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Abstract
The aquatic ornamental industry, whilst providing socio-economic benefits, is a known introduction path-
way for non-native species, which if invasive, can cause direct impacts to native species and ecosystems and  
also drive disease emergence by extending the geographic range of associated parasites and pathogens and 
by facilitating host-switching, spillover and spill-back. Although current UK temperatures are typically 
below those necessary for the survival and establishment of commonly-traded tropical, and some sub-
tropical, non-native ornamental species, the higher water temperatures predicted under climate-change 
scenarios are likely to increase the probability of survival and establishment. Our study aimed primarily 
to identify which of the commonly-traded non-native ornamental aquatic species (fish and invertebrates), 
and their pathogens and parasites, are likely to benefit in terms of survival and establishment in UK waters 
under predicted future climate conditions. Out of 233 ornamental species identified as traded in the UK, 
24 were screened, via literature search, for potential parasites and pathogens (PPPs) due to their increased 
risk of survival and establishment under climate change. We found a total of 155 PPPs, the majority of 
which were platyhelminths, viruses and bacteria. While many of the identified PPPs were already known 
to occur in UK waters, PPPs currently absent from UK waters and with zoonotic potential were also iden-
tified. Results are discussed in the context of understanding potential impact, in addition to provision of 
evidence to inform risk assessment and mitigation approaches.
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Introduction

The global trade in aquatic ornamental species is extensive, involving over 140 coun-
tries (Evers et al. 2019; Hood et al. 2019). Its value is estimated to be in the region of 
15–30 billion US dollars annually, with a trade of 1.3 billion ornamental fishes report-
ed (Evers et al. 2019; King 2019). The total value of live ornamental fishes imported 
into the UK in 2020 was £16.2 million (OATA 2020). The industry includes trade of 
both freshwater and marine ornamentals, however 76% of the 1244 metric tonnes of 
live fishes imported into the UK in 2020 were tropical freshwater fishes (OATA 2020). 
Though generally less well studied, invertebrates (including Mollusca and Crustacea) 
also represent an important group of traded aquatic ornamentals (Keller and Lodge 
2007; Ng et al. 2016).

While the ornamental industry clearly provides economic and social benefits, it 
is a known pathway for the introduction of non-native species (NNS), pathogens 
and parasites, which pose a potential threat to aquatic biodiversity if they become 
invasive (Padilla and Williams 2004; Copp et al. 2005a; Peeler et al. 2011; Hood et 
al. 2019). Ornamental species are typically kept in closed systems, isolated from open 
waterways; but deliberate introduction into the wild, often the result of animals over-
breeding or getting too large to house, or accidental introduction following escape, 
is known to occur (e.g. Courtenay 1999; Crossman and Cudmore 1999; Padilla and 
Williams 2004; Copp et al. 2005b; Duggan et al. 2006; Wood et al. 2022). Intro-
ductions of NNS can drive disease emergence by extending the geographic range of 
associated parasites and pathogens, and by facilitating host-switching or via spillover 
and spill-back (Peeler et al. 2011). Outbreaks of Koi Herpes Virus (KHV) and Spring 
Viraemia of Carp (SVC) in UK fisheries, which resulted in substantial mortalities in 
common carp Cyprinus carpio carpio L. 1758 and economic losses, have been linked 
to the introduction of koi carp C. carpio koi, an ornamental variety of common carp 
(Taylor et al. 2010, 2011, 2013).

In recognition of the threat posed by live non-native fishes, legislation that restricts 
the keeping of live fishes is in place in the UK. Key legislation includes ‘The Prohibi-
tion of Keeping or Release of Live Fish (Specified Species) (England) Order 2014’ 
(and its predecessors in 1998 and 2003) implemented under the ‘Import of Live Fish 
(England and Wales) Act 1980’, and ‘The Keeping and Introduction of Fish (England 
and River Esk Catchment Area) Regulations 2015’. These legislative instruments apply 
primarily (if not exclusively) to freshwater fishes, prohibiting their keeping in England 
without a licence, with similar powers applying in Wales, Scotland and Northern Ire-
land. The original 1998 Order listed only species considered to be of concern at that 
time, with the 2003 Order extending the list to include some additional species. These 
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orders were perhaps the most advanced of their kind in Europe and North America 
(Copp et al. 2005a). The 2014 Order took a much wider approach, with the schedule 
listing all taxonomic Orders that contained freshwater fish species and stating that all 
non-native freshwater fishes required a licence to be kept with the exception of those 
(primarily native species) listed in the 2014 Order’s annexes. However, two general 
licences have been issued permitting the keeping of fishes in garden ponds and/or 
indoor aquaria. The first, defined here as the ‘garden pond fish list’ (UK Government 
2021a) details standard ornamental pond fishes, namely koi carp, goldfish Carassius 
auratus L. 1758, orfe Leuciscus idus L. 1758, grass carp Ctenopharyngodon idella Cuvier 
& Valenciennes, 1844 and sturgeon (Acipenser spp.), permitted to be kept in aquaria 
or secure outdoor garden ponds. The second, defined as the ‘ornamental fish list’ (UK 
Government 2019), comprises mainly tropical and subtropical genera (and in some 
cases species), which are considered to pose a low risk of becoming established or 
invasive in UK waters, and permitted to be kept in indoor aquaria only. Parallel legis-
lation exists in relation to crayfish in the form of the ‘Prohibition of Keeping of Live 
Fish (Crayfish) Order 1996’, which only permits the keeping of red-clawed crayfish 
Cherax quadricarinatus Von Martens, 1868 for ornamental purposes under a general 
licence and for the use of all non-native fishes in fisheries in the form of ‘The Keeping 
and Introduction of Fish (England and River Esk Catchment Area) Regulations 2015’. 
Legislation also exists to prevent the introduction of NNS in to the wild (e.g. Wildlife 
and Countryside Act 1981), and to limit activities associated with specific NNS (e.g. 
Invasive Alien Species (Enforcement and Permitting) Order 2019). Further, in relation 
to aquatic animal disease risk specifically, under ‘The Aquatic Animal Health (England 
and Wales) Regulations 2009’, live aquatic animal imports require certification.

Currently, UK temperatures are typically below those necessary for the survival and 
establishment of the commonly-traded tropical, and some sub-tropical, ornamental 
fishes (species on the ornamental fish list). However, elevated water temperatures (a 2 
°C increase) forecasted by future climate change scenarios are predicted to increase the 
probability of survival and establishment for some existing fish species (Britton et al. 
2010). Hence there may be an increased risk of pathogen and parasite introductions, 
transmissions and disease emergence events (Marcos-López et al. 2010). Climate mod-
elling under four different Representative Concentration Pathway (RCP) scenarios, 
sensu Moss et al. (2010), indicates that global mean surface temperature may increase 
by between 0.4 and 2.6 °C by the mid-21st century (Moss et al. 2010; Van Vuuren et 
al. 2011; Nazarenko et al. 2015). An understanding of the trade in ornamental species, 
and potential disease threats associated with commonly-traded species that may have 
an increased risk of establishment in the wild under future climate conditions, is es-
sential to mitigate threats and protect aquatic biodiversity, and ensure the sustainability 
of an important industry.

The aim of our study was to identify commonly-traded non-native (NN) orna-
mental fishes, crustacea and molluscs at increased risk of survival and establishment 
in UK waters under elevated temperatures predicted by climate change forecasting. 
Further, applying the workflow proposed by Foster et al. (2021), organisms known, 



James Guilder et al.  /  NeoBiota 76: 73–108 (2022)76

or with potential to be, pathogenic or parasitic that have been observed associating 
with these NN ornamental species at any point in the ornamental fish trade pathway 
were identified. Applications of the outcomes to inform risk assessment and mitigation 
measures to protect and sustain the ornamental industry in the long term are discussed.

Methods

Records of commonly imported species, such as packing lists that document details 
of ornamental species imported via the Heathrow Border Control Post (BCP), were 
not available for use during this study. Therefore, to identify the NN freshwater orna-
mental species most commonly-imported into UK, a proxy measure was adopted that 
combined outputs from three different, but complementary methodologies: expert 
elicitation, eBay retailer search and Google search.

Expert elicitation involved use of the list, provided by the Ornamental Aquatic 
Trade Association (OATA; https://ornamentalfish.org/), of ornamental species/genera 
considered by OATA to be the most commonly traded in the UK (by volume). Fur-
ther, a short list of those NN ornamental species most likely to establish in UK, i.e. 
species from warm temperate or sub-tropical climatic zones, was provided by the Fish 
Health Inspectorate (FHI) for England and Wales.

A list of ornamental live-fish retailers was constructed from an eBay search car-
ried out on 8 October 2020 using the term ‘live fish’. Search results were filtered for 
NN fishes that fell under the water type categories of ‘fresh’, ‘pond’, ‘all water types’ 
and ‘not specified’. Species were recorded from all listings between 9 September and 
8 October 2020, inclusive. The total number of listings for each NN fish species was 
used as a proxy measure of trade volume. A separate eBay search using the term ‘live 
invertebrates’ was carried out on 13 October 2020. Search results were filtered for NN 
invertebrates that fell under the water type categories of ‘fresh’, ‘pond’, ‘all water types’ 
and ‘not specified’. Initial results indicated that significantly fewer invertebrate species 
were listed compared to fish species. Therefore, all NN invertebrate species listings 
returned by the search, with no restrictions on the date, were recorded. The number of 
listings per NN invertebrate species was not recorded and species listed multiple times 
were recorded only once.

A Google search was carried out on 20 October 2020 using the term ‘fish species 
for cold or unheated aquaria”, and this provided information on popular ornamental 
fish species likely to be traded in the UK. Although returning primarily temperate 
species, it also included tropical fish species with wide temperature tolerances, which 
therefore do not require heated aquaria, e.g. Endler’s livebearer Poecilia wingei Poeser, 
Kempkes & Isbrücker, 2005, and zebra danio Danio rerio Hamilton, 1822 (López-Ol-
meda and Sánchez-Vázquez 2011). In the search for cold or unheated aquaria species, 
the most popular NN fish species listed in the first 20 websites or blogs (See Suppl. 
material 1: List S1) were used to represent commonly-traded species. All species men-
tioned were recorded only once.

https://ornamentalfish.org/


Threats to UK freshwaters under climate change 77

A master list of species’ common and scientific names was developed. If the spe-
cies scientific name was absent in the eBay listing or on the website/blog, then it was 
searched for (using the common name) on FishBase (www.fishbase.se/search.php) for 
all fish species or via a google search for the invertebrate species. Where fishes and in-
vertebrates were not identified to species level, the entry was removed from the master 
list. Species recorded via any of the methodologies were collated into the single master 
list (See Suppl. material 1: Table S1).

The master list was refined by removal of species, based on the following criteria: 
i) the NN species is present on the ‘garden pond fish list’ or is not present on the ‘or-
namental fish’ list under The Prohibition of Keeping or Release of Live Fish (Specified 
Species) (England) Order 2014; and ii) the NN species is recorded as present within 
UK waters on the Global Biodiversity Information Facility (GBIF; www.gbif.org). 
Although climate change may increase the risk of some of these NNS, either increas-
ing their current range or establishing new populations as a result of further introduc-
tions, the associated pathogen risk was considered to exist already because the species 
is already present.

Data analysis and modelling

To aid the selection of species for potential pathogen and parasite (PPP) screening, a 
high-level estimation of climate suitability for each NNS on the master list was un-
dertaken using a species distribution modelling (SDM) approach. Note that the term 
potential ‘pathogen or parasite’ is used as a catch-all term, given that evidence for 
pathogenic or parasitic association was not extensively reviewed in the present study 
and in fact is often unavailable, in particular for novel environments or hosts. The de-
velopment of SDMs involved selection of temperature variables under the current cli-
mate (2020) and, under future climate, represented by an intermediate climate change 
scenario, the RCP 4.5 scenario, which predicts stabilisation of radiative forcing (Van 
Vuuren et al. 2011) and an increase in global annual mean surface air temperature of 
between 1 and 2 ˚C (Nazarenko et al. 2015).

The global distribution for each species on the master list was obtained from 
the GBIF. The climatic zone classification sub-tropical or temperate and the native 
continent(s) were determined using FishBase. No equivalent database to FishBase 
exists for invertebrates, so the native range of each invertebrate species was deter-
mined via a Google search, and the climatic zone of each range was then climate 
classified by matching the invertebrate species with fish species from a similar range. 
Species classified as subtropical or temperate, or with an occurrence record on the 
GBIF that was outwith the tropical bands (i.e. between the tropics of Capricorn and 
Cancer), were selected for further analysis (See Suppl. material 1: Table S2). The 
total number of geo-referenced occurrences for the selected species was recorded. 
To reduce bias of repeated sampling or multiple reports of a species within the same 
location, only one record per coordinate was included in the analysis. Species with 
<100 geo-referenced records were excluded from further analysis (See Suppl. mate-
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rial 1: Table S1). A threshold of 100 geo-referenced records balanced the accuracy of 
suitability model outputs and number of species for which models could be run. For 
each species, occurrence data were cleaned using the CoordinateCleaner package in 
R (Zizka et al. 2019); this package includes a wrapper function that identifies and 
removes potential errors in the data based on: country and coordinate mismatches, 
coordinates at sea, zero coordinates, coordinates assigned to country centroids and 
significant outliers.

Global climate variables at a spatial resolution of ten arc-minutes were downloaded 
for the present day from the WorldClim dataset (http://worldclim.org) – these are ob-
served data that have been interpolated from current climatic conditions recorded by 
weather stations (Hijmans et al. 2005). Six temperature variables were then selected for 
the species distribution models: 1) Annual mean temperature; 2) Mean diurnal range 
(Mean of monthly: max temp – min temp); 3) Max temperature of warmest month; 
4) Min temperature of coldest month; 5) Mean temperature of warmest quarter; and 
6) Mean temperature of coldest quarter. Future climate projections were download-
ed from the WorldClim dataset. These are derived from five bias-corrected CMIP5 
Global Climate Models (GDFL-CM3, HadGEM2-CC, MIROC5, INM-CM4.0, 
and CSSM4) which specifically related to the 2050 projection (mean for 2041–2060) 
of the RCP 4.5 climate change scenario.

Species distribution models (SDMs) were employed for NNS on the refined 
master list to predict the potential suitability of the UK climate for the NNS with 
respect to the selected temperature variables, both under current (2020) and fu-
ture climate conditions (in 2050), as represented by climate change scenario RCP 
4.5 (Moss et al. 2010). The SDMs were run in R using the SDM package (Naimi 
and Araújo 2016). Occurrences used in the SDMs were limited to a maximum of 
1000 per species. Pseudo-absences were then assigned to each species. The number of 
pseudo-absences was not fixed across species, rather the number of pseudo-absences 
was equal to the number of occurrence records for that species as suggested for classi-
fication techniques by Barbet-Massin et al. (2012). No pseudo-absence was assigned 
to a coordinate representing a presence occurrence. Both presences and pseudo-ab-
sences input into the SDMs were restricted to the continent within which the native 
range of the species occurs. For species with distributions that extend across more 
than one continent, presences and pseudo-absences from all relevant continents were 
input into the SDMs.

Ensemble models were built for current climate conditions by using two differ-
ent machine learning methods (boosted-regression trees and random forests). These 
models estimated the effects of the selected temperature variables, for the present day, 
on the distribution of each species within the continent of their native range. As no 
data were available to evaluate the model predictions independently, data were split 
at random into training (70%) and test data (30%). This random split of the data 
was repeated five times. To account for the influence of pseudo-absences on model 
outputs, five random and independent pseudo-absence sets were generated. In total, 

http://worldclim.org
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50 model replicates were run (two modelling techniques × five pseudo absences × five 
split samplings) for each species. A geographical representation of the UK was cre-
ated by cropping a rectangular area using the drawExtent function, which was split 
into 3828 ten arc-min grid cells (≈ 340 km2). A suitability score for each species, was 
predicted for each grid cell using the un-weighted ensemble models, with scores rang-
ing from 0 to 1. A suitability score of 1 indicates that the model predicts the presence 
of the species in a given location and a score of 0 indicates that the model predicts 
the absence of the species in that location, based solely on temperature predictors. 
An overall UK suitability score for each species, for both the present day and under 
the 2050 scenario, was then calculated by taking the mean of all grid cell suitability 
scores. Species with a mean suitability score of ≥0.15 in 2050 were selected for para-
site/symbiont screening.

Consistent with the framework outlined by Foster et al. (2021), PPP screening 
consisted of (Table 1): i) organisms associated with each species, i.e. those classified 
as pathogens, parasites or symbionts, were searched for on PubMed; ii) the associ-
ated organisms revealed in the first two pages of a Google search result (using the 
following terms and format: “species name” AND pathogen OR parasite OR com-
mensal OR symbiont OR protist OR bacteria OR virus) were screened for informa-
tion supplementary to that provided through the PubMed search; and iii) search 
results were categorised into two groups – PPPs reported to be associated with (or 
infect) species at any point within the ornamental trade pathway, including wild 
sourcing (i.e. natural host-PPP interactions), and PPPs known to infect the species 
through laboratory challenge studies only. Where possible, whether the host-PPP 
interaction was associated with sub-clinical or asymptomatic infection, clinical signs 
of disease and/or mortality were noted. Additionally, the country of observation and 
the point in the ornamental fish trade pathway (e.g. wild, farm, retailer, hobbyist 
etc.) were recorded.

Table 1. The process undertaken to find information on pathogens, parasites and symbionts associated 
with each species, with a suitability score of ≥0.15, on PubMed. Only steps one to three were carried out 
in the present study (adapted from Foster et al. 2021).

Step 1  Search full species name in [All Fields]. If 0, then go to 2, if  ≥1, then go to 3
Step 2  Search genus name in [All Fields]. If 0, then decide whether continuing at a higher taxonomic level, is appropriate. If ≥1, go to 4.
Step 3  Conduct search using the criteria: (Species name [All Fields]) AND (microbiome[Title/Abstract] OR symbio*[Title/

Abstract] OR pathogen*[Title/Abstract] OR parasit*[Title/Abstract] OR protist[Title/Abstract] OR protozoa[Title/
Abstract] OR bacteria*[Title/Abstract] OR virus[Title/Abstract] OR host[Title/Abstract] OR reservoir[Title/Abstract] 

OR vector[Title/Abstract] OR infection [Title/Abstract]) 
Scan papers for pathogen/symbiont reports and IDs and record

Step 4  Conduct search using criteira: (Genus name [All Fields]) AND (microbiome[Title/Abstract] OR symbio*[Title/
Abstract] OR pathogen*[Title/Abstract] OR parasit*[Title/Abstract] OR protist[Title/Abstract] OR protozoa[Title/

Abstract] OR bacteria*[Title/Abstract] OR virus[Title/Abstract] OR host[Title/Abstract] OR reservoir[Title/Abstract] 
OR vector[Title/Abstract] OR infection [Title/Abstract])

Scan papers for pathogen/symbiont reports and IDs and record
Step 5  Engage with taxon group specialists, as appropriate, to sense check & compile additional information. 
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Results

Commonly-traded species

The master list of species commonly imported to the UK contained 193 species of or-
namental fish, and 40 species of ornamental invertebrate, (total 233, See Suppl. mate-
rial 1: Table S1). A total of 160 fish species were removed from the master list, and not 
subject to suitability scoring, because they met at least one of the following criteria: i) 
present on the list of ‘garden pond’ fishes, ii) absent from the list of ‘ornamental fish’ 
species or recorded as present in the UK on the GBIF, iii) low number (<100) of GBIF 
records, or iv) distribution was restricted to within the tropical bands (See Suppl. mate-
rial 1: Table S1).

A total of 32 invertebrate species were removed from the master list because they 
met at least one of the following criteria: i) species list or recorded as present in the 
UK on GBIF, ii) low number (<100) of GBIF records, iii) distribution was restricted 
to within the tropical bands. One further invertebrate species, Pomacea maculata Perry, 
1810 (synon. P. insularum), was removed from the master list because all Pomacea spp. 
were banned from import into the UK (OATA 2021; UK Government 2021b) at the 
time of our study (See Suppl. material 1: Table S1). Therefore, the refined master list 
subjected to suitability analysis comprised 33 fish and seven invertebrate species (Table 
2).

The majority of fish species (30.3%; n = 10) on the refined master list belong 
to the Order Cypriniformes, which includes the loaches, carps, barbs and minnows; 
taxa that are common in the aquarium trade. A notable proportion of the fish species 
on the refined master list (21%; n = 7) are the smaller ray-finned fishes of the Order 
Cyprinodontiformes, such as killifishes and livebearers (e.g. mollies, guppies), which 
are popular aquarium fishes. Also common on the refined master list are species of the 
taxonomic orders Siluriformes (18.1%; n = 6), representing the catfishes, and Cichli-
formes (15.1%; n = 5), representing the cichlids and angelfishes. Invertebrate species 
on the refined master list comprise snails, crabs, shrimps and a crayfish. Three were of 
the taxonomic Order Decapoda (Table 2). Species within orders Notostraca and Cy-
cloneritida are also present on the list.

Species estimates of UK temperature suitability

Mean UK suitability scores for the fish species ranged from 0.08 to 0.59 under 
current climate conditions and 0.08 to 0.62 under future (2050) climate conditions 
(Table 2). The highest suitability score in 2050 was seen for the dojo loach Misgurnus 
anguillicaudatus Cantor, 1842, and the Japanese rice fish Oryzias latipes Temminck & 
Schlegel, 1846 (Table 2, also see Suppl. material 1: Fig. S1). Although there was no 
difference in suitability between current day and 2050 for 15 fish species, suitability 
increased (mean increase in suitability of 0.05) for 15 fish species. The greatest increase 
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Table 2. Outputs of species distribution models (SDMs), using UK temperatures under current and 
future climate conditions (i.e. 2050, under Representative Concentration Pathway, RCP 4.5, scenario), 
for ornamental freshwater fish and invertebrate species identified via eBay and Google searches in addi-
tion to expert elicitation as commonly traded in the UK (ordered by decreasing mean RCP 4.5 suitability 
score, then by mean current day suitability score and then by native continent. Also given is the number 
of records (n) from the Global Biodiversity Information Facility (GBIF; www.GBIF.org) used to carry out 
the SDMs (after selection of 1000 random points, removal of duplicates and cleaning). Species in bold 
had a mean suitability score of ≥ 0.15 under RCP4.5 2050 and were therefore subject to pathogen and 
parasite screening.

Taxon group/Scientific name Common name Native Continent n Current RCP 4.5
FISHES
Misgurnus anguillicaudatus dojo loach Asia 781 0.59 0.62
Oryzias latipes Japanese rice fish Asia 247 0.53 0.58
Aphanius mento pearl-spotted killifish Asia 135 0.35 0.38
Rhodeus ocellatus rosy bitterling Asia 311 0.23 0.32
Pimephales promelas fathead minnow North America 859 0.19 0.31
Enneacanthus chaetodon black banded sunfish North America 177 0.23 0.29
Misgurnus mizolepis Chinese muddy loach Asia 244 0.26 0.28
Garra rufa red garra Asia and Europe 234 0.25 0.28
Notropis chrosomus rainbow shiner North America 376 0.26 0.27
Amatitlania nigrofasciata convict cichlid North America 487 0.21 0.26
Xiphophorus variatus variable platy North America 276 0.15 0.20
Pethia conchonius rosy barb Asia 128 0.17 0.19
Xiphophorus hellerii swordtail North America 943 0.13 0.17
Paracheirodon axelrodi cardinal tetra South America 129 0.17 0.17
Corydoras paleatus pepper corydoras South America 126 0.15 0.16
Barbodes semifasciolatus gold barb Asia 141 0.16 0.15
Astronotus ocellatus oscar South America 241 0.16 0.15
Osteoglossum bicirrhosum arawana South America 126 0.15 0.15
Phractocephalus hemioliopterus redtail catfish South America 120 0.14 0.14
Pethia ticto ticto barb Asia 113 0.13 0.13
Hypostomus plecostomus suckermouth catfish South America 277 0.13 0.13
Hypseleotris compressa empire gudgeon Australasia 855 0.11 0.12
Pygocentrus nattereri red bellied piranha South America 532 0.12 0.12
Poecilia reticulata guppy North & South America 936 0.11 0.11
Corydoras aeneus bronze corydoras South America 278 0.12 0.11
Melanotaenia nigrans black-banded rainbowfish Australasia 212 0.10 0.10
Amphilophus citrinellus midas cichlid North America 193 0.10 0.10
Cyprinella lutrensis red shiner North America 902 0.10 0.10
Rocio octofasciata Jack Dempsey North America 595 0.10 0.10
Pterophyllum scalare angelfish South America 152 0.10 0.10
Poecilia velifera sail-fin molly North America 175 0.09 0.09
Vieja melanura redhead cichlid North America 706 0.09 0.09
Poecilia sphenops common molly North & South America 519 0.08 0.08
INVERTEBRATES
Palaemonetes paludosus ghost shrimp North America 249 0.31 0.35
Tarebia granifera quilted melania Asia & Australasia 160 0.26 0.28
Cherax quadricarinatus redclaw crayfish (blue lobster) Australasia 108 0.22 0.22
Triops australiensis tadpole shrimp Australasia 145 0.21 0.21
Neritina pulligera dusky nerite Africa, Asia & Australasia 111 0.18 0.19
Marisa cornuarietis Colombian ramshorn apple snail North & South America 195 0.15 0.17
Metasesarma aubryi red apple crab Asia 312 0.13 0.13
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in suitability score was seen for the fathead minnow Pimephales promelas Rafinesque, 
1820, whose score increased by nearly 63% from 0.19 to 0.31. For three fish species, 
suitability scores reduced between the current day and 2050, though by only a small 
amount (Table 2): gold barb Barbodes semifasciolatus Günther, 1886, bronze corydoras 
Corydoras aeneus Gill, 1858 and the oscar, Astronotus ocellatus Agassiz, 1831.

Mean suitability scores for the invertebrate species ranged from 0.15 to 0.33 and 
from 0.17 to 0.44 under current day and 2050, respectively (Table 2). The highest 
suitability score in 2050 was seen for the ghost shrimp Palaemonetes paludosus Gibbes, 
1850. In total, four invertebrate species showed a small increase in suitability score 
between the present day and 2050. No difference in suitability score between current 
day and 2050 was seen for three species: red-clawed crayfish, tadpole shrimp Triops 
australiensis Spencer & Hall, 1895, and red apple crab Metasesarma aubryi A. Milne-
Edwards, 1869. In contrast to fishes, a reduction in suitability in 2050 was not seen for 
any of the listed invertebrate species.

Potential pathogen and parasite screen

In total, 18 fish and six invertebrate host species were screened for potential patho-
gens and parasites based on their suitability score of ≥0.15 under RCP 45 2050. A 
total of 504 records were returned from the literature (PubMed and Google) search. 
The number of records against each screened host species ranged between 0 and 144, 
with four species (tadpole shrimp; black banded sunfish Enneacanthus chaetodon Baird, 
1855; rainbow shiner Notropis chrosomus Jordan, 1877; dusky nerite Neritina pulligera 
L., 1767) returning no records. A total of 243 records were deemed unsuitable for the 
PPP screen following review of the abstract to assess whether or not the publication 
included both the host species and/or a PPP. In total, 163 records documented natural 
interactions between hosts and PPPs (Table 3) and 98 records reported host species 
susceptibility to PPP infection under laboratory conditions (See Suppl. material 1: 
Table S2).

In total, 155 PPPs across four biological kingdoms (Animalia, Fungi, Prokaryotes 
and Protists) and two domains (Bacteria and Viruses) were identified as associated 
with the screened host species. The majority belonged to phyla within the Animalia 
kingdom (66%; n = 100), specifically Acanthocephala (2%, n = 3), Annelida (1%, n 
= 2), Arthropoda (6%, n = 10), Cnidaria (1%, n = 2), Nematoda (10%, n = 16), and 
Platyhelminthes (43%, n = 67) (Table 3).

Viruses represented 12% of the total PPPs identified as associated with screened 
host species, and they belonged to a number of RNA virus families, including 
Rhabdoviridae, Birnaviridae, as well as the DNA virus family, the iridioviruses (Table 
3). Evidence suggests that a large proportion of the viruses identified can cause clinical 
disease (72%) and/or mortality (56%) in potential hosts screened. Sub-clinical infection 
by some viruses was also reported to be present in some of the screened potential hosts. 
Bacterial PPPs represented 11% of PPPs associated with screened hosts and belonged 
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to a number of groups including Aeromonads, Mycobacterium, Vibrio and Streptococcus, 
and these were largely opportunistic bacteria, which are commonly associated with 
disease (88%) and mortality (84%) across a wide range of species (Table 3).

The greatest number of PPPs were reported for fathead minnow, with 27 in total 
(Table 3). Screening also highlighted 25 PPPs associated with dojo loach, 17 PPPs 
associated with red-claw crayfish and 12 PPPs associated with red garra Garra rufa 
Heckel, 1845.

Many of the PPPs found to be associated with the screened host species are known 
to already occur in UK waters. In particular, species of bacteria associated with screened 
hosts have a wide global distribution and are likely already associated with disease in 
aquatic organisms in the UK. Also known to cause disease in the UK is the protist 
Ichthyophthirius multifiliis Fouquet, 1876, commonly known as ‘Ich’ – the causative 
agent of white-spot disease. This protozoan was identified in several screened ornamental 
fishes including: swordtail Xiphophorus helleri Heckel, 1848, oscar, arawana Osteoglossum 
bicirrhosum Cuvier, 1829 and cardinal tetra Paracheirodon axelrodi Schultz, 1956. In 
addition, Trichodina Ehrenberg, 1838, another widespread protozoan genus already 
found in the UK, was identified as associated with several of the screened ornamental 
species. Aphanomyces astaci Schikora, 1906, which is widely distributed throughout 
Europe and the causative agent of the crayfish plague, was associated with the redclaw 
crayfish. Arthropoda PPPs, common in the UK, associated with listed species included 
Argulus japonicus Thiele, 1900 and Argulus foliaceus L., 1758.

However, PPPs not known to occur in UK waters were identified. For example, 
infection of fathead minnow by viral haemorrhagic septicaemia virus (VHSv), the 
aetiological agent of OIE-listed Viral Haemorrhagic Septicaemia, and of the oscar by 
infectious spleen and necrosis virus (ISKNv) were reported. In addition, the protist 
Aphanomyces invadans David & Kirk, 1997, the aetiological agent of OIE listed 
Epizootic Elcerative Syndrome, was reported as associated with the rosy barb Pethia 
conchonius Hamilton, 1822. Further, the fungi Pseudoloma neurophilia was reported to 
cause mortality in the fathead minnow. Finally, the Cnidarian, Myxobolus axelrodi, was 
associated with the cardinal tetra and was also reported to cause mortalities.

Also identified were PPPs with zoonotic potential, including two trematodes, 
Isthmiophora hortensis Asata, 1926 and Clinostomum complanatum Rudolphi, 1814 
were reported as associated with the dojo loach and rosy bitterling Rhodeus ocellatus 
Kner, 1868, respectively. One cestode, Schyzocotyle acheilognathi Yamaguti, 1934, also 
with known zoonotic potential, was reported as associated with swordtail. Bacterial 
PPPs known to infect both fishes and humans were also identified as associated with 
screened fishes, including: Acinetobacter pittii Nemec et al., 2011, Aeromonas veronii 
Hickman-Brenner et al., 1987, A. hydrophila Chester, 1901, Vibrio cholerae Pacini, 
1854, Shewanella putrefaciens MacDonell & Colwell, 1986, Mycobacterium marinum 
Aronson, 1926 and Mycobacterium goodii Brown et al., 1999. Antimicrobial resistance 
was reported for some bacterial strains identified in screened species, including a strain 
of Aeromonas sobria Popoff & Vron, 1981 (in swordtail and dojo loach).
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Table 3. List of potential pathogens and parasites reported as natural infections of ornamental fish and 
invertebrate species traded into the UK , whereby literature evidence was found (Y = Yes) for: Disease = 
clinical signs or disease in the animal caused by the associated pathogen or parasite; Mort. = mortalities in 
the animal as a result of the associated pathogen or parasite; Sub. = sub-clinical or asymptomatic infection in 
the animal. Location types: ‘Aquarium’ includes reports on specimens held in aquaria by hobbyists, public 
aquaria, vets or laboratories; ‘Retail (Pet shop)’ (Retail P) includes ornamental fish shops, both stand-alone 
and within ornamental markets; ‘Border’ refers to Import/Border Border Control Inspection Posts; ‘Retail 
B’ = Retail bait shop; ‘Retail  S’ = Retail Spa.

Type & name of 
Disease Agent

Ornamental Species Disease Mort. Sub. Country Location 
type

Reference

Viruses
Aquatic birnavirus Garra rufa Y Ireland Retail S (Ruane et al. 2013)
Athtabvirus Cherax quadricarinatus Y Y Australia Farm (Sakuna et al. 2018)
Chequa iflavirus Cherax quadricarinatus Y Y Y Australia Farm (Sakuna, et al. 2017)
Cherax quadricarinatus 
iridovirus

Cherax quadricarinatus Y Y China Farm (Xu et al. 2016)

Decapod ambidensovirus1     Cherax quadricarinatus Y Y Australia Farm (Bochow et al. 2015)
Fathead minnow calicivirus Pimephales promelas Y Y USA Retail B (Mor et al. 2017)
Fathead minnow nidovirus Pimephales promelas Y Y USA Retail B (Batts et al. 2012)
Fathead minnow 
picornavirus

Pimephales promelas Y USA Retail B (Phelps et al. 2014)

Fathead minnow 
rhabdovirus

Pimephales promelas Y Y USA Farm (Iwanowicz and Goodwin 2002)

Golden shiner reovirus Pimephales promelas Y Y USA Retail B (Boonthai et al. 2018)
Hepatopancreatic reovirus Cherax quadricarinatus Y Y Y Australia Farm (Edgerton et al. 2000)
ISK necrosis virus Astronotus ocellatus Australia Retail P (Go et al. 2016)
ISK necrosis virus Astronotus ocellatus Y India Retail P (Girisha et al. 2021)
Loach birnavirus Misgurnus 

anguillicaudatus
Y Taiwan Farm (Chou et al. 1993)

Parvo-like virus Cherax quadricarinatus Y Y Australia Farm (Bowater et al. 2002)
South American cichlid 
iridovirus

Astronotus ocellatus Y Y USA Retail P (Koda et al. 2018)

Spawner-isolated mortality 
virus 

Cherax quadricarinatus Y Y Australia Farm (Owens and McElnea 2000)

Turbot reddish body 
iridovirus

Astronotus ocellatus USA Retail P (Go et al. 2016)

Viral Haemorraghic 
Septicaemia2

Pimephales promelas Y USA Wild (Cornwell et al. 2013)

Bacteria
Acinetobacter pittii Misgurnus 

anguillicaudatus
Y Y China Farm (Wang et al. 2019)

Aeromonas hydrophila Garra rufa Y Y Y Italy Retail S (Volpe et al. 2019)
Aeromonas hydrophila Misgurnus 

anguillicaudatus
Y Y South 

Korea 
Farm (Jun et al. 2010)

Aeromonas sobria Corydoras paleatus Y Italy Wholesaler (Sicuro et al. 2020)
Aeromonas sobria Garra rufa Y Y Slovakia Farm (Majtán et al. 2012)
Aeromonas sobria Misgurnus 

anguillicaudatus
Y Italy Wholesaler (Sicuro et al. 2020)

Aeromonas sobria Misgurnus mizolepis Y Y South 
Korea 

Farm (Yu et al. 2015)

Aeromonas sobria Xiphophorus hellerii Y Italy Wholesaler (Sicuro et al. 2020)
Aeromonas veronii Astronotus ocellatus Y Y India Farm (Sreedharan et al. 2011)
Aeromonas veronii  Garra rufa Y Y Y Italy Retail S (Volpe et al. 2019)
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Type & name of 
Disease Agent

Ornamental Species Disease Mort. Sub. Country Location 
type

Reference

Bacteria
Chryseobacterium cucumeris Misgurnus 

anguillicaudatus
Y Y South 

Korea 
Farm (Kim et al. 2020)

Citrobacter freundii Garra rufa Y Y South 
Korea 

Farm (Baeck et al. 2009)

Edwardsiella ictaluri Pethia conchonius Y Y Y Australia Border (Humphrey et al. 1986)
Listonella anguillarum Misgurnus 

anguillicaudatus
Y Y China Farm (Qin et al. 2014)

Mycobacterium abscessus Xiphophorus variatus Y Y Italy Border (Zanoni et al. 2008)
Mycobacterium fortuitum Xiphophorus variatus Y Y Italy Aquarium (Zanoni et al. 2008)
Mycobacterium goodii Garra rufa Y Y Y Italy Retail S (Volpe et al. 2019)
Mycobacterium gordonae Cherax quadricarinatus Y Y Israel Farm (Davidovich et al. 2019)
Mycobacterium marinum Garra rufa Y Y Y Italy Retail S (Volpe et al. 2019)
Rickettsia-like organism Cherax quadricarinatus Y Y Ecuador Farm (Romero et al. 2000)
Shewanella putrefaciens Garra rufa Y Y Y Italy Retail S (Volpe et al. 2019)
Shewanella putrefaciens Misgurnus 

anguillicaudatus
Y Y China Farm (Qin et al. 2014)

Streptococcus agalactiae Garra rufa Y Y Ireland Retail S (Ruane et al. 2013)
Streptococcus iniae Astronotus ocellatus Y Iran Aquarium (Tukmechi et al. 2009)
Vibrio cholerae Garra rufa Y Y Y Italy Retail S (Volpe et al. 2019)
Protists
Achlya sp. Astronotus ocellatus Y Iran Aquarium (Peyghan et al. 2019)
Aphanomyces astaci Cherax quadricarinatus Y Y Taiwan Farm (Hsieh et al. 2016)
Aphanomyces invadans Pethia conchonius Y Y India Wild (Pradhan et al. 2014)
Dermocystidium salmonis Paracheirodon axelrodi  Y Y Germany Aquarium (Langenmayer et al. 2015)
Ichthyobodo necator Xiphophorus hellerii USA (Callahan et al. 2005)
Ichthyophthirius multifiliis Astronotus ocellatus Brazil Wild (Neves et al. 2013; Tavares-Dias 

and Neves 2017)
Ichthyophthirius multifiliis Osteoglossum bicirrhosum  Brazil Wild (Rodrigues et al. 2014)
Ichthyophthirius multifiliis Paracheirodon axelrodi  Brazil Retail P (Hoshino et al. 2018)
Ichthyophthirius multifiliis Xiphophorus hellerii Australia Wild (Dove and Ernst 1998)
Piscinoodinium pillulare Astronotus ocellatus Brazil Wild (Neves et al. 2013; Tavares-Dias 

and Neves 2017)
Piscinoodinium pillulare Osteoglossum bicirrhosum Brazil Wild (Rodrigues et al. 2014)
Tokophrya huangmeiensis Cherax quadricarinatus China Farm (Tahir et al. 2017)
Trichodina acuta Misgurnus 

anguillicaudatus
China Farm (Wang et al. 2017)

Trichodina acuta Xiphophorus hellerii Brazil Farm (Piazza et al. 2006; 
Garcia et al. 2009)

Trichodina heterodentata Xiphophorus hellerii Australia Wild (Dove 2000)
Trichodina lechriodentata Misgurnus 

anguillicaudatus
China (Zhao and Tang 2007)

Trichodina modesta Misgurnus 
anguillicaudatus

China (Zhao and Tang 2007)

Trichodina sp. Paracheirodon axelrodi  Brazil Wild (Tavares-Dias et al. 2010)
Trichodina sp. Pimephales promelas USA Wild (Weichman and Janovy 2000)
Trichodina sp. Xiphophorus hellerii Sri Lanka Farm (Thilakaratne et al. 
Fungi
Apotaspora heleios Palaemonetes paludosus Y USA Wild (Sokolova and Overstreet 2018)
Exophiala pisciphila Paracheirodon axelrodi  Y Czechia Aquarium (Rehulka et al. 2017)
Glugea pimephales Pimephales promelas Y Canada Wild (Forest, et al. 2009)
Pleistophora hyphessobryconis Paracheirodon axelrodi Czechia Aquarium (Novotný and Dvořák 2001)
Pleistophora sp. Pimephales promelas Y USA Farm (Ruehl-Fehlert et al. 2005)
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Type & name of 
Disease Agent

Ornamental Species Disease Mort. Sub. Country Location 
type

Reference

Fungi
Pseudoloma neurophilia Pimephales promelas Y Y UK Aquarium (Sanders et al. 2016)
Animal Kingdom
Acanthocephala
Acanthochepalan 
polymorphus sp.

Astronotus ocellatus Brazil Wild (Azevedo et al. 2007)

Neoechinorhynchus 
panucensis

Amatitlania nigrofasciata Mexico Wild (Salgado-Maldonado 2013)

Triaspiron aphanii Aphanius mento Turkey Wild (Smales et al. 2012)
Annelida
Chaetogaster limnaei Tarebia granifera Jamaica Wild (McKoy et al. 2011)
sp. Astronotus ocellatus Brazil Wild (Neves et al. 2013)
Glossiphonidae gen. sp. Astronotus ocellatus Brazil Wild (Neves et al. 2013)
Arthropoda
Argulus foliaceus Astronotus ocellatus Turkey (Toksen 2006)
Argulus japonicus Rhodeus occellatus Japan Wild (Yamauchi and Shimizu 2013)
Argulus multicolor Astronotus ocellatus Brazil Wild (Tavares-Dias and Neves 2017)
Dolops nana Astronotus ocellatus Brazil Wild (Neves et al. 2013)
Ergasilus ceylonensis Xiphophorus hellerii Sri Lanka Farm (Thilakaratne et al. 2003)
Lamproglena monodi Astronotus ocellatus Brazil Wild (Azevedo et al. 2012)
Lernaea cyprinacea Corydoras paleatus Argentina Wild (Plaul et al. 2010)
Lernaea cyprinacea Pimephales promelas USA Wild (Marcogliese 1991)
Lernaea cyprinacea Rhodeus ocellatus Japan Wild (Nagasawa and Torii 2014)
Lernaea cyprinacea Xiphophorus hellerii Iran Farm (Mirzaei 2015)
Neoergasilus japonicus Pimephales promelas USA Wild (Hudson and Bowen 2002)
Probopyrus pandalicola Palaemonetes paludosus USA Wild (Beck 1980)
Sebekia mississippiensis Xiphophorus helleri USA Retail P (Boyce et al. 1987)
Cnidaria
Myxobolus axelrodi Paracheirodon axelrodi  Y (Camus et al. 2017)
Thelohanellus misgurni Misgurnus mizolepis (Kwon and Kim 2011)
Nematoda
Anguillicoloides crassus Amatitlania nigrofasciata Germany Wild (Emde et al. 2016)
Camallanus acaudatus Osteoglossum bicirrhosum Brazil Wild (Rodrigues et al. 2014)
Camallanus cotti Amatitlania nigrofasciata Germany Wild (Emde et al. 2016)
Camallanus cotti Misgurnus 

anguillicaudatus
Canada Aquarium (Moravec and Justine 2006)

Camallanus cotti Xiphophorus hellerii USA Wild (Vincent and Font 2003)
Camallanus sp. Paracheirodon axelrodi Brazil Retail P (Hoshino et al. 2018)
Contracaecum bancrofti Misgurnus 

anguillicaudatus
Australia Wild (Shamsi et al. 2019)

Contracaecum sp. Astronotus ocellatus Brazil Wild (Neves et al. 2013; Tavares-Dias 
and Neves 2017)

Contracaecum sp. Osteoglossum bicirrhosum  Brazil Wild (Oliveira et al. 2019)
Contracaecum sp. Pimephales promelas USA Wild (Martins et al. 2017)
Eustrongylides excisus Aphanius mento Turkey Wild (Aydo_du et al. 2011)
Eustrongylides sp. Osteoglossum bicirrhosum  Brazil Wild (Oliveira et al. 2019)
Gnathostoma nipponicum Misgurnus 

anguillicaudatus
South 
Korea

Retail P (Sohn et al. 1993)

Mexiconema cichlasomae Xiphophorus hellerii Mexico Wild (Moravec et al. 1998)
Procamallanus inopinatus Astronotus ocellatus Brazil Wild (Tavares-Dias, 

Sousa and Neves 2014)
Procamallanus pintoi Corydoras paleatus Argentina Wild (Ailán-Choke et al. 2018)
Procamallanus sp. Paracheirodon axelrodi Brazil Wild (Tavares-Dias et al. 2010)
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Type & name of 
Disease Agent

Ornamental Species Disease Mort. Sub. Country Location 
type

Reference

Nematoda
Procamallanus spiculastriatus Astronotus ocellatus Brazil Wild (Pinheiro et al.2019)
Pseudocapillaria margolisi Pethia conchonius India Wild (De and Maity 1996)
Pseudoproleptus sp. Astronotus ocellatus Brazil Wild (Pinheiro et al. 2019)
Platyhelminthes
Acanthatrium hitaense Tarebia granifera Thailand Wild (Dechruska and Krailas 2007)
Acanthostomum sp. Paracheirodon axelrodi  Brazil Retail P (Hoshino et al. 2018)
Caballerotrema aruanense Osteoglossum bicirrhosum  Brazil Wild (Oliveira et al. 2019)
Centrocestus formosanus Barbodes semifasciolatus Vietnam Wild (Chai et al.2012)
Centrocestus formosanus Melanoides tuberculata USA Wild (Tolley-Jordan and Chadwick 

2018)
Centrocestus formosanus Osteoglossum bicirrhosum  Iran Wild (Mood et al. 2010)
Centrocestus formosanus Tarebia granifera USA Wild (Tolley-Jordan and Chadwick 

2018)
Centrocestus formosanus Tarebia granifera Thailand Wild (Dechruska and Krailas 2007)
Clinostomum complanatum Misgurnus 

anguillicaudatus
Taiwan Farm (Wang et al. 2017)

Clinostomum complanatum Rhodeus ocellatus Japan Wild (Aohagi et al. 1992)
Clinostomum marginatum Astronotus ocellatus Brazil Wild (Tavares-Dias and Neves 2017)
Clonorchis sinensis Misgurnus 

anguillicaudatus
China Wild (Zhang et al. 2014)

Clonorchis sinensis Misgurnus 
anguillicaudatus

South 
Korea 

Wild (Shin 1964)

Clonorchis sinensis Rhodeus ocellatus South 
Korea

Wild (Rhee et al. 1983)

Craspedella pedum Cherax quadricarinatus South 
Africa 

Wild (Tavakol et al. 2016)

Crassiphiala bulboglossa Pimephales promelas USA Wild (Wisenden et al. 2012)
Dactylogyrus olfactorius Pimephales promelas USA Wild (Lari et al. 2016)
Dactylogyrus simplex Pimephales promelas USA Wild (Knipes and Janovy 2009)
Dactylogyrus bychowskyi Pimephales promelas USA Wild (Knipes and Janovy 2009)
Dactylogyrus pectenatus Pimephales promelas USA Wild (Knipes and Janovy 2009)
Dactylogyrus ostraviensis Pethia conchonius Y Australia Border (Trujillo-Gonz‡lez et al. 2019)
Dactylogyrus sp. Garra rufa Iraq Wild (Abdullah 2017)
Dactylogyrus sp. Xiphophorus hellerii Sri Lanka Farm (Thilakaratne et al. 2003)
Diceratocephala boschmai Cherax quadricarinatus Thailand Wild (Ngamniyom et al. 2019)
Diceratocephala boschmai Cherax quadricarinatus South 

Africa 
Wild (Tavakol et al. 2016)

Didymorchis sp. Cherax quadricarinatus South 
Africa 

Wild (Tavakol et al. 2016)

Diplostomidae sp. Paracheirodon axelrodi  Brazil Retail P (Hoshino et al. 2018)
Echinostoma cinetorchis Misgurnus 

anguillicaudatus
South 
Korea 

Retail P (Seo et al. 1984)

Echinostoma sp. Melanoides tuberculata Philippines Wild (Paller et al. 2019)
Gonocleithrum aruanae Osteoglossum bicirrhosum  Brazil Wild (Tavares-Dias et al. 2014)
Gonocleithrum coenoideum Osteoglossum bicirrhosum Brazil Wild (Rodrigues et al. 2014)
Gonocleithrum cursitans Osteoglossum bicirrhosum Iran Retail P (Mehdizadeh et al. 2016)
Gonocleithrum planacrus Osteoglossum bicirrhosum  Brazil Wild (Rodrigues et al. 2014)
Gussevia asota Astronotus ocellatus Peru Wild (Mendoza-Franco et al. 2010)
Gussevia asota Astronotus ocellatus Panama Wild (Mendoza-Franco et al. 2007)
Gussevia asota Astronotus ocellatus South 

Korea 
Farm (Kim et al. 2002)

Gussevia astronii Astronotus ocellatus Brazil Wild (Neves et al. 2013; Tavares-Dias 
and Neves 2017)
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Type & name of 
Disease Agent

Ornamental Species Disease Mort. Sub. Country Location 
type

Reference

Nematoda
Gussevia rogersi Astronotus ocellatus Brazil Wild (Neves et al. 2013)
Gyrodactylus anisopharynx Corydoras paleatus Argentina Wild (Rauque et al. 2018)
Gyrodactylus anisopharynx Corydoras paleatus Brazil Wild (Boeger et al. 2005)3

Gytrodactylus bullatarudis Xiphophorus hellerii Australia Wild (Dove and Ernst 1998)
Gyrodactylus cichlidarum Astronotus ocellatus Iran Retail P (Mousavi et al. 2013)
Gyrodactylus corydori Corydoras paleatus Brazil Wild (Bueno-silva et al. and Boeger 

2009)
Gyrodactylus macracanthus Misgurnus 

anguillicaudatus
Australia Wild (Dove and Ernst 1998)

Gyrodactylus medaka Oryzias latipes Japan Wild (Nitta and Nagasawa  2018)
Gyrodactylus samirae Corydoras paleatus Brazil Wild (Popazoglo and Boeger 2016)
Gyrodactylus sp. Misgurnus 

anguillicaudatus
USA Wild (Reyda et al. 2020)

Gyrodactylus sp. Paracheirodon axelrodi Brazil Wild (Tavares-Dias et al. 2010)
Gyrodactylus sp. Xiphophorus hellerii Sri Lanka Farm (Thilakaratne et al. 2003)
Gyrodactylus superbus Corydoras paleatus Argentina Wild (Rauque et al. 2018)
Haematoloechus similis Tarebia granifera Thailand Wild (Dechruska and Krailas 2007)
Haplorchis pumilio Barbodes semifasciolatus Vietnam Wild (Chai et al. 2012)
Haplorchis pumilio Melanoides tuberculata USA Wild (Tolley-Jordan and Chadwick 

2018)
Haplorchis pumilio Melanoides tuberculata Thailand Wild (Dechruska and Krailas 2007)
Haplorchis pumilio Tarebia granifera USA Wild (Tolley-Jordan and Chadwick 

2018)
Haplorchis sp. Tarebia granifera Laos Wild (Ditrich et al. 1990)
Haplorchis taichui Melanoides tuberculata Thailand Wild (Chontananarth and 

Wongsawad 2010)
Haplorchis taichui Melanoides tuberculata Laos Wild (Nawa et al. 2001)
Haplorchis taichui Tarebia granifera Thailand Wild (Chontananarth and 

Wongsawad 2010)
Haplorchis taichui Tarebia granifera Laos Wild (Nawa et al. 2001)
Herpetodiplostomum sp. Astronotus ocellatus Brazil Wild (Neves et al. 2013)
Isthmiophora hortensis4 Misgurnus 

anguillicaudatus
China Wild (Qiu et al. 2017)

Isthmiophora hortensis4 Misgurnus 
anguillicaudatus

South 
Korea 

Wild (Ryang 1990)

Isthmiophora hortensis4 Misgurnus 
anguillicaudatus

South 
Korea 

Retail P (Jong-Yil Chai et al. 1985)

Loxogenoides bicolor Melanoides tuberculata Thailand Wild (Ukong et al. 2007)
Loxogenoides bicolor Tarebia granifera Thailand Wild (Ukong et al. 2007)
Massaliatrema misgurni Misgurnus 

anguillicaudatus
Japan Retail P (Ohyama et al. 2001)

Megulurous sp. Melanoides tuberculata Philippines Wild (Paller et al. 2019)
Metorchis orientalis Rhodeus ocellatus China Wild (Qiu et al. 2017)
Notocotylid sp. Tarebia granifera Jamaica Wild (McKoy et al. 2011)
Ornithodiplostomum 
ptychocheilus

Pimephales promelas USA Wild (Wisenden et al. 2012)

Ornithodiplostomum 
ptychocheilus

Pimephales promelas Canada Wild (Sandland and Goater 2001; 
Sandland et al. 2001)5

Paracaryophyllaeus gotoi Misgurnus 
anguillicaudatus

Japan Wild (Scholz et al. 2001)

Parapleurophocercous sp. Melanoides tuberculata Philippines Wild (Paller et al. 2019)
Parapleurophocercous sp. Tarebia granifera Philippines Wild (Paller et al. 2019)
Philophthalmus gralli Melanoides tuberculata USA Wild (Tolley-Jordan and Chadwick 

2018)
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Type & name of 
Disease Agent

Ornamental Species Disease Mort. Sub. Country Location 
type

Reference

Nematoda
Philophthalmus gralli Tarebia granifera USA Wild (Tolley-Jordan and Chadwick 

2018)
Philophthalmus sp. Tarebia granifera Jamaica Wild (McKoy et al. 2011)
Posthodiplostomum 
minimum

Pimephales promelas Canada Wild (Schleppe and Goater 2004)

Posthodiplostomum 
minimum

Pimephales promelas USA Farm (Mitchell et al. 1982)

Posthodiplostomum sp. Astronotus ocellatus Brazil Wild (Neves et al. 2013)6

Pimephales promelas Posthodiplostomum sp. USA Wild (Weichman and Janovy 2000)
Proteocephalus gibsoni Astronotus ocellatus Brazil Wild (Tavares-Dias and Neves 2017)
Proteocephalus misgurni Misgurnus 

anguillicaudatus
Russia Wild (Scholz et al. 2014)

Prototransversotrema steeri Xiphophorus hellerii Sri Lanka Farm (Dove 2000)
Pseudolevinseniella anenteron Cherax quadricarinatus Thailand Wild (Ngamniyom et al. 2019)
Paradiplozoon bingolensis Garra rufa Turkey Wild (Civanova et al. 2013)
Schyzocotyle acheilognathi Pimephales promelas USA Retail B (Boonthai et al. 2017)
Schyzocotyle acheilognathi Xiphophorus hellerii USA Wild (Vincent and Font 2003)
Stellantchasmus falcatus Tarebia granifera Thailand Wild (Chontananarth et al. 2018)
Temnosewellia sp. Cherax quadricarinatus Thailand Wild (Ngamniyom et al. 2019)
Tetracotyle wayanadensis Pethia conchonius India Wild (Jithila and Prasadan 2018)
Thometrema sp. Astronotus ocellatus Brazil Wild (Tavares-Dias and Neves 2017)
Uvulifer ambloplitis Pimephales promelas USA Wild (Weichman and Janovy 2000)
Telethecium nasalis Osteoglossum bicirrhosum  Brazil Wild (Kritsky et al. 1996)

1 variant Cherax quadricarinatus densovirus; 2 Rhabdovirus; 3 Also Pie and Boeger (2006) and Bueno-silva and Boeger (2009); 4 Also Reported 
under synonym Echinostoma hortense ; 5 Aso Schleppe and Goater (2004); 6 Also Tavares-Dias and Neves (2017) and Pinheiro et al. (2019).

Discussion

Trade in live aquatic ornamental species is vast, benefitting from globalisation and im-
proved transport in recent decades. Over 140 countries are involved in the international 
trade of more than 1500 fish and 300 aquatic invertebrate species (Weir et al. 2012; 
Hood et al. 2019). Our study provides an assessment of freshwater ornamental trade in 
the UK in which commonly traded species and their likelihood of establishment in UK 
waters under current and future climate conditions, with their potential pathogens and 
parasites also identified..

These data on commonly traded species are a snapshot in time, which potentially 
limits accuracy and prevents the assessment of seasonal and annual variations. That said, 
the six species identified were listed amongst the 30 species reported to predominate 
the global trade in ornamental freshwater organisms in a relatively recent review: End-
ler’s livebearer, goldfish, zebra danio, neon tetra Paracheirodon innesi Myers, 1936, angel 
fish Pterophyllum scalare Schultze, 1823, and discus Symphysodon aequifasciatus Pellegrin, 
1904 (Dey 2016).

Access to robust ornamental trade data, in particular with respect to species traded 
and import origin, is fundamental to fill knowledge gaps and inform risk screenings and 
the risk analysis process (Copp et al. 2016; Chan et al. 2019). A comprehensive under-
standing of spatial and temporal trade patterns to species level will increase capacity to 
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identify high risk links, facilitating targeted and cost-effective surveillance. Species-level 
information will also support analyses from a conservation point of view, particularly 
for marine species that are wild sourced, and ensure there is increased transparency 
in the source, quantity and sustainability of trade for each species (Andersson et al. 
2021). In the UK, aquatic species imports from third party countries are electronically 
recorded on the ‘Import of Animals Food and Feed System’ (IPAFFS). Historically, 
non-susceptible aquatic species imported from the EU for ornamental use were not 
recorded on any system. As of January 2021, all aquatic imports must be recorded on 
IPAFFS, but records on this database are categorised by international commodity codes 
(www.uktradeinfo.com/find-commodity-data/help-with-classifying-goods/). However, 
the purpose of these codes is to enable the application of appropriate tariffs to imported 
goods and they do not provide sufficient resolution to identify consignments to species 
level, so cannot be used to inform disease susceptibility or invasive potential. Import 
data at the species-level for the UK currently exist in paper format only (on the invoices 
that accompany all other relevant import certification), though there are periods for 
which species-level electronic data have been available for freshwater fishes, including 
ornamental varieties, imported to England between 2000 and 2004 inclusive (see Copp 
et al. 2007). Limitations with respect to access to detailed live ornamental import data 
are not unique to the UK (Rhyne et al. 2012, 2017; Leal et al. 2016; Pinnegar and Mur-
ray 2019; Biondo and Burki 2020). Creation of an import data App, or extension of an 
existing, established App, is an opportunity to capture detailed import data, integrating 
species trade information with other crucial information such as invasiveness potential, 
associated disease threats and conservation status. Such a system would enhance capaci-
ty for real-time monitoring and analysis, at the point of exporter application for import, 
allowing trade in high risk species to be tracked and incidences of illicit trade, such as 
the import of prohibited species, to be detected in a timely manner (Rhyne et al. 2017).

Legislative instruments restrict the keeping of many temperate species but do al-
low the keeping of numerous commonly traded tropical and sub-tropical species. The 
application of SDMs indicated that, while establishment of commonly traded species 
if released into the wild is unlikely in the UK under current conditions, predicted tem-
perature increases associated with climate change may increase risks of survival and es-
tablishment. The mean increase in temperature suitability of 2.4% and 1.8% for fish and 
invertebrates, respectively, by 2050 under RCP 4.5 demonstrated in our study may seem 
a small increase in ‘risk’, but RCP 4.5 represents a moderate climate-change scenario, 
and temperature increases may be greater than this scenario predicts. Although a broad 
scale indication of the change in suitability under climate change is provided, careful 
interpretation of SDM outputs may be required. For instance, the red shiner Cyprinella 
lutrensis Baird & Girard, 1853, is widespread across the USA and has been identified, 
using the Fish Invasiveness Screening Kit, as posing a medium risk of being invasive in 
England and Wales (Copp et al. 2009). However, the red shiner had a relatively low suit-
ability score (0.10) under current day conditions in our study (Table 2). The Chinese 
muddy loach Misgurnus mizolepis Guenther, 1888 had a suitability score of 0.26 under 
current day conditions, yet there has been only one record of a reproducing population 
in the UK (in southern England), which was subsequently eradicated (Zięba et al. 2010). 
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Although outside the scope of our study, there will be value in assessing species suitability 
at a finer spatial resolution, for example accounting for differences in conditions across 
the entirety of the UK (Thrush and Peeler 2013), for example, the notably warmer condi-
tions in the South compared to the North UK, affecting the risks of survival and estab-
lishment of sub-tropical and tropical species (see Suppl. material 1: Figs S1, S2). Further, 
extension of the SDMs to incorporate environmental factors such as rainfall, habitat type 
or elevation (Logez et al. 2012), species' life-history traits such as size or fecundity (Copp 
and Fox 2007; Liu and Olden 2017), and consideration of the likelihood of release of 
each species (i.e. potential propagule pressure) will be of value. For example, inclusion 
of elevation will account for species with native distributions at higher altitudes within 
the tropical zone that may be more adapted to temperature conditions more similar to 
the temperate zone species due to Rapoport’s latitudinal rule to altitude (Stevens 1992).

In total, 155 PPPs were found to be associated with the screened ornamental fishes 
and invertebrates. Despite following a standardised approach for each host species, the 
number of PPPs identified in the literature may be skewed by the research effort applied 
to a species and affected by the use of different accepted names or synonyms. One of the 
key drivers of impacts associated with NN aquatic species (Peeler et al. 2011) are PPPs, 
with disease emergence events resulting from NNS introductions being well documented 
(Taraschewski 2006; Peeler et al. 2011; Lymbery et al. 2014). Disease emergence can be 
driven solely by a switch in geographical range, because a new environment may favour 
increased PPP virulence, or by host switching and pathogen/parasite spillover (Peeler et 
al. 2011; Foster et al. 2021). Thermal tolerances of a PPP may also determine the likeli-
hood and impact of disease emergence resulting from co-transportation, particularly for 
PPPs that can survive outside a host or have free-living stages (Barber et al. 2016). 

Even if the long-term survival of an ornamental species is not supported by future 
UK temperatures, the host species may persist long enough to transmit a PPP to a na-
tive susceptible host or introduce a free-living stage which can survive. Temperature 
may also determine the likelihood of PPPs causing disease and morbidity in infected 
hosts. For example, KHV is thought to only cause clinical signs and mortality be-
tween 16 ˚C and 25 ˚C (OIE 2019), whereas outbreaks of VHS rarely occur above 15 
˚C (Baillon et al. 2020). While beyond the scope of this study there will be value in 
building on the present study by examining the environmental tolerances of the PPPs 
and the likely impact of climate change. Indeed, PPPs introduced via the ornamental 
pathway may cause wider impact, for example causing mortality and yield loss in aq-
uaculture systems and affecting human health, although strong biosecurity and health 
and safety precautions can mitigate against such risks.

The PPPs that cause mortalities or clinical expression of disease in the traded host 
species are more likely to be detected via visual inspection or quarantine at border con-
trol posts or other stages in the ornamental trade pathway (Table 3). However, PPPs that 
live symbiotically with a host, or those PPPs that have sub-clinical or latent infection 
stages, provide a greater challenge to detection (Gomez et al. 2006; Becker et al. 2014). 
Traditionally, the testing of host species for PPP presence often requires destructive 
sampling, which limits the number of specimens and ultimately reduces the probability 
of PPP detection. However, new methodologies that incorporate molecular techniques 
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at border control posts, such as environmental DNA, may present a good non-lethal 
option (Trujillo-González et al. 2019b; Brunner 2020) for improved PPP detection. 
Measures such as heat ramping (gradually increasing the water temperature over a mini-
mum period) can be used during quarantine to detect latent infections (Eide et al. 
2011); however, this may not appropriate for all PPPs, when surveillance aims to target 
multiple PPPs and where there is a need to adhere to animal welfare laws and guidance.

Though the remit of our study was to undertake a high-level screening to identify 
all PPPs associated with commonly traded ornamental species, rather than novel threats 
per se, we note that while some of the identified PPPs are known in the UK, others are 
not. Some PPPs are already known within the ornamental fish trade industry, and do not 
cause widespread impact or can be successfully treated to minimise impact. However, the 
abundance and diversity of PPPs increases potential for future disease outbreaks under 
changing environmental conditions. Even where a PPP has not yet been implicated in 
any mortality events, the changing climate and alterations to host communities (e.g. due 
to species introductions) may provide the perfect storm for disease emergence into the 
future. Next steps should aim to assess the risk associated with each PPP, focussing on the 
interplay between the PPP, all potential hosts and changing environmental conditions.

In conclusion, the ornamental fish trade is largely free from serious and untreatable dis-
eases. However, through screening of a small subset of ornamental freshwater species, our 
study highlights the abundance and diversity of PPPs present in ornamental species com-
monly traded in the UK. An understanding of hazards associated with PPPs, in particular 
under changing ecological and environmental conditions, is crucial to determine and com-
municate risks and enhance risk awareness amongst stakeholders and the general public, 
thereby enabling mitigation through management actions (Britton et al. 2011) to ensure a 
safe and sustainable ornamental aquatics industry into the future (Copp et al. 2016).
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