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Abstract
Chrysomya albiceps (Wiedemann, 1819), a species of blowfly (Diptera, Calliphoridae), historically dis-
tributed throughout Southern Europe, has recently dispersed to cooler regions in Europe, which is an 
intriguing phenomenon. In this work, we used Maxent software to formulate climate suitability using 
a machine learning technique to investigate this fact. The bioclimatic variables that best explained the 
climate suitability were Annual Mean Temperature (67.7%) and Temperature Annual Range (21.4%). 
We found that C. albiceps is climatically suitable for several parts of Europe, except for high altitude areas 
like the Swiss Alps. In warmer countries such as Portugal, Spain and Italy, the entire coastal territory was 
the most suitable for the species. Future scenario models show that in these eastern countries and some 
northern areas, climate suitability has increased. This increase is reinforced when comparing the gains and 
losses in climate suitability between the present-day model and the future scenario models. These changes 
are most likely caused by changes in temperature, which is the main explanatory factor among the tested 
variables, for the climate suitability. As one of the most important species in forensic contexts and a po-
tential myiasis agent, the expansion of C. albiceps to new locations cannot be neglected, and its expansion 
must be carefully monitored.
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Introduction

As seen in recent years, the world is warmer and this phenomenon is influenced by an-
thropic activities such as fossil fuels burning, cement production, flaring, forest man-
agement and other land uses (Jia et al. 2019). According to the Intergovernmental Pan-
el on Climate Change - IPCC (2021), an increase in the global average temperature is 
forecast for the coming years, considering the predicted scenarios. Those changes can 
modify global dynamics of the ecosystems by facilitating the invasion of exotic species, 
the dispersion of disease vector species and the emergence of agricultural pests (Wag-
ner 2020), mainly insects (Samy et al. 2016; Iwamura et al. 2020; Wang et al. 2020). 
Predicting the distribution of insects in the context of climate change has become one 
of the great challenges of the 21st century.

Blowflies (Diptera, Calliphoridae) are a common group of insects, widespread 
throughout the world (Rognes 1997; Wolff and Kosmann 2016), including Chrysomya al-
biceps (Wiedemann, 1819). The biology and ecology of this species can be used to estimate 
the post-mortem interval of a corpse, as well as providing clues if the corpse has changed 
location (Martín-Vega et al. 2017). Beyond the forensic importance, understanding the 
potential distribution of this species is essential for the following reasons: 1) C. albiceps is 
a mechanical vector of pathogens. The species can also cause severe primary and second-
ary myiasis in livestock, domestic animals and humans (Zumpt 1965; Schnur et al. 2009; 
Sotiraki and Hall 2012); 2) sympatry with similar species such as Chrysomya rufifacies 
(Macquart, 1842) and Chrysomya putoria (Wiedemann, 1830) may induce taxonomic 
misidentification (Erzinclioglu 1987; Grella et al. 2015); 3) the species is a facultative 
predator of other blowflies in larval stage in Neotropical Region (Faria et al. 1999, 2007) 
and Paleartic Region (Ivorra et al. 2022); and 4) more studies are needed on their driv-
ing forces in specific geographical areas, especially at smaller scales (Hosni et al. 2022). 
Recently, research groups have used a maximum entropy algorithm with Maxent software 
(Phillips et al. 2006) to model current and future niche distributions of blowfly species 
(Mulieri and Patitucci 2019; Hosni et al. 2020), including C. albiceps (Hosni et al. 2022).

Maxent (Phillips et al. 2006; Phillips and Dudík 2008) has been used in recent 
years to estimate and predict scenarios of potential distribution of the species according 
to ecological niches favorable to the target species. This tool allows generating niche 
estimator models through bioclimatic data and the present occurrence of the species 
(Phillips et al. 2017). The tool is extremely popular and has been used systematically 
in recent years, as it has been shown to perform much better than other methods such 
as GARP and BIOCLIM (Elith et al. 2006). In this work, it was used to understand 
what the climate suitability of C. albiceps looks like, providing clues about its potential 
distribution under different climate scenarios.

The historical distribution of this species encompasses Africa, the Middle East, and 
Southern Europe (Séguy 1930–1932; Holdaway 1933). In the early 2000s, C. albiceps 
began to be identified in new areas of Europe (Povolny 2002; Grassberger et al. 2003). 
Since then, the distribution of the species has increased on the old continent towards oth-
er central and eastern European countries (Makovetskaya and Verves 2018). The recent 
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and rapid dispersion of this species has generated two hypotheses: a) that the species’ dis-
tribution is changing due to a more suitable climate (Povolny 2002; Gosselin and Braet 
2008); b) that populations of C. albiceps are adapting to European winters (Makovetskaya 
and Verves 2018). Furthermore, the diapause mechanisms of the species are still not well 
understood (Michalski and Szpila 2016) and can also be a decisive factor in dispersion.

This study aimed to enhance our understanding of the climate suitability of 
C. albiceps and the climatic factors that influence its potential distribution. To achieve 
this, the study utilized geographic coordinates and bioclimatic variables to model the 
current and future distribution of C. albiceps. For that purpose, a maximum entropy 
machine learning technique was used. The discussion focused on the European region, 
given the recent expansion of the species in this continent.

Material and methods

Chrysomya albiceps records

A total of 671 occurrence records were obtained from scientific papers, monographs, and 
dissertations present in the following databases: https://www.biodiversitylibrary.org/, 
https://pubmed.ncbi.nlm.nih.gov/, https://scholar.google.com/, https://www.scielo.br/, 
https://www.elsevier.com/ and http://periodicos.capes.gov.br/. The keyword searched 
was “Chrysomya albiceps” (see references in Suppl. material 1). The Global Biodiversity 
Information Facility (www.gbif.org) was also used as a source of coordinates, with “spe-
cies only” criterion and with the following filters: “material sample and preserved speci-
men” and “including coordinates”. Some records from Brazil, using attractant traps by 
the first author, are included. Doubtful and repeated records were excluded. Records not 
coupled with collected specimens, records with photo-based identification and single 
records in remote areas (China, for example) were not used. Thereafter, the coordinates 
were refined with the filter of 20 km distance from each other using the package “spThin” 
in the RStudio program (Aiello-Lammens et al. 2015; RStudio Team 2021). The 20 km 
filter was used considering that species of the Calliphoridae family can reach distances 
of 3.5 km per day (Tsuda et al. 2009) and their adult life cycle can exceed several days 
(Norris 1965). After the coordinate refinement, 413 coordinates remained which were 
used to run the model (Fig. 1, see also Suppl. material 2). Although several coordinate 
points are lost after refinement, these steps are important to improve model fit.

Climatic data

Nineteen bioclimatic variables from the Worldclim database with a spatial resolution 
of 2.5 arc-min (Fick and Hijmans 2017) were used to generate the present day mod-
el. For the predictions of the future, the Global Climate Model IPSL-CM6A-LR of 
Coupled Model Intercomparison Project (CMIP6) (Boucher et al. 2020) was used, for 
two shared socioeconomic pathways (SSPs: SSP1-2.6 and SSP5-8.5) for two future 
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periods (2041–2060 and 2061–2080). IPSL-CM6A-LR was used because it has high 
climatic sensitivity (Qin et al. 2021). Next, a dimensional reduction procedure and 
exclusion of highly correlated variables was initiated. This process is necessary to avoid 
contributions of variables that generate interpretation problems to the models (Hosni 
et al. 2022). A correlation between the variables was then performed in the R Program 
(RStudio Team 2021), using the raster package (Hijmans 2022) (see Suppl. mate-
rial 3), to exclude highly correlated variables (r > 0.7). The best explanatory variable 
was chosen among the variables that correlated. The resulting variables used to fit the 
model were Bio1 (Annual Mean Temperature), Bio2 (Mean Diurnal Range, mean of 
monthly max temp – min temp), Bio7 (Temperature Annual Range), Bio12 (Annual 
Precipitation) and Bio15 (Precipitation Seasonality, Coefficient of Variation).

Modelling and model evaluation

The maximum entropy technique was used for modelling. The model input configura-
tion (for present-day and future models) was: 100 replicates (70% calibration and 30% 
test), convergence threshold = 0, 0001, multiple regularizer = 1, maximum interactions 
= 500, and output in cloglog format with default prevalence = 0.6, for all potential 
models generated. The replicates were controlled using the Subsample replacement re-
sampling method (Mulieri and Patitucci 2019), where data selected for testing cannot 
be selected for training. The performance of the generated models was evaluated using 
the Area Under the Roc Curve (AUC), a tool present in Maxent’s output. Models with 
AUC > 0.75 are considered useful (Elith 2002). Model validation was assessed using 
True Skill Statistics (TSS). Finally, the Jackknife test was used to assess the importance 
of each variable for the construction of the present and future models.

Figure 1. Occurrence points of Chrysomya albiceps recorded from the scientific literature and in the 
GBIF database.
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Plotting

The suitability maps were plotted using the “Maximum training sensitivity plus 
specificity Cloglog threshold” (Liu and Shi 2020) obtained from the Maxent output 
(Threshold > 0.4). Climate suitability maps are reliably generated using this threshold 
(Liu et al. 2005). ArcGIS software was used to produce the maps (ESRI 2018). In Liu 
and Shi (2020), 4 suitability classes are used to visualize the maps. An additional class 
was created in the present study, namely: Unsuitable, Low, Medium, High, and Very 
High. To create these classes, we used the Reclassify function from ArcGis. To facilitate 
visualization of the European areas on maps, the region was divided into 4 sub-regions: 
Southern, Western, Eastern, and Northern. In addition, a comparison of climate suit-
ability areas gains and losses between the different scenarios tested is provided (Hosni 
et al. 2022).

Results

The model generated from the potential distribution on present days had good per-
formance (AUC = 0.886; sd = 0.007; TSS = 0.67). In this model, the variables that 
contributed the most to its construction were bio1 (67.7%) and bio7 (21.4%) (Fig. 2). 
In Fig. 3, it is shown how the predicted probability of presence changes according to 
the variation of bioclimatic variables. The variables with the highest gain were also bio1 
and bio7 (see Suppl. material 3, Fig. 1).

Figure 2. Relative contribution of bioclimatic variables to the construction of the current climate suit-
ability model of the species Chrysomya albiceps. bio1 = Annual Mean Temperature, bio2 = Mean Diurnal 
Range, mean of monthly max temp – min temp), bio7 = Temperature Annual Range, bio12 = Annual 
Precipitation and bio15 = Precipitation Seasonality, Coefficient of Variation.
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Climate suitability for the species C. albiceps has been shown for the entire territo-
ry of Europe (Fig. 4), except for high altitude sites such as the Swiss Alps and Northern 
Europe. In warmer countries, such as Portugal and Spain, the entire coastal territory 
was shown to have a highly suitable climate for the occurrence of the species. Further-
more, nearby countries with higher latitudes, such as France and Belgium, also showed 
a highly suitable climate in their coastal areas. To the east, still in the Mediterranean 
area, Italy, Malta, Albania and Greece followed the same pattern. Colder countries 
like Poland have medium climate suitability in almost all their territory. Neighbor-
ing countries like Belarus and Lithuania have lower climate suitability, however, the 
occurrence of the species is already confirmed on their territories, (Lutovinovas and 
Markevičiūtė 2017; Makovetskaya and Verves 2018), which may mean that C. albiceps 
can establish itself even in countries with low climatic suitability.

Figure 3. Response curves of the main bioclimatic variables in the construction of descriptive models 
of the climate suitability of Chrysomya albiceps. Bio1 = Annual Mean Temperature, Bio2 = Mean Diurnal 
Range, mean of monthly max temp – min temp), Bio7 = Temperature Annual Range, Bio12 = Annual 
Precipitation and Bio15 = Precipitation Seasonality, Coefficient of Variation.
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The predictive future models of this work indicate that more areas in Eastern Eu-
rope will have increased climate suitability (Figs 5, 6, 7 and 8). Portugal, considering 
the 4 predictive scenarios, had little variation in the amount of climate suitability. 
Spain showed variation in all 4 scenarios. In many areas in the north-western and 
central parts of the country, the climate suitability decreased. However, territories in 
the east had the climate suitability increased from Medium to High. A part of the ter-
ritories of France and Belgium lose much of their climate suitability, from very high to 
high. In the United Kingdom, considering the 4 scenarios, there is a tendency towards 
a decrease in the climate suitability (mainly in Ireland and Scotland). Interestingly, 
in Scotland, more areas fall into the Low/Medium category when the least optimistic 
scenarios are considered (Figs 6 and 8).

Variation in climate suitability was observed across the predictive scenarios, with 
greater improvements in the least optimistic scenarios compared to the optimistic sce-
narios (Fig. 9). The most substantial increases in climate suitability were detected in 
Eastern and Northern Europe. Conversely, the SSP1-2.6 and SSP5-8.5 scenarios of 
2070 resulted in the most significant declines in climate suitability, with the loss dis-
tributed across all European sub-regions.

Figure 4. Climate suitability model of Chrysomya albiceps for present-day in the Europe (a) and sub-re-
gions Western (b), Eastern (c), Southern (d) and Northern (e). Model ran in Maxent and figure redrawn 
in ArcGIS software.
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Discussion

Changes in the climate suitability for the occurrence of C. albiceps between present and 
future scenarios have been observed based on the tested variables in the models. These 
differences are particularly noticeable in Eastern Europe, towards the recent geographic 
expansion of the species. It appears that climate change is partly responsible for this 
dispersal, making cooler areas more prone to C. albiceps occurrence. The variables bio1 
and bio7, which are related to temperature, contributed to almost 90% of the variance 
in the models. Therefore, changes in temperature (Figs 4, 5, 6, 7, and 8) are highly 
likely to explain the observed differences between present and future scenarios, such as 
the evenly distributed losses in climate suitability and the gains in suitability concen-
trated in Eastern Europe (Fig. 9). Consequently, C. albiceps may expand to new areas 
with climate suitability. For instance, according to Sivell (2021), the species is already 
considered a potential occurrence in the UK.

In the present work, it is demonstrated from a maximum entropy modelling that 
the most enlightening explanatory variables tested to understand the potential distri-
bution of C. albiceps are the bio1 (Annual Mean Temperature) and the bio7 (Tem-
perature Annual Range) (Figs 2 and 3). Not only that, but the generated model also 
demonstrates that if the bio1 is removed, the model loses much of its explanatory 

Figure 5. Climate suitability model of Chrysomya albiceps for the year 2050 in the most optimistic sce-
nario (SSP1-2.6) in the Europe (a) and sub-regions Western (b), Eastern (c), Southern (d) and Northern 
(e). Model ran in Maxent and figure redrawn in ArcGIS software.



Where in Europe is Chrysomya albiceps? 89

power (see Suppl. material 3, Fig. 1). Bio1 was found to be the most useful variable 
in explaining the potential distribution of C. albiceps worldwide in the work of Hosni 
et al. (2022). Bio11 (Mean Temperature of Coldest Quarter) was also identified as an 
important variable in this study. Similarly, these two variables were found to be the 
most important in explaining the potential future distribution of Chrysomya bezziana 
(Villeneuve, 1914) (Hosni et al. 2020). For other subtropical/tropical insects like Aedes 
albopictus (Skuse, 1894), which has recently colonized Europe, bio11 is considered to 
be the limiting variable for its potential distribution (Cunze et al. 2016). In contrast, 
bio15 (Precipitation Seasonality - Coefficient of Variation) has been identified as the 
best explanatory variable for the potential distribution of species in the family Syrphi-
dae in Europe (Miličić et al. 2018; Milić et al. 2019).

Climate suitability in the tested models is also explained by bio7 (Temperature An-
nual Range), a variable related to seasonality (Fig. 2, Suppl. material 3). In subtropical 
regions, such as Portugal and Spain, the abundance of C. albiceps is seasonally depend-
ent, increasing during the hottest periods of the year. The colder seasons limit the 
species, as its abundance decreases under such conditions (Prado e Castro et al. 2012).

In Fig. 9, the gains and losses in climate suitability can be seen, with most gains 
concentrated in eastern and northern Europe, while suitability losses are distributed 

Figure 6. Climate suitability model of Chrysomya albiceps for the year 2050 in the least optimistic sce-
nario (SSP5-8.5) in the Europe (a) and sub-regions Western (b), Eastern (c), Southern (d) and Northern 
(e). Model ran in Maxent and figure redrawn in ArcGIS software.
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more evenly across the continent. These results are consistent with the predictions of 
the IPCC (2021), which anticipate the highest levels of global warming in northern 
and eastern Europe, as well as in northern Scandinavia and the interior areas of Medi-
terranean countries. The various future scenarios demonstrate that much of the areas 
remained unaltered (Fig. 9), including southern Europe, in contrast to the results of 
Hosni et al. (2022), who, when evaluating the potential distribution of C. albiceps 
worldwide, stated that the species would practically disappear from the same region. 
Southern Europe is one of the oldest regions where C. albiceps historically occurred 
(Holdaway 1933). Even though notable climate changes may occur in the region 
(IPCC 2021), it is unlikely that the species would stop occurring in these regions.

Chrysomya albiceps, being poikilothermic, has its development, physiology, and 
distribution greatly influenced by temperature (Marchenko 2001; Hosni et al. 2022). 
Therefore, it was expected that temperature would be the variable that would best 
explain its climate suitability in Europe. The mean annual temperature range for the 
species is between 9 °C and 27 °C, as noted by Hosni et al. (2022). The life cycle of the 
species has been studied under experimental conditions between 11 °C and 40 °C in 
various locations around the world (Queiroz and Milward-de-Azevedo 1991; Aguiar-
Coelho and Milward-de-Azevedo 1995; Queiroz 1996; Marchenko 2001; Al-Misned 
et al. 2003; Kheirallah et al. 2007; Richards et al. 2009; Beuter and Mendes 2013; 

Figure 7. Climate suitability model of Chrysomya albiceps for the year 2070 in the most optimistic sce-
nario (SSP1-2.6) in the Europe (a) and sub-regions Western (b), Eastern (c), Southern (d) and Northern 
(e). Model ran in Maxent and figure redrawn in ArcGIS software.
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Al-Shareef and Al-Qurashi 2016; Salimi et al. 2018; Kordshouli et al. 2021), includ-
ing Europe (Grassberger et al. 2003). In this context, the development of the species 
is interrupted at the upper temperature threshold of 37 °C (Kordshouli et al. 2021), 
and at the lower temperature thresholds of 15 °C (Grassberger et al. 2003) and 13 °C 
(Marchenko 2001). Makovetskaya and Verves (2018) hypothesized that survival at 
these temperatures is sufficient for the species to spread to more sites in Europe, in 
addition to the Asian portions of southern Russia. Climate predictions suggest that 
the temperature in the old continent may increase from 1.2–3.4 °C to 4.1–8.5 °C in 
the coming years, in more and less optimistic scenarios (IPCC 2021). In this climate 
scenario, the hypothesis of Makovetskaya and Verves (2018) may be confirmed.

The models generated in this work can be used to help predict potential future distri-
butions of C. albiceps. To better understand this species distribution around the world is 
an important contribution to Forensic Entomology. For instance, Turchetto and Vanin 
(2004) comment that the tropical species of forensic interest Hermetia illucens (Linnaeus, 
1758) arrived in Italy in 1956, but only recently reached the colder areas of the country. 
This species is reported by the same authors as a superior competitor to the indigenous 
species. If conditions are suitable, C. albiceps can rapidly spread into new areas, changing 
the composition and dynamics of native blowfly communities, and consequently, the 
micro-ecosystems shaped by corpse decomposition (Baumgartner and Greenberg 1984; 

Figure 8. Climate suitability model of Chrysomya albiceps for the year 2070 under least optimistic sce-
nario (SSP5-8.5) in the Europe (a) and sub-regions Western (b), Eastern (c), Southern (d) and Northern 
(e). Model ran in Maxent and figure redrawn in ArcGIS software.
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Braack and Retief 1986). This fly may be responsible for resetting the Post Mortem In-
terval due to its action on animal carcasses by preying on other species that may have ar-
rived first (Grassberger et al. 2003). Since the beginning of the 21st century, C. albiceps is 
reported as a potential forensic species in Central Europe (Povolný 2002; Grassberger et 
al. 2003). Nonetheless, there are actual cases since 1995 where the species was recorded 
in Switzerland on the corpse of a man (Amendt et al. 2015). This indicates that the spe-
cies already occurred sporadically in colder areas, but only really started to definitively 
colonize new areas a few years later. This periodic colonization is exemplified in Poland 
by Michalski and Szpila (2016). In addition, another reason not to neglect C. albiceps 
dispersal throughout Europe and neighboring countries is the report in Bulgaria of sheep 
myiasis, as well as in northern Morocco (Sotiraki and Hall 2012).

Conclusion

Annual Mean Temperature and Temperature Annual Range were the variables that con-
tributed the most to the climate suitability model in the present work. From the model 
generated, it is concluded that much of Europe is climatically suitable for C. albiceps. 
In future scenarios, the suitability increases in northern and eastern Europe, with areas 

Figure 9. Variations in climate suitability in the 2050-SSP1-2.6 (a), 2050-SSP5-8.5 (b), 2070-SSP1-2.6 
(c) and 2050-SSP5-8.5 (d) predictive scenarios. Gains (in km2) from climate suitability were at a = 286.77, 
b = 451.67, c = 142.82 and d = 334.61. Losses (in km2) from climate suitability were at a = 196.2, b = 
257.19, c = 297.99, d = 383.78. Threshold > 0.4.
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of gains concentrated in these locations, which appears to align with the recent geo-
graphical dispersion of the species across the continent. Meanwhile, losses of areas 
appear to be more evenly distributed. These changes in climate suitability may have 
implications for the potential future distribution of the species, which could colonize 
new areas in Europe depending on the climatic dynamics in the coming years. Being 
one of the most important species in the forensic field, besides being a potential myia-
sis agent, the dispersion of C. albiceps to new locations should not be neglected.
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