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Methods

We used the individual-based and spatially explicit model framework introduced by Birand et al.

(2022). In the model, individuals occupy a rectangular array of patches that form a landscape.

Patches hold multiple individuals, and individuals can utilize multiple patches. Individuals

are diploid and have genetically controlled autosomal traits and sex chromosomes. A breeding

cycle is a single time-step with: mate search, mating, density-dependent reproduction, natal

dispersal, survival, and breeding dispersal of adults. There are multiple breeding cycles (nc) per

year and generations are overlapping. Individuals can go through a number of breeding cycles

provided that they survive until they reach a maximum age (agem).

All females mate, unless there are no males present within their mate-search area determined

by mate-search distance parameter Dm. The search starts in the central patch and covers all

patches, including the diagonals within Dm. Females pick males randomly, which implies that

some males can mate multiple times, whereas some may not mate at all. Depending on the

probability of multiple mating (pm), a female can mate with multiple males (nm = 2) in a

single breeding cycle if there are more than one male present in her central patch. Fertility is

density dependent. The number of offspring per female is drawn from a Poisson distribution

with mean parameter υ = b/(1 + [(b/2)− 1][N/K]), where b is the average number of offspring;

N and K are the population size and the carrying capacity in the female’s central patch,

respectively (discrete-time Beverton-Holt model Kot, 2001). Under polyandrous mating, each

male is assigned a probability of paternity. Y-drive carrying males’ probability are reduced

by sperm-disadvantage coefficient (ds = 0.2) when they are competing against wild-type males

since sperm production is essentially halved in male gene-drive carriers.

All offspring are assumed to survive since the density-dependent fertility incorporates off-

spring mortality. Offspring can disperse to a new patch within distance Dn to establish a mate

search area. Natal dispersal is both distance and negative density dependent, and the probabil-

ity of picking a patch with distance δ is calculated as: P (δ) = exp
[
(δ/Dn −Nr/Kr)

2
]

where Dn

is the maximum dispersal distance; Nr is the population size, and Kr is the carrying capacity

summed across all the patches within distance Dn (Birand et al., 2022).
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The negative density-dependent dispersal function ensures that individuals tend to retain

the same central patch at high densities; whereas at low densities, the probability of dispersal to

greater distances is larger. Density-dependent dispersal is ubiquitous in nature, and dispersal

rates and distances increase with decreasing abundance in various taxa (Amarasekare, 2004;

Matthysen, 2005; Travis and French, 2000; Diffendorfer, 1998), including small rodents (Ims

and Andreassen, 2005; Lambin, 1994; Sandell et al., 1990; Jones et al., 1988; Russell et al.,

2005; Nathan et al., 2015; MacKay et al., 2019; Moro and Morris, 2000), rabbits (Parer, 1982;

Richardson et al., 2002; Ziege et al., 2020), cats (Quilodrán et al., 2019), and foxes (Trewhella

et al., 1988). Random dispersal within a dispersal range is a common assumption used in

theoretical models, but it is overly simplistic and fails to capture the complexity of dispersal

observed in nature (Travis and French, 2000). Moreover, it can also lead to underestimation

of times to eradication (Birand et al., 2022). After dispersal, survival of adults is implemented

using a fixed probability of surviving ω to the next breeding cycle.

Surviving adults can establish new mate-search areas with a new central patch within dis-

tance Db (Harts et al., 2016). The probability of picking a patch is calculated as natal dispersal

above (for simplicity, we assume that the maximum distances for natal dispersal, breeding dis-

persal, and mate-search distance parameter are physiologically constrained to be equal, and

determined by D).

We explored the spread of X-chromosome shredding Y-drive. The X-chromosome shredding

drive is a CRISPR-based drive located on the Y chromosome, and destroys the X chromosome

with probability px = 0.96 by cleavage at X chromosome specific repeat sequences during

spermatogenesis (Fig. 1A). Since most of the X-bearing sperm are inviable, and eggs are

predominantly fertilized by Y-bearing sperm, causing disproportionately more male offspring.

We also checked the effect of a CRISPR-based homing drive, which is located within an exon

of a fertility gene, causing deactivation of the gene in the germline in both sexes. The gene is

haplosufficient and is present in both sexes but required only in females (Birand et al., 2022).

We assumed that the probability of Non-Homologous End Joining (NHEJ), pN = 0.01; the

probability of a successful cut, pC = 0.9; and the probability of loss of gene function following

NHEJ, pL = 0.9999 across all species. Reducing the survival probabilities of drive carrying

individuals further by 10% had low influence (∼ 2%) on the probabilities of eradication for both

the drives (Birand et al., 2022) and is not considered here.
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Model parameters are based on empirical data (Table 1 in the main text). For survival

(ω) and probability of polyandry (pm), we used a uniform distribution defined by ±0.05 of

the parameter estimate; and for dispersal distance D, we used a uniform discrete distribution

with range ±1 patch. We created 1, 000 unique parameter combinations for each species based

on these distributions using Latin hypercube sampling (randomLHS, R software package lhs

Carnell, 2020) and ran a single simulation for each of the parameter combinations (Prowse

et al., 2016). Drive-carrying males are introduced after a burn-in period of 12 breeding cy-

cles. After exploring various spatial release strategies in mice, we modelled a single release

into 256 patches distributed systematically across the landscape, with one gene-drive carrying

individual (Ni = 1) released per patch. We ran simulations for a maximum of 500 breeding

cycles. The model is coded using the C programming language (Dryad Digital Repository,

https://doi.org/10.5061/dryad.wstqjq2p0).

We performed a global sensitivity analysis to investigate the relative influence of parameters

on the time to eradication when eradication was successful. We fit Boosted Regression Tree

models using the function ‘dismo’ (BRT; R package dismo Hijmans et al., 2011) with the

following settings: learning rate = 0.01; bag fraction = 0.75; tree complexity = 3; 5-fold cross-

validation (Elith et al., 2008). We assumed Bernoulli error distribution for the probability to

eradication, and Poisson error distribution for time to eradication (Elith et al., 2008). The

relative influence of parameters are presented in Table S1 below.
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Table S1: Relative influence of parameters on probability of eradication and time to eradication
based on sensitivity analysis results. Note that the probabilities of eradication was 1 for both
black rats and rabbits with the parameter ranges simulated; therefore, relative influence of
parameters could not be determined.

Species ω D pm
Probability of eradication

Mouse 36.33 32.26 31.41
Black rat - - -
Rabbit - - -
Cat 26.41 73.10 0.49
Fox 64.80 29.73 5.47
all species 50.45 46.71 2.83

Time to eradication
Mouse 12.43 78.72 8.85
Black rat 89.19 2.67 8.15
Rabbit 93.79 4.36 1.85
Cat 12.56 87.05 0.39
Fox 66.01 26.34 7.65
all species 44.35 26.69 28.95

Table S2: Median time to 50% and 90% reduction, and time to eradication (100% reduction)
in years across all species with Y-drive.

Species 50% 90% 100%

Mouse 6.7 9.2 17.7
Black rat 9.0 11.7 18.5
Rabbit 16.8 24.1 48.0
Cat 71.0 92.0 143.2
Fox 74.0 103.5 169.0
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