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Abstract
Biological invasions by alien species have substantial economic impacts and are a major driver of the ongoing 
decline and loss of biodiversity. Through humans, the North American pond slider (Trachemys scripta) has 
acquired a global distribution over the last decades and is currently listed among the worst invasive reptile 
species. However, in more recent times, other freshwater chelonian species have increasingly been recorded 
far outside their native distribution ranges as well, not only on the same continent but also on others. Despite 
that, the impact of alien chelonians on their respective new ecosystems remains unclear. The long-term ef-
fects and severity of impacts of alien populations mostly depend on whether they ultimately succeed in estab-
lishing themselves. This is not entirely resolved for chelonians in Central Europe. To answer that, we inves-
tigated wild populations of three non-native chelonian species from North America in Germany (Pseudemys 
concinna, Graptemys pseudogeographica and Trachemys scripta) applying population genetic approaches. We 
revealed the successful reproduction of all three species in Germany and provide the very first record for the 
reproduction of P. concinna and G. pseudogeographica in a temperate continental climate zone outside their 
native distribution. Based on our unambiguous evidence of natural reproduction, we call for dedicated stud-
ies to verify how widespread established populations are and to investigate the existing and potential impacts 
of all three species in a range of ecosystems along a climatic gradient. Such data is urgently needed to revise 
the current risk assessments of non-native chelonians, especially in Central European countries.
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Introduction

Biological invasions by alien species have substantial economic impacts (Essl et al. 
2020; Diagne et al. 2021; Soto et al. 2022) and are also a major driver of the ongo-
ing decline and loss of biodiversity (Butchart et al. 2010; Ripple et al. 2017; IPBES 
2019a, b; Seebens et al. 2021). Despite that, the number of alien species is growing 
continuously (Pyšek et al. 2020). And regardless of an existing unifying framework for 
biological invasions (Blackburn et al. 2011), the terms “alien”, “casual/introduced”, 
“naturalised/established” and “invasive” are often not applied correctly in numerous 
scientific and non-scientific publications. This makes common language a challenge. 
In the following, for simplicity reasons, we consider a species alien if human actions 
enabled them to overcome biogeographical barriers and invasive once a population 
becomes established, e.g. exhibiting regular reproduction. Whether a species outside 
its native distributional range should be categorised as alien or invasive is our main 
underlying study question.

To highlight the serious impacts of invasive species, the IUCN Invasive Species 
Specialist Group’s (ISSG) lists the “100 World’s Worst Invasive Alien Species” (Lowe et 
al. 2000). It aims to illustrate a wide variety of examples from microorganisms, fungi, 
plants, invertebrates and vertebrates (Lowe et al. 2000). At first glance, it seems para-
doxical that some of the taxa listed therein are also the world’s most threatened ones. 
For example, chelonians (Reptilia: Order Testudines) are among the most imperiled 
vertebrates on the planet (Lovich et al. 2018; Rhodin et al. 2018; Stanford et al. 2018; 
Cox et al. 2022) with over 60% of the species listed as threatened by extinction (IUCN 
2021; Cox et al. 2022). At the same time the pond slider Trachemys scripta (Thunberg 
in Schoepff, 1792) is listed among the worst invasive reptile species (Lowe et al. 2000). 
Furthermore, at least three other freshwater chelonians have a substantial risk of be-
coming invasive (Bugter et al. 2011).

Trachemys scripta is native to south-eastern North America (Ernst and Lovich 
2009; Vamberger et al. 2020) and meanwhile has acquired a global distribution, being 
widespread on all continents except Antarctica (Kikillus et al. 2010; Uetz et al. 2022). 
Due to their popularity as pets, especially the subspecies T. scripta elegans, they were 
massively imported to Europe in the 1980s and 1990s (Arvy and Servan 1998; Ernst 
and Lovich 2009; Vamberger et al. 2012) and released in water bodies. In 1997, the 
European Union banned imports of T. scripta elegans (Commission Regulation EC 
338/1997). Sales of individuals born in EU member states were not forbidden until 
2016 (EU Regulation 1143/2014 on Invasive Alien Species), which then included all 
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subspecies of T. scripta. However, by then T. scripta was already widely present in water 
bodies all over Europe (Kikillus et al. 2010; Standfuss et al. 2016; Uetz et al. 2022 and 
references therein). Unfortunately, these regulations seemed to have caused a shift in 
demand for freshwater chelonians. Two other subspecies, T. scripta scripta and T. scripta 
troostii, as well as several other species, especially of the genera Pelodiscus, Pseudemys, 
Graptemys, and Chrysemys, have replaced T. scripta elegans in the pet trade (Rhodin et 
al. 2010; Bugter et al. 2011; Carretero and Pinya 2011; Lipovšek 2013; Brejcha et al. 
2014; Escoriza et al. 2021; Uetz et al. 2022 and references therein) and are also illegally 
released into numerous freshwater bodies around the world.

The impacts of these alien chelonians on their respective ecosystems remain largely 
unclear (see also Bugter et al. 2011). So far, studies have focused on direct impacts 
on other chelonians, e.g. the European pond terrapin Emys orbicularis (Cadi and Joly 
2004), which is of conservation concern in many countries in Europe. Despite the 
proximal causes remaining unknown, in an experimental setup native E. orbicularis 
showed weight loss and high mortality when kept together with T. scripta. The most 
likely suggestion seems that the larger alien species exclude the smaller native ones from 
basking spots and thus the latter suffer from suboptimal thermoregulation (Cadi and 
Joly 2004). There are also hints that native amphibian larvae recognise native freshwa-
ter chelonians as predators but not alien ones (Polo-Cavia et al. 2010) so alien T. scripta 
might have feeding advantages. Other effects are not studied but experimental evi-
dence suggests a key role of chelonians in ecosystem functioning, altering, for example, 
sediment accumulation, leaf litter decomposition rates and abundance of invertebrates 
(Lindsay et al. 2013; Dupuis-Desormeaux et al. 2022). This indicates potentially se-
vere impacts outside their native ranges. However, before studying impacts we must 
consider the question of whether alien populations are established, i.e. whether they 
are regularly reproducing in the wild outside their native range (Bugter et al. 2011).

We investigated wild populations of three non-native chelonian species (river coot-
ers Pseudemys concinna, false map turtles Graptemys pseudogeographica and pond sliders 
Trachemys scripta) using population genetic approaches with 14 microsatellite loci and 
performing parentage analyses. Our assumptions are that reproduction in the wild oc-
curs, if (i) juveniles are found in the wild, (ii) closely related individuals are recorded 
and (iii) that a population has established itself when at least half of the studied markers 
are in Hardy–Weinberg equilibrium (HWE) (following Standfuss et al. 2016). HWE 
is reached, when allele and genotype frequencies in a population remain constant from 
generation to generation, thus there is an absence of other influences on the population 
(e.g. immigration). However, HWE cannot be achieved if continuously new alleles are 
added to a population, in other words through continuous releases of non-native che-
lonians. In addition, detection of unrelated individuals would suggest repeated releases 
of chelonians and no reproduction in their exotic environments. Herein we unravel 
whether these three species have formed self-sustaining populations in south-western 
Germany outside their native distribution ranges, which would be the first time for 
P. concinna and G. pseudogeographica and the most northern record for T. scripta.
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Methods

Study sites

Based on informal reports of relatively large populations of pond sliders Trachemys 
scripta, in situ inspections of several water bodies, and observations of hatchlings of 
T. scripta in Kehl (Pieh and Laufer 2006; Schradin 2020), two study sites in Ger-
many were selected (Fig. 1; Suppl. material 1: fig. S1). Our first study site, “Flück-
igersee” (48°00'38"N, 7°49'06"E, abbreviated FR) is a dredging lake located in the 
middle of the city of Freiburg im Breisgau, categorised as a semi-natural lake with a 

Figure 1. Map of Baden-Württemberg, Germany, with locations and satellite photos of both study sites. 
Hill shade symbolises elevation, forest cover is illustrated in green and urban areas in light red. The main 
map shows the location of the sites within Baden-Württemberg and top left within Germany. Map was 
created with QGIS (QGIS Development Team 2020).
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size of 11.2 ha, and maximum depth of 26.8 m (LUBW 2020) (Fig. 1). Its elevation 
is 240 m a.s.l., annual mean temperature in Freiburg is 10.3 °C (Climate-Data.org 
2020). The second study site “Altrhein” (Fig. 1; Suppl. material 1: fig. S1) is a 3.3 ha 
standing oxbow lake located in the city of Kehl (48°34'04"N, 7°48'37"E, abbrevi-
ated KE), disconnected from the current course of the river Rhine (LUBW 2020). Its 
elevation is 139 m a.s.l. and the city’s annual mean temperature is 11.1 °C (Climate-
Data.org 2020). Both water bodies are located in urban parks and are completely 
surrounded by residential areas.

Fieldwork

Fieldwork was conducted between May and August 2020. We caught chelonians op-
portunistically by hand, dip netting, a non-baited basking trap and ten baited funnel-
traps with modified elastic entrances to enable large individuals to enter the traps. 
Funnel-traps were baited with chicken heart, chicken liver, beef or mixtures of ancho-
vies, mackerel, codfish liver and cat food. They were placed in shallow areas, tied to 
nearby vegetation, using buoys to ensure that the traps could not submerge completely.

Captured living chelonians had blood drawn from the sub-carapacial space above 
the neck for genetic analyses. Tissue samples were taken only from dead individuals. We 
used Whatman FTA Cards (GE Healthcare Life Sciences, Chalfont St Giles, GB) and 
ethanol for preservation of blood samples. Sex was determined for individuals above 9 
cm carapax length, using secondary sexual characteristics such as elongated claws on 
forelimbs (only present in males) and position of the cloacal opening (in females closer 
to the shell then in males) (Ernst and Lovich 2009). Age was estimated as a combina-
tion of the number of growth rings and shell abrasions (Govedič et al. 2020). Juveniles 
represent individuals of up to the age of 2 years (2 growth rings). Based on shell abra-
sion, adults were divided into three classes: young adults, middle-aged adults and old 
adults (Meeske 2006; Vamberger and Kos 2011; see Table 1). All aspects of field work 
were approved under permit number 35-9185.81/G-20/06 by the “Regierungspräsidi-
um Freiburg, Abteilung 3” of the German federal state of Baden-Württemberg.

DNA extraction, PCR and microsatellites

We extracted genomic DNA from FTA cards by using the illustra Tissue and Cells 
genomicPrep Mini Spin Kit (GE Healthcare Life Sciences). For extraction of DNA 
from blood, tissue and cloaca swabs preserved in ethanol we used the innuPREP Blood 
DNA Mini Kit (Analytik Jena GmbH). For amplification of microsatellite DNA, three 
Multiplex-PCRs (MP 1–3; Suppl. material 1: table S1) were performed using the Qia-
gen Type-it Microsatellite PCR Kit (QIAGEN GmbH). Thermocycling conditions 
were as follows: one cycle of initial denaturation (95 °C; 5 min), 30 cycles of denatura-
tion (95 °C; 30 sec), annealing (55 °C; 90 sec) and elongation (72 °C; 30 sec) and one 
cycle of final elongation (60 °C; 30 min). For reaction mixes we followed the protocol 
of Standfuss et al. (2016). Fragment length analysis was conducted on an ABI 3130xl 
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Genetic Analyzer (Life Technologies). For final determination of fragment lengths, we 
used the software PEAK SCANNER 1.0 (Applied Biosystems). Errors in genotyping 
were minimised by re-amplification of samples that showed weak or missing signals.

Cross-amplification tests of microsatellites

First we tested the applicability of the 14 microsatellite loci (Suppl. material 1: table S1) 
for one individual per species of Pseudemys concinna and Graptemys pseudogeographica 
as these were originally developed for Trachemys scripta (Simison et al. 2013) through 
cross-amplification tests. For PCR reaction we used a primer concentration of 
0.025  mM (Biomers.net, Ulm, Germany) and otherwise followed the protocol of 
Standfuss et al. (2016).

PCRs were conducted under thermocycling conditions provided in Standfuss et 
al. (2016). In case of amplification, the presence of the microsatellites was confirmed 
by sequencing the PCR products with primers in both directions. PCR products were 
purified with the ExoSAP-IT enzymatic cleanup (Thermofisher, Waltham, USA) and 
sequenced using the reverse primer of each locus on an ABI 3130xl using the Big-
Dye Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, USA). 
The applicability of each microsatellite loci on Pseudemys concinna and Graptemys 
pseudogeographica was approved by confirming the presence of the expected repeat mo-
tives, checked with BIOEDIT (Hall 2011).

Genetic diversity indices and cluster analysis

We used CONVERT 1.31 (Glaubitz 2004), PEAK SCANNER 1.0 (Applied Biosys-
tems), CERVUS 3.0 (Kalinowski et al. 2007) and ARLEQUIN 3.5.1.2 (Excoffier and 
Lischer 2010) to analyse microsatellite data (AMOVA) and calculate genetic diversity 
indices for all three species. Genetic cluster analyses were performed for T. scripta from 
FR and KE using an unsupervised Bayesian clustering approach, implemented in the 
software STRUCTURE 2.3.4 (Pritchard et al. 2000; Hubisz et al. 2009) to analyse 
whether the two populations correspond to separate clusters and form established and 
breeding populations. STRUCTURE searches for populations in Hardy-Weinberg 

Table 1. Number of chelonians caught and analysed genetically, sorted by population and split by age 
classes and sex for all three species analysed. Sex determination of hatchlings and subadults is not possible, 
due to the absence of distinct sexual characters.

Population Total Adult females Adult males Sub Ha
P. c. (FR) 33 21 (14 OA, 5 MA, 2 YA) 3 (2 OA, 0 MA, 1 YA) 3 6
G. p. (FR) 25 11 (8 OA, 3 MA, 0 YA) 5 (1 OA, 1 MA, 3 YA) 6 3
T. s. (FR) 71 35 (14 OA, 15 MA, 6 YA) 12 (5 OA, 4 MA, 3 YA) 20 4
P. c. (KE) 2 0 0 2 0
T. s. (KE) 56 21 (7 OA, 6 MA, 8 YA) 8 (2 OA, 2 MA, 4YA) 21 6

P. c. = Pseudemys concinna, G. p. = Graptemys pseudogeographica, T. s. = Trachemys scripta, FR = Freiburg, KE = Kehl, Sub = subadult, 
Ha = hatchling, OA = old adults, MA = middle-aged adults, YA = young adults; see methods for further details.
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equilibrium (HWE) and linkage equilibrium. In the analyses we applied the admix-
ture model and correlated allele frequencies and set the upper bound for calculations 
arbitrarily to K = 10. Although we sampled two populations, the upper bound was 
set higher to exclude potential source populations from which the animals could be 
released. Because MICRO-CHECKER 2.2.3 (van Oosterhout et al. 2004) suggested 
the presence of null alleles (Suppl. material 1: table S2), data were corrected for null al-
leles according to Falush et al. (2007). The most likely number of populations (K) was 
determined by using the Ln P(D) (mean likelihood of K) values (Pritchard et al. 2000) 
and the ΔK method (Evanno et al. 2005), implemented in the software STRUCTURE 
HARVESTER (Earl and vonHoldt 2012). We repeated calculations 10 times for each 
K using a MCMC chain of 750 000 generations for each run, including a burn-in of 
250 000 generations. Population structuring and individual admixture were visualised 
using the software DISTRUCT 1.1 (Rosenberg 2004). Following Randi (2008), we 
categorised individuals with proportions of cluster membership below 80% as having 
mixed ancestries.

Kinship analysis

We calculated the most likely relationships between individuals of each species at each 
study site. Therefore, we applied a maximum likelihood approach for pairwise estimates 
of relatedness and computed Wright’s coefficient (r) of relatedness, implemented in 
ML-RELATE (Kalinowski et al. 2006). Null alleles detected by MICRO-CHECKER 
were accommodated by ML-RELATE. Kinship analyses were conducted for respective 
populations of Pseudemys concinna, Graptemys pseudogeographica and Trachemys scripta, 
from FR and one population of Trachemys scripta and two individuals of Pseudemys 
concinna from KE. Analyses were conducted for all relationships available in the soft-
ware (U = unrelated, HS = half sibling, FS = full sibling and PO = parent-offspring). 
Confidence level for estimated relationships in ML-RELATE was set at 95% by run-
ning 100 000 simulations. When ML-RELATE suggested more than one relation-
ship, we executed a specific hypothesis test for two a priori relationships by means of 
a likelihood ratio test. We checked all genetically identified relationships against our 
morphological data (e.g. age class; see Table 1) for potential errors (such as offspring 
older than presumed parent); no such erroneous classification was observed.

Results

In total, we sampled 33 individuals of Pseudemys concinna, 25 of Graptemys 
pseudogeographica and 71 of Trachemys scripta from FR and 56 Trachemys scripta and 
2 Pseudemys concinna from KE (for more details see Table 1). Subspecies of T. scripta 
were assigned as follows: FR: 42 T. s. elegans, 16 T. s. scripta, 9 T. s. elegans × scripta 
hybrids and 4 T. scripta which could not be assigned to a subspecies or hybrid; KE: 37 
T. s. elegans, 6 T. s. scripta, 8 T. s. elegans × scripta hybrids and 5 T. scripta which could 
not be assigned to a subspecies or hybrid.
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Cross-amplification tests of microsatellites

Out of 14 microsatellite loci, originally developed for T. scripta (Suppl. material 1: 
table S3), only one failed to amplify (Tsc297) in P. concinna, while all amplified for 
G. pseudogeographica. All analysed microsatellite loci turned out to be polymorphic 
for G. pseudogeographica (Suppl. material 1: tables S2, S3) while for P. concinna locus 
Tsc108 was monomorphic (Suppl. material 1: table S3). Accordingly, loci Tsc297 and 
Tsc108 were excluded from further analyses for P. concinna.

Genetic diversity indices

The highest average number of alleles per locus (AØ) was revealed in T. scripta FR (15.1) 
followed by T. scripta KE (13.1), P. concinna FR (9.1) and G. pseudogeographica FR (9) 
(Table 2). MICROCHECKER detected null alleles in all analysed species (Table 2). 
Numbers of private alleles ranged from a minimum of 12 in G. pseudogeographica 
(FR) to a maximum of 23 in T. scripta (FR). More than half of the loci were in Hardy-
Weinberg equilibrium (HWE) in P. concinna (FR: 8/12), G. pseudogeographica (FR: 
7/14) and T. scripta (FR: 9/14), while only four out of 14 were in HWE in T. scripta 
in KE (Table 2).

Genetic cluster analysis

Using all 14 microsatellite loci and the correction for null alleles in STRUCTURE, 
we examined whether T. scripta from each site (FR and KE) correspond to a popula-
tion in Hardy–Weinberg and linkage equilibrium. Ln P(D) values and the ΔK method 
suggested K = 2 being the most likely number of clusters (Suppl. material 1: fig. S2), 
each corresponding to the respective study site (Fig. 2). However, several individuals 
from KE (yellow cluster; Fig. 2) clustered within corresponding individuals from FR 
(red cluster Fig. 2). A standard AMOVA revealed a statistically significant molecular 
difference between the two populations of T. scripta (FR and KE) of 2.01% (Fst-value: 
0.02; p < 0.001).

Table 2. Genetic diversity indicators of all four chelonian populations, based on 12 microsatellite loci for 
P. concinna and 14 microsatellite loci for G. pseudogeographica and T. scripta.

Population AN AØ A0 Ap HE Ø HO Ø HWEN PO FS HS
P. concinna (FR) 109 9.1 2 20 0.70 0.75 8 7 14 48
G. pseudogeographica (FR) 126 9 3 12 0.72 0.79 7 2 18 32
T. scripta (FR) 212 15.1 4 23 0.76 0.88 9 12 18 154
T. scripta (KE) 184 13.1 5 13 0.77 0.86 4 7 49 125

FR Freiburg, KE Kehl, AN number of alleles, AØ average number of alleles, A0 number of loci with null alleles, Ap private alleles, 
HE Ø average of expected heterozygosity, HO Ø average of observed heterozygosity, HWEN number of loci in Hardy-Weinberg equilib-
rium, PO number of parent-offspring-relationships, FS number of full-sibling -relationships, HS number of half-sibling relationships.
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Kinship analysis

We detected the full variety of kinship relationships within all analysed populations. 
Parent-offspring-relationships were confirmed for all three species (Table 2, Suppl. ma-
terial 1: tables S4–S7). Analysis of P. concinna from FR revealed kinship relationships 
among 28 of 34 (82%) sampled individuals (Suppl. material 1: table S4). The two 
analysed subadult individuals from KE showed a full-sibling-relationship; so far no 
hatchlings of P. concinna have been detected in KE. Kinship relationships were revealed 
for 18 of 25 (72%) sampled G. pseudogeographica (Suppl. material 1: table S5). In 
T. scripta, 58 of 71 (82%) analysed individuals from FR (Suppl. material 1: table S6) 
and 45 of 57 (79%) from KE (Suppl. material 1: table S7) showed kinship relations 
with at least one other individual. We genetically confirmed hybridisation between 
two subspecies of T. scripta in FR for one hatchling (no. 22367), detecting a parent-
offspring-relationship for a male T. s. elegans (no. 22300) and a female T. s. scripta (no. 
22248) (Suppl. material 1: table S6). Correspondingly, this hatchling exhibited inter-
mediate morphological characters of both subspecies (see Suppl. material 1: fig. S3).

Discussion

For the first time we genetically confirm successful reproduction of three alien che-
lonian species in Germany. For two species, Pseudemys conncina and Graptemys 
pseudogeographica, reproduction in Germany (FR) is the first record in a temperate 

Figure 2. Population structuring in Trachemys scripta (T.s.) for K = 2 from the STRUCTURE run with the 
highest probability value. Revealed cluster (red, yellow) are presented in distinct colours. Each vertical bar rep-
resents one individual and its calculated proportion of cluster membership. Colours of pie charts correspond 
to STRUCTURE clusters; orange slices represent chelonians with mixed ancestry (percentages).
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continental region and for each species it is the second outside their native distribution 
range in North America (see below). The detected full-sibling-relationship between the 
two analysed subadult individuals from KE does not prove reproduction in KE, but it 
can be suggested. This is in line with our capture data, and so far we have not detected 
hatchlings of P. concinna in KE. Both species are popular in the European pet trade and 
are occasionally noted as alien species in the wild (Ottonello et al. 2014; Foglini and 
Salvi 2017; Ferri et al. 2020; Uetz et al. 2022 and references therein).

For Trachemys scripta, our genetic confirmation of suspected natural reproduction 
in FR and KE are the first ones for Germany, the northernmost for the species in Eu-
rope to date and the second one for a temperate continental region. Successful repro-
duction and self-sustaining populations of Trachemys scripta in Europe were previously 
known from Mediterranean regions (e.g. Cadi et al. 2004; Perez-Santigosa et al. 2008; 
Ficetola et al. 2012; Sancho and Lacomba 2016; Vecchioni et al. accepted) and the 
temperate continental climatic zone of Slovenia (Standfuss et al. 2016). In Germany, 
hatchlings of T. scripta have been previously sighted and documented in KE (Pieh and 
Laufer 2006; Schradin 2020). Egg laying (without observations of hatching events) as 
well as increasing numbers of juveniles were reported by Schradin (2020). Thus Pieh 
and Laufer (2006) and Schradin (2020) concluded that successful reproduction oc-
curs. For P. conncina behavioural observations and a single juvenile in an animal shelter 
suggested successful reproduction under semi-natural conditions in Catalonia in Spain 
(Soler and Martínez-Silvestre 2020). For G. pseudogeographica two nesting events with 
partly successful hatching events in urban parks in Brescia and Milano, Italy, were ob-
served but not published (Ferri et al. 2021).

Herewith, our data confirms these previous assumptions. Not only do we provide 
evidence for reproduction of three species of alien chelonians, derived from parentage 
analyses confirming numerous relationships (parent-offspring, full-sibling and half-
sibling) between individuals (Suppl. material 1: tables S4–S7), our calculated genetic 
diversity indices reveal HWE for the majority of markers (Table 2; Suppl. material 1: 
tables S2, S3). The sampled populations seem to represent established populations, 
meaning they are populations with no external influences on population growth and 
age composition, i.e. no releases of new individuals.

For T. scripta, this assumption is supported by the similarity of diversity indices be-
tween both sites, especially the average heterozygosity (T. scripta FR: 0.88; KE: 0.86 in 
our study) compared to the native populations (e.g. 0.81 in Simison et al. 2013). Even 
though sample sizes of P. concinna and G. pseudogeographica were lower than for T. scripta, 
the numbers of loci in Hardy-Weinberg-Equilibrium are similar among all three spe-
cies in FR (Table 2) and similar to populations of T. scripta in Slovenia (Standfuss et 
al. 2016). With the exception of T. scripta in KE, the observed high numbers of loci in 
HWE are remarkable, considering the anthropogenic origin of the studied populations. 
In general, chelonians mature sexually relatively late, especially females, between 8 to 12 
years in G. pseudogeographica (3–4 years in males), 13 to 24 years for P. concinna (6 years 
in males) and 6 to 8 years in T. scripta (2–5 years in males) (Ernst and Lovich 2009). 
The continuous release of non-native chelonians counteracts the potential to achieve 
complete HWE (Standfuss et al. 2016). Nevertheless, our STRUCTURE analysis of 
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T. scripta populations from FR and KE revealed two most probable clusters, each cor-
responding to one sampling site. The population in FR seems to be already longer es-
tablished than the one in KE, which is indicated by its genotypic structure (Fig. 2) and 
number of loci in HWE (Table 2) but no direct observational data is available.

In KE T. scripta was very common in the Altrhein until 2004 when the water body 
was restored and the population declined (Pieh and Laufer 2006). Only a single juve-
nile T. scripta elegans was found in 2004 (Pieh and Laufer 2006). During our fieldwork 
in 2020 we instantly detected numerous juveniles (also hatchlings) at basking sites 
and caught seven hatchlings and 18 sub-adults in 8 days. Evidently, the population in 
Kehl has increased within the last approximately 15 years, indicating that it is relatively 
young (see also Schradin 2020).

For successful establishment of invasive species, a viable sex ratio is important. 
Our data (see Table 1) indicates a sex bias towards females in adult chelonians but 
we believe, without having data to support our view, that males in our study system, 
especially in T scripta, are more difficult to catch than females. As males can mate 
with several females we do not believe that the observed sex ratio is a limiting fac-
tor and a female bias seems to be common in chelonians (Ewert and Nelson 1991; 
Ewert et al. 2004). Although we had no means of verifying the sex of subadult or 
hatchling chelonians, young adult males were caught in all three species. All three 
species exhibit “temperature dependent sex determination” (TSD) and therefore there 
could be a link between establishment at new localities and viable sex ratios. TSD is 
quite complex and relatively little studied across a large number of chelonian species. 
Changing climatic conditions, either through global change or relocation of species 
into novel environments, do not necessarily relate to different sex ratios in offspring. 
This is because molecular mechanisms, that are still being untangled, may play a sig-
nificant role. A candidate gene for sex determination in T. scripta has previously been 
suggested (Ge et al. 2018). Environmental proxies influencing TSD in chelonians can 
be mean, range and variance of temperature at specific time periods (Girondot et al. 
2010). In addition, ambient temperature is the most crucial factor but rarely known 
(Cornejo-Páramo et al. 2020). In contrast, there are publications showing that species 
with TSD can adapt to different climates, for example behaviourally through varying 
depths at which eggs are laid, locations of nest sites and timing of egg laying (Ewert 
et al. 2005; Schwanz and Janzen 2008; Refsnider and Janzen 2012; Pike 2013). Also 
embryos seem to have the possibility to thermoregulate inside their eggs (Shine and 
Du 2018). Another important point is that most models estimating pivotal tempera-
tures, i.e. thresholds above or below only one sex is produced, still have to be validated 
through field data because they generally assume constant temperatures during the 
whole incubation period (e.g. Girondot 1999; Godfrey et al. 2003; Hulin et al. 2009) 
which is not necessarily always the case. Even if single clutches produce predominantly 
one sex, population dynamics of TSD are not well known (Ewert and Nelson 1991; 
Ewert et al. 2005) and it is unclear to our knowledge how that translates into viable sex 
ratios. There is even the suggestion that highly variable environments during develop-
ment of embryos could facilitate adaptation at later life stages (Jonsson et al. 2022). So 
novel climates and TSD alone do not necessarily lead to sex biases and biases in viable 
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sex ratios. More field measurements at clutch sites across a range of climatic zones are 
required to reveal if, and how, viable sex ratios are achieved.

Overall, our results demonstrate the ability of three alien chelonian species to repro-
duce and establish viable populations in two sites in the Upper Rhine Plain in Baden-
Württemberg, south-western Germany, which is considered to be one of the warmest 
regions in Germany. Both sites are urban habitats but alien chelonians are found in 
a large variety of water bodies, ranging from urban to natural, even within protected 
areas (Turtle Spotter 2020; pers. obs.). Therefore, it needs to be assessed whether un-
noticed reproduction might have occurred also in other regions, in other alien species 
and more natural habitat types. For example, two hatchlings of Chrysemys picta bellii 
were observed near Speyer, Germany (Fritz and Lehmann 2002) and egg depositions 
of T. scripta were recently observed in more northern regions of Germany, e.g. Essen/
Ruhr (Rautenberg and Schlüpmann 2018) and Saarbrücken (Francke pers. comm.). 
This is especially important in habitats where endangered species could be affected. 
Direct effects are potential competition with native chelonians. So far, observations 
indicate that T. scripta has competitive superiority to the endangered E. orbicularis, e.g. 
in procuring food (Nishizawa et al. 2014) and basking behaviour (Cadi and Joly 2004; 
Polo-Cavia et al. 2010, 2015). It was also demonstrated that T. scripta has physiological 
advantages, like faster chemosensory responses and superior thermoregulation (Polo-
Cavia et al. 2008, 2009, 2012). Therefore, the abundance of alien chelonians might 
threaten the survival of endangered native populations of E. orbicularis in north-eastern 
Germany (Brandenburg) which harbours the last relict populations (Schneeweiß and 
Wolf 2009) but also in Europe in general. In addition, ongoing successful reintroduc-
tion programmes of E. orbicularis (Fritz and Chiari 2013) can be jeopardised by alien 
chelonians. In Germany, reintroduction efforts of E. orbicularis have been made in the 
federal states of Hessen and Rheinland-Pfalz (Fritz and Chiari 2013), in comparable 
latitudes where egg depositions of T. scripta were observed (Rautenberg and Schlüp-
mann 2018, Francke pers. comm.).

The almost omnivorous feeding behaviours of many alien chelonians might also 
have direct effects, indicating that rare and threatened native species of flora and fauna 
could by preyed upon. However, so far no data regarding food items of alien cheloni-
ans in central Europe are available. Besides these direct effects, a number of indirect 
effects are plausible and gaining research attention in recent times. For example, there 
is the risk of alien chelonians introducing and acting as reservoirs for novel diseases 
and parasites (Shen et al. 2011; Gong et al. 2014; Héritier et al. 2017). T. scripta is a 
known carrier of several salmonella and pathogens (Shen et al. 2011; Gong et al. 2014) 
and is also vulnerable to ranavirus (Moore et al. 2014). Cases of parasite transfer (e.g. 
helminths) from alien to native chelonians are already known from Europe (Héritier 
et al. 2017). Data about indirect impacts of other alien chelonians in Europe, besides 
T. scripta, are missing completely. In addition to negative effects, it was recently argued 
that alien chelonians in general, and T. scripta elegans in particular, might have the 
potential to offer ecosystem services in degraded ecosystems which would otherwise be 
lacking (Dupuis-Desormeaux et al. 2022). Thus, a differentiated view on alien chelo-
nians in a range of habitats is called for.
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Currently, the legislative restrictions for the pet trade, for example within the Eu-
ropean Union, constrains only T. scripta. The other two species, P. concinna and 
G. pseudogeographica, are not included, and thus they are legally imported and available. 
It has to be assessed how widespread these species are in ecosystems outside their native 
range and whether control of the legal trade is necessary. Nevertheless, the focus should 
be laid on developing a diverse set of large public outreach campaigns to raise awareness 
of potential harmful impacts of releasing pets into the wild, for both the pet and the eco-
system it is released into (Teillac-Deschamps et al. 2009; Masin et al. 2014). Another step 
in a similar vein would be the further establishment of a “certificate of competence” (Ger-
man: “Sachkundenachweis”) for keeping exotic pets. During such a course potential keep-
ers learn what resources are required to care for these animals adequately and the harm 
caused by illegal releases. This is already successfully established for aquarium and ter-
rarium hobbyists in Germany (https://www.sachkunde-vda-dght.de/) and could become 
part of a general legal requirement. Education and public outreach can be accompanied 
by measures such as obligatory PIT tags (passive integrated transponder) for chelonians 
which can allow identification of their origin if found in the wild, thereby allowing the 
prosecution of illegal releases. Furthermore, a “conservation fee” could be charged when 
selling chelonians. Such a fee would increase costs for the keepers, hopefully lead to more 
careful considerations before purchasing these animals and it could be used to finance 
further research and fund rescue centres for released chelonians. In general, a more coor-
dinated and positive approach to keeping exotic pets has numerous positive side effects 
(for example, see the recent efforts by Citizen Conservation https://citizen-conservation.
org/?lang=en) such as raising awareness about the ongoing biodiversity crisis, emphasising 
responsible keepers and at the same time saving threatened species from extinction.

In conclusion, our results provide evidence for the novel establishment of four 
populations of alien chelonians belonging to three species in a temperate climate zone 
and thereby confirming earlier risk assessments (see Bugter et al. 2011). Remarkably, 
even G. pseudogeographica which is sensitive to cold (Ernst and Lovich 2009) repro-
duces in Germany and indicates that the risk assessment of T. scripta and other non-
native chelonians species (see Bugter et al. 2011; Masin et al. 2014) should be generally 
revised based on scientific evidence, professional long-term monitoring efforts and if 
necessary adjusted accordingly, especially in Central European countries.
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