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Abstract
Candidate biological control agents of invasive insect pests are increasingly being found in new geographic 
regions as a result of unintentional introductions. However, testing the degree of genetic differentiation 
among adventive and native-range populations of these agents is rarely done. We used reduced-represen-
tation sequencing of genomic DNA to investigate the relationships among laboratory lines of Trissolcus 
japonicus (Ashmead) (Hymenoptera, Scelionidae), an egg parasitoid and biological control agent of the 
brown marmorated stink bug, Halyomorpha halys (Stål) (Hemiptera, Pentatomidae). We compared se-
quences from multiple adventive populations in North America (Canada, USA) and Europe (Switzerland) 
with populations sourced from part of its native range in China. We found considerably more genetic 
variation among lines sourced from adventive populations than among those within native populations. 
In the Pacific Northwest of North America (British Columbia, Canada and Washington State, USA), we 
found preliminary evidence of three distinct genetic clusters, two of which were highly dissimilar from all 
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other lines we genotyped. In contrast, we found that other adventive lines with close geographic proxim-
ity (two from Ontario, Canada, three from Switzerland) had limited genetic variation. These findings 
provide a basis for testing biological differences among lines that will inform their use as biological control 
agents, and provide evidence to support a hypothesis of several independent introductions of T. japonicus 
in western North America from different source areas.
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Introduction

There are now numerous documented instances where natural enemies of invasive 
insects have been discovered following the establishment of their host or prey species, 
presumably as a result of unintentional introductions (Roy et al. 2011; Weber et al. 
2021). Several unintentional introductions are high-profile cases wherein natural ene-
mies were discovered in the insect’s invaded range while being evaluated for intentional 
biological control releases (e.g., Servick 2018; Abram et al. 2020). While molecular 
techniques have been used to confirm species-level identification of numerous invasive 
insect pests, determine their invasion history, their geographic origin(s), and possible 
genetic admixture among them (reviewed in Garnas et al. 2016), these techniques have 
less often been employed for their natural enemies (but see Lombaert et al. 2014; Mc-
Culloch et al. 2022).

In addition to determining invasion histories, molecular techniques could deter-
mine relationships among laboratory cultures of adventive natural enemy populations 
that have been sourced from different regions. When applied to these ‘living genetic re-
sources’, genetic analyses could identify distinct populations that may differ in biologi-
cal attributes (e.g., host range, life history, climate tolerance) that affect establishment 
success and suitability as biological control agents, and could inform future introduc-
tions (e.g., to increase genetic diversity of unintentionally introduced populations) or 
redistributions within new geographic areas that aim to improve biological control 
outcomes (Abram and Moffat 2018). A range of molecular markers are potentially 
available for such analyses, however, reduced-representation sequencing (RRS) has not 
been employed to genotype adventive natural enemies under consideration for bio-
logical control programs (Rius et al. 2015; McCartney et al. 2019; Leung et al. 2020). 
High-resolution genotypes derived from RRS methods could improve our ability to 
match lab-reared natural enemies with individual populations of invasive species, but 
these genotypes must first be characterised to permit proper assessment of their safety 
(potential non-target impacts) and efficacy (host specificity, foraging, and reproductive 
behaviours) as biocontrol agents.

Trissolcus japonicus (Ashmead) (Hymenoptera, Scelionidae) is an egg parasitoid of 
the brown marmorated stink bug Halyomorpha halys (Stål) (Hemiptera, Pentatomidae) 
whose presumed native range includes China, southeastern Russia, South Korea, Ja-
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pan, and Taiwan (Yonow et al. 2021). In 2014, while T. japonicus was being evaluated 
as a candidate biological control agent, unintentionally introduced populations were 
detected in the northeastern USA (Talamas et al. 2015a). These findings were followed 
by detections in the western USA in 2015 (Milnes et al. 2016), Switzerland and east-
ern Canada in 2017 (Gariepy and Talamas 2019; Stahl et al. 2019), western Canada 
and Italy in 2018 (Peverieri et al. 2018; Abram et al. 2019), and several other loca-
tions throughout Europe and North America thereafter (e.g., Dieckhoff et al. 2021; 
reviewed in Conti et al. 2021). In the meantime, extensive research has been done on 
the parasitoid’s host range and basic biology (reviewed in Conti et al. 2021; Abram 
et al. 2022), and intentional introductions of laboratory lines and redistributions of 
adventive lines are ongoing in Italy and the United States, respectively (Lowenstein et 
al. 2019; Conti et al. 2021). Stahl et al. (2019) did a preliminary haplotype analysis 
of the DNA barcode region of the mitochondrial cytochrome c oxidase I (COI) gene 
among populations of T. japonicus from Switzerland, Japan, and China, finding five 
haplotypes among Japanese specimens (one of which was the same as the single haplo-
type found in Switzerland) and a single base-pair difference between Swiss and Chinese 
specimens. However, single-marker analyses can be insufficient for detecting species- 
or population-level genetic structuring (Roe and Sperling 2007; Dupuis et al. 2012; 
Roe et al. 2017). Thus, in the Pacific Northwest of North America (British Columbia 
and Washington State), it is unclear whether recently discovered T. japonicus are one 
contiguous population or several distinct introductions. Here, we employed a RRS 
method, double digest restriction-site associated DNA sequencing (ddRADseq), to: (i) 
characterise the genetic relationships among laboratory lines established from popula-
tions in the native and adventive ranges of this parasitoid; and (ii) begin to evaluate the 
invasion history of T. japonicus in the Pacific Northwest.

Materials and methods

Insect collection and rearing

Between 2017 and 2020, we established 19 laboratory lines of T. japonicus in a con-
tainment facility certified by the Canadian Food Inspection Agency at Agriculture 
and Agri-Food Canada’s Agassiz Research and Development Centre (Agassiz, British 
Columbia, Canada). We originally collected progenitors of these lines from wild popu-
lations in Switzerland, China, the USA, and Canada between 2009 and 2021 (Fig. 1; 
Suppl. material 1: table S1). We established 16 iso-female lines by taking a single 
female from a field-collected parasitized pentatomid egg mass and rearing at least 10 
generations of its offspring. We established three additional lines using multiple indi-
viduals and reared each as mixed laboratory lines (Suppl. material 1: table S1). For each 
country of collection, we established two to eight lines. We reared all lines on H. halys 
egg masses following Wong et al. (2021). Elijah Talamas (Florida Department of Ag-
riculture and Consumer Services) or Francesco Tortorici (Department of Agricultural, 
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Forest and Food Sciences, University of Torino) identified vouchers of each line to 
species-level (Talamas et al. 2015b; Talamas et al. 2017). We deposited representative 
vouchers in the Florida State Collection of Arthropods; the Canadian National Collec-
tion of Insects, Arachnids, and Nematodes; the Summerland Research and Develop-
ment Centre arthropod collection; and the Royal British Columbia Museum.

DNA extraction and sequencing

We extracted genomic DNA using DNeasy Blood and Tissue DNA kits (QIAGEN, 
Hilden, Germany) by following the manufacturer’s protocol, but we added a bovine 
ribonuclease A treatment (RNaseA, 4 uL at 100 mg/mL, QIAGEN) to digest RNA. 
We eluted DNA into 2× 50 uL of 56 °C Buffer AE to increase DNA concentration 
and yield, then we stored DNA at -20 °C until ddRAD library preparation. PstI-MspI 
library preparation and sequencing were performed by sequencing facility staff as out-
lined in MacDonald et al. (2020) on an Illumina NextSeq 500 at the University of 
Alberta (Edmonton, Alberta, Canada). We generated single-end 75 base-pair reads in 
two separate sequencing runs; we sequenced two samples twice to assess run effects.

Figure 1. Collection locations for 19 laboratory lines of Trissolcus japonicus. Inset maps depict sampling 
regions a the Pacific Northwest of North America b Switzerland, and c Beijing and Hebei provinces, 
China. Symbol shape depicts geographic area of collection: diamond = Switzerland, triangle = Pacific 
Northwest of North America, circle = China, square = Ontario, Canada. Square symbols for the two loca-
tions in London, Ontario, Canada have been jittered for visibility.
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Obtaining high-concentration, high-quality DNA from small-bodied organisms 
is an inherent challenge when preparing DNA libraries (e.g., Andersen et al. 2016; 
Paspati et al. 2019; Campbell et al. 2020), particularly for hymenopteran parasitoids 
(Cruaud et al. 2018; Gebiola et al. 2019; Ferguson et al. 2020). However, pooling 
individuals from female iso-lines has become standard practice in RRS and whole 
genome analyses of hymenopterans (Leung et al. 2020). We determined that extrac-
tions from individual T. japonicus did not yield enough DNA for successful ddRADseq 
(<<200 ng, TDN pers. obs.), and as such, we pooled 10 diploid female T. japonicus 
from individual lines for each DNA extraction (hereafter referred to as ‘pools’) to meet 
the minimum required concentration of DNA. Comparison of pooled close relatives 
may artificially inflate the perceived ‘true’ genetic distance between wild T. japonicus 
populations (e.g., Rodríguez-Ramilo and Wang 2012), however, our primary objective 
was to determine the genetic relatedness among laboratory lines. Because Bayesian 
model-based clustering can be more easily influenced by close relatives than other 
methods (Waples and Anderson 2017; O’Connell et al. 2019), we employed both 
Bayesian and non-Bayesian analysis to assess genetic structuring. We prepared a mini-
mum of five pools per line (Table 1), however, we could only prepare four pools from 
the Ontario, Canada 2021 line due to low specimen availability when sampling. Each 
pool acted as one unit in analyses.

Table 1. The number of individual pools of 10 female wasps from each Trissolcus japonicus laboratory line 
included in each of the three analyses of population genetic structure. See Suppl. material 1: table S1 for 
additional information about each T. japonicus line.

Laboratory line Number of pools included in dataset
full geographic Pacific Northwest 

British Columbia, Canada (Langley) 7 – 7
British Columbia, Canada (Chilliwack) 5 – 5
British Columbia, Canada (Agassiz) 7 7 7
British Columbia, Canada (Kelowna) 7 7 7
Washington, USA (Vancouver) 5 4 4
Washington, USA (Walla Walla) 5 – 3
Switzerland (Basel-Stadt) 4 – – 
Switzerland (Zurich) 5 – – 
Switzerland (Ticino) 5 5 – 
Ontario, Canada (London, 2019–2020) 4 4 – 
Ontario, Canada (London, 2021) 3 – – 
China (Beijing line 1) 5 – – 
China (Beijing line 2) 5 – – 
China (Beijing line 3) 5 5 – 
China (Beijing USDA line) 4 – – 
China (Hebei line 1) 5 – – 
China (Hebei line 2) 4 – – 
China (Hebei line 3) 5 – – 
China (Heilongjang) 5 4 – 
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Bioinformatics

We used Stacks 2 version 2.55 (Rochette et al. 2019) to demultiplex and process raw 
DNA reads. We removed reads if they 1) contained Phred scores below 20 over 15% 
of their length, 2) failed the Illumina chastity filter, or 3) had uncalled bases. We used 
the ‘barcode rescue’ option to retain reads with one mismatched base in its 8 base adap-
tor sequence, then we removed all adaptor sequences. Due to some sequencing error 
in the PstI restriction site, we removed an additional 5 bases from the 5’ end of each 
read using Cutadapt version 3.4 (Martin 2011), resulting in final lengths of 62 bases. 
We used the denovo_map pipeline in Stacks 2 to call single nucleotide polymorphisms 
(SNPs), specifying one ‘population’ in the popmap and a minor allele frequency of 
0.05. In accordance with Paris et al. (2017), we retained SNPs that were present across 
at least 80% of the pools. We completed final filtering using VCFtools version 0.1.16 
(Danecek et al. 2011), retaining SNPs with a minimum read depth of five and discard-
ing SNPs and pools that had more than 10% missing data, and we used the thin option 
to keep only one SNP per stack.

We assessed population genetic structuring for three datasets: one containing all 19 
laboratory lines (‘full dataset’), one with seven lines chosen for proportional representa-
tion of potential geographic clusters (‘geographic dataset’), and one with all six lines 
from the Pacific Northwest of North America (‘Pacific Northwest dataset’) (Table 1). 
We used principal component analysis (PCA) and Bayesian model-based clustering 
for assessment. We performed PCA in adegenet version 2.1.5 (Jombart and Ahmed 
2011) and we visualised results in ggplot version 3.3.5 (Wickham 2016) using R ver-
sion 4.1.2 (R Core Team, 2021). We implemented Bayesian model-based clustering in 
structure version 2.3.4 (Pritchard et al. 2000) using the admixture model. For struc-
ture analysis, we randomly sub-selected pools from lines to ensure equal sample size 
from each (Puechmaille 2016), then ran a burn-in period of 100,000 sweeps followed 
by 1,000,000 sweeps for each of 10 replications for each potential subpopulation (K) 
between 1–20 (full dataset) or 1–15 (geographic and Pacific Northwest datasets). We 
defined each laboratory line in a given dataset as a ‘location’ prior to better resolv-
ing the genetic structure (Porras-Hurtado et al. 2013). We set the alpha prior of the 
full and geographic datasets to 1/7, and that of the Pacific Northwest dataset to 1/3, 
reflecting the expected results of K=7 or K=3 (Wang 2017). We assessed statistical sup-
port of each K value using LnP(K) (Pritchard et al. 2000) and ΔK (Evanno et al. 2005) 
in StructureSelector (Li and Liu 2018). Finally, we generated Q-matrices from the 10 
replicates of each K for each dataset in CLUMPAK version 1.1 (Kopelman et al. 2015).

Data availability

DNA sequences are available as fastq files in the National Center for Biotechnology 
Information Sequence Read Archive (NCBI SRA) as BioProject PRJNA933214.
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Results and discussion

Sequencing outcomes and geographic structure

In total, we sequenced 109 pools of T. japonicus (1090 individuals) from the 19 labo-
ratory lines, resulting in 109,473,577 raw Illumina reads. In a preliminary PCA, two 
pools had unexpected behaviour. They may have been contaminated during sample 
preparation or DNA extraction: neither clustered with any other pool, and both were 
placed intermediate to other pools extracted from the same line and pools from other 
lines. We removed both before all subsequent analyses. After our final filtering of raw 
reads, the full dataset contained 1,889 SNPs across 95 pools with a mean SNP read 
depth of 64.9×, 11,360,339 filtered reads, and 3.82% total missing data. We used 
VCFtools to re-filter this dataset before running structure, using the same filtering 
parameters but sub-selecting near-equal sample sizes for pools from 18 lines in ac-
cordance with Puechmaille (2016). We did not include the 2021 line from Ontario, 
Canada in the full structure dataset because it only had two pools after filtering, leaving 
a total of 18 lines in the full structure dataset. In 16 of these 18 lines, we subsampled 
four pools; the other 2 lines (Walla Walla and Beijing-United States Department of 
Agriculture [USDA]) each had only three pools that passed our filters. Our final full 
structure dataset had 1,860 SNPs across 70 pools with a mean SNP read depth of 
66.0×, 8,469,428 filtered reads, and 1.64% total missing data. In PCA, we identi-
fied 6–7 genetic clusters in the full dataset, and we found greatest statistical support 
for K=9 (LnP(K) method) and K=4 (ΔK method) in the full structure dataset (Fig. 2; 
Suppl. material 1: figs S1, S2).

In the geographic dataset, we retained 36 pools across the 7 laboratory lines after 
filtering raw reads. The dataset contained 2,896 SNPs with a mean SNP read depth of 
72.9×, 7,498,995 filtered reads, and 2.03% total missing data. We used VCFtools to 
sub-select four pools per line before running structure, ensuring equal sample size. Our 
final geographic structure dataset had a mean SNP read depth of 67.4×, 5,386,771 fil-
tered reads, and 2.45% total missing data across 28 pools. We found greatest statistical 
support for K=11 (LnP(K) method) and K=10 (ΔK method) in this dataset (Fig. 3, Sup-
pl. material 1: figs S3, S4, K=11 structure plot not shown due to similarity with K=10).

In the Pacific Northwest dataset, we retained 33 pools across the 6 laboratory 
lines after filtering raw reads. This dataset contained 1,976 SNPs with a mean SNP 
read depth of 78.8×, 5,069,119 filtered reads, and 2.15% total missing data. We used 
VCFtools to sub-select four pools per line before running structure, ensuring equal 
sample size; however we could only select three high quality pools from the Walla 
Walla laboratory line. Our final Pacific Northwest structure dataset had a mean SNP 
read depth of 71.3×, 3,186,750 filtered reads, and 2.83% total missing data across 23 
pools. We found greatest statistical support for K=12 (LnP(K) method) and K=3 (ΔK 
method) in this dataset (Fig. 4; Suppl. material 1: figs S5, S6).
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Figure 2. Principal component and structure analyses of SNP data from the full datasets comprising 
18–19 Trissolcus japonicus laboratory lines. We present structure results with greatest LnP(K) and ΔK sta-
tistical support. Symbol shape depicts geographic area of collection: diamond = Switzerland, triangle = Pa-
cific Northwest of North America, circle = China, square = Ontario, Canada (blue square = London, 
Ontario, Canada 2021 line). Colours behind laboratory line names correspond with geographic genetic 
clusters (Fig. 3). We present both modes of K=9 across its 10 replicate runs.
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Genetic similarities and differences among laboratory lines

Overall, we found T. japonicus lines had the greatest genetic similarity when collected 
in close geographic proximity (Figs 1, 2), but some lines were exceptional (Figs 2, 3). In 
both PCA and structure analyses, lines collected across Switzerland were more closely 
related to each other than lines from other countries, as were those from Beijing and 
Hebei provinces of China (Fig. 2), but lines from Switzerland and Beijing/Hebei were 
genetically different from one another (Fig. 2). At K=4, the Heilongjiang line was in-
cluded in the same genetic cluster as Beijing and Hebei, however, at K=9 it belonged to 
its own cluster. This could be evidence of isolation by distance across the native range 
of T. japonicus and evidence of one introduction event in Switzerland that did not 
originate from the areas of China we sampled. In contrast, Stahl et al. (2019) found 
that the Ticino, Switzerland and Beijing lines had only one base substitution difference 
in their partial COI sequences (i.e., high apparent similarity) and inferred that the 
Swiss populations could have originated from the Beijing area. However, our results 
suggest that neither population-level differentiation nor patterns of invasion history 
of T. japonicus can be evaluated using the mitochondrial genome and thus require a 
nuclear genome-wide investigation.

Among adventive T. japonicus populations in Canada, the lines from London, Ontar-
io and Kelowna, British Columbia were the most similar to populations from China, the 
parasitoid’s native range, suggesting that these two populations may have originated from 
an area in proximity to our sampled Chinese populations. The two lines from London, 
Ontario were more closely related to the Beijing and Hebei cluster than was the Heilongji-
ang line in the full dataset (PCA and structure plots, Fig. 2), but the Ontario, Beijing/
Hebei, and Heilongjiang lines each formed their own genetic cluster when proportionally 

Figure 3. Structure analysis of SNP data from the geographic structure dataset comprising seven Tris-
solcus japonicus laboratory lines. We present structure results with greatest ΔK statistical support. Symbol 
shape depicts geographic area of collection: diamond = Switzerland, triangle = Pacific Northwest of North 
America, circle = China, square = Ontario, Canada.
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Figure 4. Principal component and structure analyses of SNP data from six Trissolcus japonicus labora-
tory lines collected across the Pacific Northwest of North America. We present the structure results with 
greatest ΔK and LnP(K) statistical support. We present both modes of K=12 across its 10 replicate runs.
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represented in the geographic structure analysis (Fig. 3). It is likely that the seven Beijing/
Hebei lines influenced the full dataset by over-representing the central China genotype, as 
each line is a genetic pseudoreplicate from the same population (see Puechmaille 2016). 
Nonetheless, this analysis suggests that the Ontario population could have originated 
from central China. Similarly, the Kelowna line was closely related to the Beijing and 
Hebei cluster at K=4 but formed its own cluster at K=9, suggesting it too may have been 
introduced from central China. Further genotyping of T. japonicus in its native range will 
be required to confirm the provenance of adventive populations.

We had expected that westernmost lines from Canada and the USA (Langley, Chilli-
wack, Agassiz, and Vancouver, WA) would be most closely related, as would those from 
the interior of BC and WA (Kelowna, BC and Walla Walla, WA). Instead, both lines 
from Washington State are members of the same cluster despite being separated by more 
than 350 kilometres, providing good evidence that T. japonicus in Walla Walla and Van-
couver are either 1) descendants of a single introduction event in Washington or 2) two 
separate introduction events from the same region (Fig. 4). Likewise, the three lines from 
western British Columbia (Langley, Chilliwack, and Agassiz) form their own cluster that 
is genetically dissimilar from those collected in Washington and does not cluster near any 
other population we sampled. In addition, the newest detection in the Pacific Northwest, 
Kelowna, forms its own genetic cluster independent of both western BC and Washing-
ton State populations, indicating the population in interior British Columbia is likely 
an independent adventive introduction of unknown provenance and not a dispersion 
of the other adventive populations of T. japonicus in the Pacific Northwest. Strikingly, 
the amount of genetic variation within the Pacific Northwest lines alone is greater than 
populations separated by more than 1000 km in the native Chinese range. This suggests 
that there have been at least three distinct introductions of T. japonicus into the Pacific 
Northwest of North America, and that unintentional introductions of T. japonicus from 
different source areas may be happening with relative frequency. This may be consistent 
with the introduction history of its host, H. halys, in the Pacific Northwest, which ap-
pears to have resulted from multiple introduction events as suggested by the occurrence 
of at least three mitochondrial haplotypes (Abram et al. 2017). However, more extensive 
analyses using the same genotyping methods would be needed to adequately compare 
the invasion histories of H. halys and T. japonicus. In any case, future surveys for genetic 
and phenotypic variation in T. japonicus should not assume that populations in geo-
graphically proximal regions are necessarily the result of spread from adjacent regions.

Conclusions

Our study demonstrates that there is relatively strong population genetic structuring 
between T. japonicus laboratory lines collected at relatively small geographic scales, 
such as the Pacific Northwest of North America. One caveat of these analyses is the rel-
atively low level of biological replication in certain genetic clusters. Nonetheless, clus-
ters with more replicates of independently collected lines (n≥3: Switzerland; Beijing/
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Hebei, China; and western British Columbia) did tend to have high genetic similarity 
relative to the much larger between-cluster variation. Because the geographic limits of 
these clusters are not yet known, it may be difficult to increase biological replication 
of the adventive populations. Several regions of the native and adventive ranges of 
T. japonicus are missing from the analyses (e.g., Japan, Italy, Eastern and Central USA), 
so more work is required to comprehensively describe the worldwide population ge-
netic structure of this species. Secondly, the analyses compared inbred laboratory lines, 
possibly leading to greater perceived genetic differences between lines than the ‘true’ 
wild relationships due to high genetic similarity of each individual in a pool. However, 
the lines show little evidence of genetic drift towards a common ‘lab genotype’, and 
lines that have been in culture for many generations are still genetically similar to 
more recently established lines from the same genetic cluster, strongly suggesting that 
these living genetic resources are maintaining their individual integrity and are a close 
representation of the wild genotypic relationships. To build on this study and clarify 
the genetic relationships among these laboratory lines, we recommend further research 
comparing behavioural and life history attributes of each line to inform their use for 
biological control of H. halys. In addition, we suggest that for investigating patterns 
of invasion history for adventive or invasive species of parasitoids, data from RRS or 
other genome-wide methods be used, as inferences from single-gene sequencing can 
over-estimate genetic relatedness among disjunct populations.
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