 *
8 h – 10 h
6th 11.56
10 h – 12 h
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predators (i.e. Formanowicz 1986; Müller and Brucker 2015), but this is the first ac-
count for the Galápagos Archipelago.

If the feeding behaviour of T. b. galapagoensis larvae were selective (i.e. showing a 
strong preference for tadpoles) and/or if their populations were highly abundant, this 
endemic beetle could serve as a biological control for S. quinquefasciatus. However, 
our predator-prey experiments showed that the endemic beetle larvae stopped feed-
ing before the tadpole resource was depleted, predating on a total mean value of 11.6 
tadpoles after the 12-hour period. This ‘feeding saturation’ has direct implications for 
S. quinquefasciatus population control, suggesting that the predator-to-prey ratio is 
too skewed for the beetle to diminish populations of the invasive frog. This mirrors 
our observations in nature: there were far more tadpoles than beetle larvae in each sur-
veyed water body on Santa Cruz. T. b. galapagoensis larvae presumably preyed on other 
animals prior to the arrival of S. quinquefasciatus to the island, but our finding also 
suggests that the beetle larvae have not developed a tadpole specialisation-decreasing 
its potential as a natural control agent. A recent study showed that an introduced bird, 
the smooth-billed ani (Crotophaga ani), feeds on S. quinquefasciatus adults in Galápa-
gos, but predation rates are also too low to have an effect on the frog’s population size 
(Cooke et al. 2020).

Population dynamics of introduced and invasive species depend on biological pa-
rameters (e.g. fecundity, growth, survival; Nakano et al. 2015)–and in this particular 
case, water reservoirs, prey availability and the expansion of agricultural sites. Our re-
sults suggest that S. quinquefasciatus populations are likely to remain stable or even 
increase on Santa Cruz. Their main prey items are common (Peck 2001) and, although 
tadpole predation occurs, it is currently not sufficient to decimate local populations. Ad-
ditionally, the increasing occurrences of artificial ponds and rainwater reservoirs in the 
agricultural areas of Santa Cruz provide ideal habitats for reproduction and hydration-
necessary components for anuran survival and growth (Rogowitz et al. 1999; Brand and 
Snodgrass 2010). As agricultural expansion continues in the highlands of Santa Cruz, 
the reproduction and proliferation of S. quinquefasciatus will likely follow suit.

Conclusion and future directions

Due to rapid development and the increasing human population, Santa Cruz is prone 
to invasive species events. Scinax quinquefasciatus is the first successfully invasive am-
phibian on the island; furthering our understanding of its ecological effect(s) is crucial 
for management, especially in such a fragile and unique ecosystem. As reproduction 
for both frogs and beetles in the highlands is apparently restricted to water sources 
provided in the rainy season and/or anthropogenic structures, we recommend that 
long- term research be conducted to investigate the frog’s ontogeny, especially in rela-
tion to beetle presence/absence.

This diet composition study was limited to higher taxonomic identification levels 
due to the nature of digested stomach contents (exoskeletons, wings etc.) and econom-
ic constraints that prevented us from testing with molecular methods. Further research 
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should address the selection of native, endemic and introduced prey item ratios using 
DNA-metabarcoding approaches.

Our findings strongly suggest that Scinax quinquefasciatus population growth is 
likely to remain stable or increase on Santa Cruz. The dietary preferences and preda-
tion rates by natural predators on this introduced frog should be taken into account 
when considering management strategies in the Galápagos Islands.
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