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Abstract
Aim: Species distribution models can guide invasive species prevention and management by character-
izing invasion risk across space. However, extrapolation and transferability issues pose challenges for de-
veloping useful models for invasive species. Previous work has emphasized the importance of including 
all available occurrences in model estimation, but managers attuned to local processes may be skeptical 
of models based on a broad spatial extent if they suspect the captured responses reflect those of other 
regions where data are more numerous. We asked whether species distribution models for invasive plants 
performed better when developed at national versus regional extents.

Location: Continental United States.
Methods: We developed ensembles of species distribution models trained nationally, on sagebrush 

habitat, or on sagebrush habitat within three ecoregions (Great Basin, eastern sagebrush, and Great Plains) 
for nine invasive plants of interest for early detection and rapid response at local or regional scales. We 
compared the performance of national versus regional models using spatially independent withheld test 
data from each of the three ecoregions.

Results: We found that models trained using a national spatial extent tended to perform better than 
regionally trained models. Regional models did not outperform national ones even when considerable 
occurrence data were available for model estimation within the focal region. Information was often una-
vailable to fit informative regional models precisely in those areas of greatest interest for early detection 
and rapid response.
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Main conclusions: Habitat suitability models for invasive plant species trained at a continental extent 
can reduce extrapolation while maximizing information on species’ responses to environmental variation. 
Standard modeling methods can capture spatially varying limiting factors, while regional or hierarchical 
models may only be advantageous when populations differ in their responses to environmental conditions, 
a condition expected to be relatively rare at the expanding boundaries of invasive species’ distributions.

Keywords
Early detection and rapid response, invasion risk, model transferability, species distribution models

Introduction

Organisms’ responses to environmental variation underlie patterns of distribution and 
abundance and are the basis for correlative statistical tools such as species distribution 
models (SDMs; Franklin 2010). Among the challenges of such models are that 1) 
the relationships between environmental conditions and organismal response can vary 
over space and time, and 2) outcomes under new conditions are difficult to predict (Se-
queira et al. 2018; Yates et al. 2018). These twin challenges, transferability and extrapo-
lation, can point to opposing solutions when interest is in predicting habitat suitability 
in a region beyond the core of a species’ range (Werkowska et al. 2017; Sequeira et al. 
2018). Transferability challenges could favor limiting both estimation and prediction 
to within the region of interest when such data are available and where responses to 
environmental conditions are thought to be distinctive (Barbet-Massin et al. 2018). 
However, while a regional approach may capture key limiting factors, it excludes the 
full range of environmental conditions under which data are available and hence can 
lead to unnecessary extrapolation and errors in estimated suitability (e.g., Fitzpatrick 
et al. 2007; Broennimann and Guisan 2008).

Predicting suitability for invasive species exemplifies challenges with both transfer-
ability and extrapolation (Elith et al. 2010). Wherever invasive species are still spread-
ing, correlative models can conflate this lag in time (i.e., lack of equilibrium) with a 
lack of suitability. A common recommendation is to develop the most inclusive view 
of invasion risk by estimating models based on both the native and invaded ranges to 
capture the species’ complete environmental associations and minimize extrapolation 
(Fitzpatrick et al. 2007; Broennimann and Guisan 2008). However, where popula-
tions are differentiated in their responses to environmental conditions, surveillance 
and management may be more effectively guided by locally or regionally tuned ap-
proaches because of poor model transferability (e.g., Connor et al. 2019; Collart et al. 
2021). Studies focused on native species have found modeling intraspecific subsets of 
the data based on genetic or regional groupings improved distribution model predic-
tions (Chardon et al. 2020). Further, regional models performed better at predicting 
distributions within the margins of species ranges, where different environmental pre-
dictors were most important (Vale et al. 2014; Connor et al. 2019). Marginal or poorly 
sampled populations may also contribute little to model estimation if training data are 
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heavily dominated by a better sampled portion of a species’ range (Pearman et al. 2010; 
Hällfors et al. 2016); conversely, limiting model estimation to sparse data in a subset 
of the range may lead to low model quality. Given the potential for population dif-
ferentiation within species’ invaded ranges (e.g., Colautti and Barrett 2013), models of 
invasive species’ distributions may face important trade-offs between inclusivity versus 
regional applicability, as well as practical data limitations in newly invaded areas. Meta-
analyses of studies that trained models using native range only, invaded range only or 
global range did not find that global models perform better than models generated in 
the range of interest, and indicate that superiority of global model performance could 
be a statistical artefact because test data are not independent (Liu et al. 2020b).

Early detection and rapid response (EDRR) activities aim to prevent establish-
ment, spread, and impact through surveillance and rapid management action, and can 
minimize invasions in new regions (Reaser et al. 2020). Sagebrush (Artemesia sp.) habi-
tats in the western United States (U.S.) provide habitat for many wildlife species and 
face multiple stressors including invasive species, altered fire regimes, climate change, 
and energy development (Davies et al. 2011; Coates et al. 2016). Crist et al. (2019) 
have developed a list of invasive plants that have no, patchy, or limited presence on a 
state-by-state basis within sagebrush habitat. Their approach emphasized the potential 
for ongoing spread and geographic differences in invasion status, as species that are 
well established within one state may still warrant EDRR elsewhere. For these regional 
‘EDRR species’, species distribution models can guide surveillance by identifying areas 
with high invasion risk (Brooks and Klinger 2009). However, one concern we have 
heard from within the management community is that models trained with a broad 
geographic extent could miss regionally and locally relevant limiting factors if impor-
tant signals were swamped by other portions of the range.

For a set of nine species recognized as EDRR targets within sagebrush habitats 
(Crist et al. 2019), we characterized each species’ relationship to sagebrush commu-
nities to understand habitat associations and degree of sage specialization. We then 
compared the performance of national (here used to refer to the conterminous U.S.) 
versus regional species distribution models. We compared regional models to national, 
instead of global, models because of the availability of a wider breadth of predictors 
within the conterminous U.S., including higher quality data than are available globally 
(e.g., for soils), and finer spatial resolution of predictors focused on the U.S. compared 
to global versions. Appropriate methods to account for sampling biases are also likely 
to differ between a native range, where a species is likely closer to equilibrium, and a 
novel range, which complicates background selection when pooling records from na-
tive and invaded ranges (Elith et al. 2010; Jarnevich et al. 2017). In addition, all spe-
cies in question have been in the U.S. since at least 1957 (based on earliest occurrence 
records; GBIF.org 2022), giving them time to potentially develop local adaptations 
and providing numerous occurrence points for model estimation (Liu et al. 2020a; 
b). Thus, we fit species distribution models for each species across the U.S., from all 
sagebrush within the U.S., and separately within sagebrush habitats in each of three 
ecoregions (Great Basin, eastern sage, Great Plains). Models trained on sagebrush only 
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were fit to allow for any response curves specific to sagebrush habitats (within which 
models were also tested). We evaluated model performance using withheld spatially 
independent validation data within each region. We hypothesized that given sufficient 
data and variation in environmental responses, a regional model evaluated with test 
data from within the region could outperform a national model. Our results evaluate 
whether national models can sufficiently capture invasion risk across ecoregions, or 
whether estimation of models for each region improves the credibility of the outputs 
for on-the-ground management.

Methods

Study area

We used a combination of level 2 and 3 EPA ecoregion designations (U.S. Environ-
mental Protection Agency 2013) to create three regional study areas: the Great Basin 
(regions 10.1.8/3/5), eastern sage (region 6.2), and Great Plains (regions 9.2, 9.3, and 
9.4) regions. Within each regional boundary, we further restricted the study area for 
each region to sagebrush habitat, defined by 30 m2 cells of greater than 0% sagebrush 
presence as designated by the National Land Cover Data set (NLCD) shrubland sage-
brush rangeland fractional component product (Xian et al. 2015).

We created a spatial split of the occurrence data for model validation, as random 
splits typically underestimate prediction error (Roberts et al. 2017; Fourcade et al. 
2018). Within each of the three regions we designated a central longitudinal test strip 
that contained 10% of the sagebrush cells within the region (Fig. 1; Suppl. material 
1: Table S1). Occurrence data points within sage habitat inside these test strips were 
withheld from model fitting and used to evaluate model performance. In addition to 
these three regional model estimation extents, we considered two larger spatial extents: 
the continental U.S., and all sagebrush habitat within the continental U.S., defined as 
above based on Xian et al. (2015; hereafter “all sage”).

Study species

We selected nine plants from a list of invasive species for EDRR activities within states 
of the eastern sage region (Crist et al. 2019) that had at least 50 training occurrence 
records and 30 test strip records in at least one study region. These included seven forb/
herbs as defined by the USDA PLANTS database (USDA NRCS 2019): Centaurea 
diffusa Lam. [diffuse knapweed], C. solstitialis L. [yellow star-thistle], C. virgata Lam. 
[squarrose knapweed], Chondrilla juncea L. [rush skeletonweed], Halogeton glomera-
tus (M. Bieb.) C.A. Mey. [saltlover, halogeton], Rhaponticum repens (L.) Hidalgo Syn 
Acroptilon repens [Russian knapweed] and Salvia aethiopis L. [Mediterranean sage]. We 
also included two winter annual grass species: Taeniatherum caput-medusae (L.) Nevski 
[medusahead rye] and Ventenata dubia (Leers) Coss. [ventenata, North Africa grass].



Continental models are adequate 5

We aggregated occurrence data from existing data sets following Young et al. 
(2020), including Global Biodiversity Information Facility (GBIF; GBIF.org 2021), 
Biodiversity Information Serving Our Nation (BISON; individual data sources and 
all data used in this study are available as a USGS data release Jarnevich et al. 2022), 
the Early Detection and Distribution Mapping System (EDDMapS) [all accessed 1 
Dec 2020], the Bureau of Land Management’s (BLM) Assessment, Inventory and 
Management database (obtained June 2020) and the BLM and National Park Ser-
vice’s National Invasive Species Information Management System (NISIMS) (Sup-
pl. material 1: Table S2 [provides more details in an assessment rubric]). All known 
synonyms and U.S. Department of Agriculture (USDA) Plants Database acronyms 
were collected (excluding subspecies, variants, and hybrids) using the Integrated Taxo-
nomic Information System (ITIS; www.itis.gov) as an authoritative taxonomy in the 
R library ‘taxize’ (Chamberlain and Szocs 2013; Chamberlain et al. 2020). We filtered 
observations by coordinate uncertainty (≤ 30 m), observation type (observation or 

Figure 1. We compared five geographic extents for model estimation while holding validation data 
constant (occurrence points within dark grey vertical shaded areas). Two geographic training extents were 
continental and three were regional, and we fit an ensemble of distribution models to the occurrence 
points for each species within each estimation extent. These extents for model estimation were: 1) the 
continental United States; 2) all sagebrush habitat within the continental U.S. (gray shading within the 
western U.S.); 3) sagebrush within eastern sage; 4) sagebrush within the Great Basin; and 5) sagebrush 
within the Great Plains. Within each of the three regions (shown via colored polygons), we created a test 
strip (vertical shaded areas) centered on sagebrush habitats, and withheld occurrence points for model 
performance comparisons. We asked whether a regional or continental training extent yielded higher 
performance within these test strips, as measured by the Boyce index values.
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specimen only), and observation date (1980 to present [2020]) to match the time 
frame of predictors and remove older records which typically have poor geographic 
accuracy. We removed any records with coordinates corresponding to state or coun-
try centroids or other easily identifiable geographic and taxonomic errors. We also 
checked the entire dataset for duplicate records and confirmed that occurrence loca-
tions generally aligned with reported distributions via USDA Plants Database (USDA 
NRCS 2019). We followed these same methods to obtain location data for species 
identified as non-native by USDA Plants Database to use as background points to 
control for sampling biases, as described below. We required 50 occurrence records in 
a study area to fit a model, and 30 records in a test strip to evaluate models for that 
strip (Suppl. material 1: Table S3, Fig. S1).

Predictors

We began with a national library of 49 predictors representing climate (water defi-
cit, actual evapotranspiration, precipitation, and temperature average from avail-
able years 1981–2018 [see Suppl. material 1: Table S4]), human disturbances, soils, 
water presence / recurrence, fire history, and land cover created by Young et al. 
(2020) using the Albers equal area projection with a 90 m2 resolution and modified 
by Engelstad et al. (2022) (Suppl. material 1: Table S4). This list includes predic-
tors thought to be important for determining the distribution of different types of 
plant species within the continental U.S. For this analysis, we developed a rank-
ing of predictors a priori to guide predictor selection for each species based on 
its natural history, such as winter annual species which use overwinter and spring 
moisture. We first grouped predictors into ten broad categories and ranked those 
categories based on our experience developing models for > 140 invasive plants in 
the continental U.S. (Young et al. 2020;  Engelstad et al. 2022) and what environ-
mental characteristics are important for different plant life forms in general. Next, 
we ranked the predictors within each of these broad categories for each species based 
on natural history knowledge of each individual species. Beginning with the high-
est ranked category (ETo), the highest ranked predictor was selected. Then, in the 
second ranked category, the highest predictor was selected that was not correlated 
with the first selected predictor for the top ranked category (maximum correlation 
coefficient of Pearson, Spearman, or Kendall was > 0.7 (Dormann et al. 2013)). An 
exception was made such that if one category of predictors was eliminated entirely, 
the second ranked predictor in category 1 would be retained if the highest was cor-
related with all of category 2 predictors whereas the 2nd ranked allowed for inclusion 
of another predictor category. Thus, correlation coefficients among predictors were 
used to limit co-linearity of selected predictors, but correlations with the response 
variable were not considered in variable selection. We ensured the ratio of presence 
points to predictors was at least 10:1 (Hosmer and Lemeshow 2000). This resulted 
in 47 predictors used across all models (Suppl. material 1: Table S4), with a range 
of 8 to 29 predictors per model.
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Analyses

We evaluated the degree to which each species was disproportionately found within sage-
brush and within different land cover types by overlaying occurrence points with land 
cover data. We identified where each focal species has invaded sagebrush communities 
by overlaying the compiled occurrence data with the NLCD shrubland sagebrush range-
land fractional component product (Xian et al. 2015; U.S. Geological Survey and Rigge 
2019), defining sagebrush as any location with a > 0 cover value. We also counted the 
number of presence points for each species within the broad 2016 National Land Cover 
Data classes (i.e., agricultural, developed, forest, grassland, shrubland). We then calcu-
lated the proportion of the total species points found in each class. Because sampling 
effort can distort distributional assessments (e.g., Sofaer and Jarnevich 2017), we con-
trolled for sampling effort across land cover categories by adjusting observed focal species 
associations by the habitat-specific number of records for other non-native plants of the 
same life form (i.e., forb/ herb or graminoid). We plotted the results to assess the degree 
to which each species disproportionately occurred in sagebrush habitats and each land 
cover class to better understand habitat preferences and the degree to which different 
species were sage specialists. These results were interpreted visually, while the target-back-
ground method described below similarly accounted for sampling biases within models.

We developed an ensemble of species distribution models for each species and 
training extent combination containing at least 50 presence locations (Suppl. material 
1: Table S3). We fit models using the VisTrails Software for Assisted Habitat Modeling 
v2.2.0 (SAHM; Morisette et al. 2013) following the methods of Young et al. (2020) 
and high performance computing (Falgout and Gordon 2021). We implemented five 
model algorithms [boosted regression tree (Elith et al. 2008), generalized linear mod-
el (McCullagh and Nelder 1989), multivariate adaptive regression spline (Elith and 
Leathwick 2007), Maxent (Phillips et al. 2017), and random forest (Breiman 2001)] 
and two background point generation methods. One method was a kernel density 
estimate (KDE) around presence points to weight random background point genera-
tion (Elith et al. 2010). The other was target background (Phillips et al. 2009) based 
on 10,000 randomly selected locations of other non-native species locations within 
the same broad life form assigned by USDA Plants Database [forb/herb or graminoid] 
from within a 99% kernel density estimate isopleth (an isopleth is a line representing 
a constant value, as in a contour line on a topographical map) around the presence 
points or the full set of life form points if < 10,000 points fell within the 99% KDE. 
KDE isopleths are commonly used to define species’ ranges by drawing a polygon to 
encompass locations (in this case, 99% of them) (Worton 1989) and recommended 
for range shifting invasive species (Elith et al. 2010). We withheld presence and back-
ground locations falling within test strips from estimation of all models. We fit each 
model using SAHM default parameters for algorithms with 10-fold cross-validation. 
We examined the difference between train and mean cross-validation values from the 
area under the receiver operating characteristic curve (AUC) and visually examined 
response curves to determine if models appeared overfit. In cases where models were 
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deemed overfit (trainAUC – testAUC > 0.05 or overly complex response curves), we 
adjusted model-specific tuning parameters, making the changes that most decreased 
overfitting while maintaining good cross-validation performance.

Because we only had presence locations, the outputs of the SDM algorithms are 
interpreted as relative habitat suitability values rather than probabilities. To create an 
ensemble across algorithms and background methods (10 models) we used of the 10th 
percentile training presence threshold for each model to produce binary outputs of 
suitable/unsuitable habitat that we could then sum across the ten models for each spe-
cies/extent combination. The 10th percentile threshold is calculated for presence-only 
data based on the omission rate, where the 10% of occurrences with lowest predicted 
suitability are assumed to occur in poor habitat to avoid over-prediction due to errors 
or outliers in training locations.

We compared variable importance between regional and national models. We 
calculated variable importance by permutating values for each predictor across pres-
ence and background locations and calculating the difference between the original and 
permutated AUC values. Within each model, variables were ranked by permutation 
importance, with the most important variable being the one for which permuting its 
values led to the greatest decrease in AUC. For the ensemble we averaged the impor-
tance across the contributing models.

Because AUC is problematic for presence-background data (Lobo et al. 2008; 
Peterson et al. 2008; Sofaer et al. 2019a; Jiménez and Soberón 2020), we used the 
Boyce index to evaluate model performance based on the test data (Hirzel et al. 2006). 
The Boyce index assesses how much model predictions differ from random expectations 
by comparing the proportion of occurrences across classes of predicted suitability to the 
proportion of grid cells in each class. The Boyce index is based on the null expectation 
that the proportion of validation points expected within a given class is the proportion 
of the landscape area within that class (i.e., in contrast to sensitivity, which is based only 
on true positives, it would penalize a model for predicting high suitability everywhere). 
We calculated the index using the ensemble value (the number of models predicting 
suitable habitat) as the class bin for the Boyce index, generating 11 classes correspond-
ing to the ensemble values of 0 to 10. Moving from low (zero models predicting suit-
ability) to high (all 10 models predicting suitability), a high performing model will have 
a higher density of validation points at high ensemble values. Thus, the Boyce index is 
the Spearman rank correlation between the ordered classes (0–10 in our case) and the 
proportion of validation points in the focal class divided by the proportion of area in 
that class. We restricted validation points (Suppl. material 1: Table S3) and area calcula-
tions to sagebrush areas within each test strip (Fig. 1). We compared the Boyce index 
between national and regional training extents for each species, such that each model 
ensemble was tested on the same set of points for a given species and region.

We also compared the area within our three focal regions predicted to be suitable 
by each model ensemble. To do this, we turned the ensemble maps into binary suit-
able/ unsuitable maps by classifying any pixel within the region with an ensemble value 
of 6 or greater as suitable. We then counted the number of suitable pixels anywhere 
within each of the three different regions for each model ensemble.
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Data accessibility statement

The data underpinning the analysis reported in this paper are available by a U.S. 
Geological Survey data release through the Science Base Repository at https://doi.
org/10.5066/P90AL0PN.

Results

Most of our focal invasive plants had higher proportions of occurrences in sagebrush 
habitats compared to occurrences of all invasive plants of the same life form, pointing 
towards preference for sagebrush habitats after accounting for potential variation in 
sampling intensity with habitat type. Ventenata dubia occurred in sagebrush habitats in 
a greater proportion relative to occurrence points of other graminoid invasive species, 
as did T. caput-medusae to a lesser extent (Suppl. material 1: Fig. S2). Of the forb/herb 
species, C. virgata, C. juncea, and S. aethiopis also had positive ratios for sagebrush, 
indicating that these five species are disproportionately problematic within sagebrush 
habitats, even after considering sampling biases in occurrence locations. The three 
Centaurea species, C. juncea, and H. glomeratus all had positive ratios for the eastern 
sage region compared to other invasive forb species. All species had a positive associa-
tion with shrubland, which includes sagebrush dominated locations, except C. juncea 
which had a positive association with the herbaceous land cover classes (Suppl. mate-
rial 1: Fig. S3). It did, however, still have a positive ratio of occurrences in sagebrush 
everywhere but the Great Plains region (Suppl. material 1: Fig. S2).

Only two species, C. diffusa and R. repens, had enough locations in all three regions 
to fit models to all model estimation extents (Suppl. material 1: Table S3, Fig. S1). Pat-
terns in predictions between the different training extents varied by species. R. repens 
mapped predictions varied with the training extent (Fig. 2), but the total area within 
each region predicted to be suitable by each model ensemble varied less for R. repens 
than for C. diffusa (R. repens points were closer to 1:1 line in Fig. 3b; Suppl. material 
1: Fig. S4a, g). Centauria diffusa model ensembles that were trained on occurrences in 
sage showed poor extrapolation to other habitats in that they were less restricted to sage 
compared to the national model ensemble (i.e., sage only models, represented by red 
triangles in Fig. 3b, fell above the 1:1 line in Fig. 3b); interestingly, several of the na-
tional model ensembles for this species predicted less suitable area than their regional 
counterparts. Variable patterns could be seen for other species, with no clear visual 
differences in the geographic extent of predicted suitability among models trained on 
different regions (Suppl. material 1: Fig. S4). Some regional models predicted a lot 
of suitable habitat outside their training region, potentially extrapolating incorrectly 
(Suppl. material 1: Fig. S4); models extrapolated to other regions could show higher or 
lower suitable area than continental models, with extrapolation leading to more vari-
ability than interpolation (i.e., the points farthest from the 1:1 line in Fig. 3b are small, 
indicating they arose via extrapolation). Important predictors between training extents 
were relatively similar (Suppl. material 1: Fig. S5).

https://doi.org/10.5066/P90AL0PN
https://doi.org/10.5066/P90AL0PN
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Models tested on the region where they were trained were not better than conti-
nental U.S. models (paired t-test p-value = 0.07, mean difference = -0.14, i.e., con-
tinental models marginally better). Continental U.S. models outperformed models 
trained on the test region in seven of ten cases (Fig. 3). We had 11 regional test datasets 
across the nine species which met our criterion of 30 test points within the with-
held spatial strip (Suppl. material 1: Table S3). Of these, the continental models or all 
sagebrush models were better than regional models (including those trained in other 

Figure 2. Predicted suitability for Rhaponticum repens within the eastern sage region (green region in Fig. 
1) from models trained using data from the A Eastern sage B Great Basin C Great Plains D All sage, and 
E the continental U.S. (CONUS) (training regions shown in Fig. 1). Maps (A–E) show ensembled model 
predictions, defined as the number of models predicting suitable habitat; F shows training and test data 
for Rhaponticum repens within Eastern sage; test data were withheld from estimation of all models and 
used to create consistent performance assessment sets for each species and region.
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Figure 3. A Regional models did not outperform continental-scale models, even when many points were 
available within the training region. Boyce index values were calculated for the training region’s test strip 
for both the matching region model ensemble (x-axis) and continental United States model ensemble 
(y-axis) for each species (color). Species without sufficient occurrence points within the test strip were 
excluded. Values above the 1-1 line indicate continental U.S. model had better performance; for most 
species and regions, models with a continental extent performed better even when the number of regional 
training points was high (i.e., points are above the 1:1 line, even for big points). B suitable area predicted 
by national models (either entire continental U.S. or sagebrush habitat within the U.S.) compared to re-
gional models, where larger size indicated if the focal region considered for area calculation was the same 
(interpolation) or different (extrapolation) from the regional modeling training region. Values above 1-1 
line indicate the national model predicted more suitable habitat.

A

B



Catherine S. Jarnevich et al.  /  NeoBiota 77: 1–22 (2022)12

regions) in most cases (Fig. 3, Suppl. material 1: Fig. S6). A regional model performed 
better than any other in five cases, of which three were actually models trained in other 
regions and extrapolated to the test region. The two models trained on the same region 
as the test strip had a lower Boyce index than models trained on either all sage or other 
regions. All models for S. aethiopis were poor, with all Boyce index values well below 
zero, despite decent performance according to typical assessment metrics based on the 
training data (cross validation AUC > 0.75, with an average per region > 0.89).

While V. dubia had enough locations to meet our criteria to develop models for the 
Great Plains region (n = 4,246), the occurrences were all within a relatively small geo-
graphic extent, and there were not enough locations for validation (Suppl. material 1: 
Table S3, Fig. S1). This small geographic extent was problematic in fitting models, where 
we were unable to obtain enough target background locations within the area around 
the general extent of occurrences within the region. Three of the five KDE models had 
poor fit (e.g., training AUC = 0.67 (GLM), 0.695 (MARS), 0.64 (RF)) that we were 
unable to improve; the other two KDE models had moderate performance (AUC < 0.8).

Discussion

Regionally trained models for invasive plants of management concern did not perform 
better than national models when evaluated with independent data from within the train-
ing region. Continental-scale models tended to outperform regional ones even when the 
number of regional training points was high (Fig. 3), supporting the general recommen-
dation to use a broad spatial extent for training models of invasive species (Fitzpatrick et 
al. 2007; Broennimann and Guisan 2008). Mapped predictions from models trained on 
a focal region were more similar to continental scale predictions within that region, com-
pared to extrapolated results from models trained in other regions (Fig. 2; Suppl. mate-
rial 1: Fig. S4). When comparing area predicted as suitable by models trained on dif-
ferent geographic extents for the same target region, there was not a consistent pattern, 
but extrapolation led to more variable results (Fig. 3b). When interpolating, including 
training points beyond the focal region did affect predictions within that region, as we 
found differences in both the spatial pattern and the overall level of predicted suitability 
between continental and regional model outputs. The tendency for higher performance 
of continental models points to these modifications being generally positive for within-
region model performance and indicates that models with a broader extent are less prone 
to swamp regional patterns than to usefully reduce model extrapolation.

For most species, we had insufficient data to estimate and evaluate a model in 
one or more of our focal sagebrush regions. For example, V. dubia lacked estimation 
data in the eastern sage region, and is established within only a small area of the Great 
Plains, where active EDRR efforts have yielded a large number of data points (Hart 
and Mealor 2021). However, because our validation design utilized spatial strips to 
provide a more independent, and therefore more realistic, estimate of performance, 
we had insufficient regional validation points to assess model performance within the 
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Great Plains. In addition, strong spatial clustering of points early in an invasion, such as 
with V. dubia in the Great Plains, can reflect propagule pressure and the idiosyncrasies 
of dispersal, with many unoccupied locations due to dispersal limitation (Elith et al. 
2010; Václavík and Meentemeyer 2012). Species distribution models trained on only a 
portion of a species’ range are therefore likely to be less accurate in early invasion stages.

While this study focused on the geographic extent of estimation data, comparisons 
with previous work highlight how other modeling decisions shape predicted invasion 
risk. Here, we thresholded individual models in our ensembles based on a rule that 
categorized 10% of training presences as occurring in unsuitable habitat. This thresh-
old rule is appropriate for EDRR activities where search is the end use of models and a 
targeted approach can focus search efforts towards areas with a relatively higher degree 
of suitability (Sofaer et al. 2019b). In contrast, Jarnevich et al. (2021) quantified inva-
sion risk across management units, and therefore used a more precautionary approach, 
the 1st percentile threshold, to avoid minimizing invasion risk via errors of omission. 
In contrast to the 10th percentile threshold, the first percentile classifies 1% of train-
ing presences as being in unsuitable habitat and thus classifies a larger portion of a 
study area as suitable. Both thresholds are based only on presence information, as true 
absences are unavailable. The more targeted threshold used here resulted in a smaller 
extent of predicted suitability for the same species, and illustrates how different thresh-
olds may be implemented depending on intended use (Sofaer et al. 2019b).

Our study varied the geographic extent of estimation data to compare continental 
and regional models. Our findings align with results for native species, where in the 
absence of a priori evidence for niche divergence, researchers recommended creating 
models across a species’ range (Collart et al. 2021; Connor et al. 2019). However, we 
held predictor variables constant between geographies, and the inclusion of geospatial 
variables believed important for controlling a species distribution may produce a better 
model than one for a larger extent lacking that information. Indeed, our continental 
models do not include species’ global ranges because we highly value predictor vari-
ables that are available for the U.S. but are not available, inconsistent, or of lower qual-
ity globally (e.g., information on soils). For these species we lacked information that 
would indicate we needed to vary predictors geographically.

Alternatives to regional models include allowing for non-stationarity in envi-
ronmental responses via hierarchical modeling, geographically weighted regression 
(Osborne et al. 2007) or spatially-varying coefficient models (Gelfand et al. 2003). 
Hierarchical models can estimate both overall environmental responses and variation 
in those relationships among groups (e.g., via random slopes in a mixed modeling 
framework). Both regional and hierarchical modeling approaches typically require de-
fining intraspecific groups, but little emphasis has been placed on the approaches used 
to define subpopulations, which should be well justified (Chardon et al. 2020). Here, 
we considered intraspecific divisions based on ecoregions; among native species, stud-
ies have diverged in whether splitting by ecoregion (Smith et al. 2019a) or by genetic 
similarity (Chardon et al. 2020) yields the best performance. Partial pooling, a hierar-
chical approach that incorporates multiple intraspecific groups within a single mixed 
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model, provides a method intermediate between splitting and lumping (Smith et al. 
2019b). The research to define subpopulations takes time and resources which may 
not be available for many invasive species, particularly when time to action is critical in 
limiting invasion costs (Pergl et al. 2020). These alternatives add complexity and po-
tentially require more resources to first define groupings appropriately and then create 
multiple or hierarchical models for a single taxon compared to a continental approach. 
There is a continuum of automation versus human time and insight in developing 
species distribution models (Young et al. 2020), from large extent models for suites of 
species using the same predictors for all models (e.g., Allen and Bradley 2016) to very 
detailed models for a single species (e.g., Smith et al. 2019b; Chardon et al. 2020). 
The best path forward depends on the objectives, data availability, a priori information 
about populations and species, and the available resources and timeline.

In selecting a modeling approach, it is important to distinguish between popula-
tions that have different limiting factors and populations that have different responses 
to environmental conditions. Across a species’ range, it is typical that different limiting 
factors are suspected to constrain population growth; for example, an early macroeco-
logical hypothesis posited that biotic interactions more often defined southern range 
limits while abiotic conditions more often defined northern range limits (reviewed 
by Schemske et al. 2009). Cases where, for example, one area may be too dry while 
another is too cold can be handled by standard range-wide modeling approaches, as 
demonstrated by our study. It is only where the definition of ‘too cold’ varies among 
populations that more tailored or complex models may be warranted as highlighted by 
other studies of native species. Ideally, common garden experiments and similar tools 
would be used to test for differentiation but these types of studies for every invasive 
species would be time and cost prohibitive.

Conclusion

The degree of variation in responses to environmental conditions and the amount 
of data available underlie the selection of appropriate strategies for species distribu-
tion modeling (Fig. 4). Consistent responses to ecological conditions (e.g., Connor 
et al. 2019; Collart et al. 2021) or capturing a broader range of environmental condi-
tions occupied by a species (e.g., Broennimann and Guisan 2008) support range-wide 
modeling (bottom right), while evidence for regional differentiation lends support to 
regional or hierarchical modeling methods where data are available (e.g., Chardon et 
al. 2020 upper right). However, there is a key tension between data availability and 
relevance for EDRR. Model outputs inform EDRR when they can be used to guide 
surveillance efforts and assess spatial patterns of invasion risk during a rapid response. 
Yet at these early stages of an invasion, there is necessarily little to no data on species’ 
occurrences within the focal area or the data occur within such a small extent that 
model fitting is difficult (e.g., V. dubia in the Great Plains region; left side of Fig. 4). 
Regional models will typically be most relevant at later stages of an invasion, where 
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there has been more opportunity for population divergence, range filling, and data 
collection (moving from left to right within Fig. 4). Clear justification and commu-
nication of model assumptions between model producers, local knowledge holders, 
and decision-makers can help clarify what kinds of differences warrant regional or 
hierarchical models. Delayed actions may increase costs associated with invasions and 
decrease the ability to meet management goals for newly introduced species to a region 
(Ahmed et al. 2022). Regional models did not perform better than national models, 
and thus national models may have use to inform management decisions for early 
detection of invasive species.
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Figure 4. Conceptual depiction of the utility of different modeling methods and of the trade-offs between 
data availability within a focal region and relevance of model outputs for Early Detection and Rapid Re-
sponse (EDRR) within that region. Range-wide modeling is appropriate where there is little variation in the 
relationship between a species’ occurrence and environmental conditions. Where local populations are dif-
ferentiated in their responses to the environment, hierarchical or regionalized models are expected to pro-
duce the most relevant predictions for within the region, and the selection among model types may depend 
on data availability, institutional capacity, and time horizon for delivering results. The relevance of model 
outputs for EDRR is high only very early in an invasion, when few data are available; therefore, range-wide 
modeling is expected to remain the primary tool used to anticipate habitat suitability for non-native species.
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Data type: Supplemental figures and tables.
Explanation note: Table S1. Total area (km2) and area of sagebrush habitat within 

each modeling region and its associated test strip. Table S2. Model assessment ru-
bric from Sofaer et al. (2019b) for presence models for all species modeled. Table 
S3. Location summary including number of training points (and test strip points) 
in each spatial extent considered including the Great Basin, eastern sagebrush, the 
Great Plains where all three are limited to sagebrush, sagebrush in the western 
United States, and all locations in the continental United States. Table S4. The 
predictors considered in model development including the variable (name [unit of 
measure | spatial (cell) resolution | temporal resolution (if applicable)]), description, 
and source from Engelstad et al. (2022). Figure S1. For each species, map showing 
location point data colored by region (Great Basin sagebrush, eastern sagebrush, 
Great Plains sagebrush, other sagebrush, and outside of sagebrush). Figure S2. 
Proportion of locations for each species found in sagebrush habitat, as defined by 
the National Land Cover Dataset shrubland sagebrush rangeland fractional com-
ponent product (Xian et al. 2015), within each region (continental United States, 
eastern sage, the Great Basin, and the Great Plains). Figure S3. Proportion of the 
total locations for each species recorded in each of six National Land Cover Dataset 
categories relative to the proportion of all invasive species locations in the same life-
form (forb/ herb for first seven species; graminoid for last two species) to correct for 
sampling biases. Values above 1 indicate that more locations are found in that land-
cover class relative to all other species. Figure S4. The 10-percentile ensemble map 
(values of 0 to 10) for each modeled training area (Great Basin, eastern sagebrush, 
Great Plains, all sagebrush, and Continental U.S. with inclusion determined by Ta-
ble S3), with output restricted to the three regions (Great Basin, eastern sagebrush, 
Great Plains) for each of the nine species (a to i). Each map is overlaid by a trans-
parent gray layer highlighting novel environments from the Multivariate Environ-
mental Similarity Surface. Figure S5. Ranked variable importance for each model 
run (algorithm by background method) across species plotted for models trained 
on regions (all three combined), all sagebrush, and the continental U.S. Difference 
in AUC values from permutation of occurrence and background locations were 

https://doi.org/10.1016/j.tree.2018.08.001
https://doi.org/10.1016/j.tree.2018.08.001
https://doi.org/10.1371/journal.pone.0229253


Catherine S. Jarnevich et al.  /  NeoBiota 77: 1–22 (2022)22

ranked across predictors by training extent, species, algorithm, and background 
method. Figure S6. Boyce index calculated for each region’s test strip (columns) 
and the test strip 10 percentile ensemble model by species (x-axis) including the 
number of the species’ occurrences within the test strip above the axis for the differ-
ent models including a model trained using species’ locations from sage (all sage), 
the continental U.S., the region matching the test strip region (matching region), 
or regions different from the test strip region (other region).
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