Research Article |
Corresponding author: Sheldon Plentovich ( plentovi@hawaii.edu ) Academic editor: Jianghua Sun
© 2021 Sheldon Plentovich, Jason R. Graham, William P. Haines, Cynthia B. A. King.
This is an open access article distributed under the terms of the CC0 Public Domain Dedication.
Citation:
Plentovich S, Graham JR, Haines WP, King CBA (2021) Invasive ants reduce nesting success of an endangered Hawaiian yellow-faced bee, Hylaeus anthracinus. NeoBiota 64: 137-154. https://doi.org/10.3897/neobiota.64.58670
|
Hawaii has a single group of native bees belonging to the genus Hylaeus (Hymenoptera: Colletidae) and known collectively as Hawaiian yellow-faced bees. The majority of the 63 species have experienced significant declines in range and population. In 2016, seven species received federal protection under the Endangered Species Act of 1973. Competitors and predators, such as invasive bees, wasps and ants, are thought to be important drivers of range reductions and population declines, especially at lower elevations where more non-native species occur. We evaluated the effects of invasive ants on nesting Hylaeus anthracinus using artificial nest blocks that allowed us to track nest construction and development. The blocks were placed in pairs at 22 points encompassing three sites on the north and east sides of Oahu. One block in each pair was treated with a sticky barrier to prevent access by ants, while the other block remained untreated. From December 2015 to December 2016, we monitored 961 individual nests in the blocks. Seventy percent of nests in control blocks were invaded by ants. Nests in treated blocks were more likely to produce at least one adult than nests in untreated blocks (38% vs. 14%, respectively). In untreated blocks, ants were the most common cause of nest mortality followed by lack of development, displacement (primarily by the competitor Pachodynerus nasidens) and presumed pathogens. The invasive ant, Ochetellus glaber was the only observed nest predator, although the big-headed ant, Pheidole megacephala was also present. Hylaeus anthracinus inhabits coastal strand habitat which occurs in a narrow band just above the high tide line. Nests at one site were destroyed due to a high wave event, highlighting this species’ vulnerability to sea level rise. Additionally, no adult bees or nests were observed at the points where yellow crazy ants, Anoplolepis gracilipes were established. An increased understanding of the factors limiting Hawaii’s yellow-faced bees will provide information for future conservation efforts that may include landscape-scale ant control, habitat restoration and translocations.
Anoplolepis gracilipes, Hylaeus anthracinus, insect conservation, invasive ants, Ochetellus glaber, solitary bees, yellow crazy ants
The Hawaiian archipelago has a single group of native bees (Hymenoptera, Colletidae, Hylaeus), known collectively as Hawaiian yellow-faced bees. A monophyletic radiation produced at least 63 species, all of which are endemic to one or more islands in the archipelago (
Loss of both foraging and nesting habitat, competition with introduced Hymenoptera and predation by introduced arthropods may contribute to population and range reductions in Hawaiian yellow-faced bees (
Hawaiian yellow-faced bees are cavity nesters that use dead, hollow stems in vegetation or holes on the ground in soil, sand, coral rubble and under rocks (Cole et al. 1992;
We focused on one endangered species, Hylaeus anthracinus (F. Smith, 1853), which primarily occurs in narrow bands of coastal habitat just above the high tide line on Oahu, Lanai, Maui, Molokai and Hawaii Island (
Three study sites were selected, based on the presence of known H. anthracinus populations. Vegetation at the three sites consisted of coastal strand dominated by the native shrub Scaevola taccada (Gaertn.) Robx. and the introduced tree Heliotropium foertherianum (Hilger & Diane). Two sites [Turtle Bay (21.706075, -157.996561) and James Campbell Wildlife Refuge (JCNWR, 21.689633, -157.948752)] were on the northern coast of Oahu and one site (Ka Iwi, 21.292859, -157.660334) was on the southern shore (Figure
Three field sites, Turtle Bay, James Campbell National Wildlife Refuge and Ka Iwi (clockwise from top left) used to study the effects of invasive ants on nesting Hawaiian yellow-faced bees (Hylaeus anthracinus) on Oahu, Hawaii. The number of monitoring points (2, 15 and 5, respectively) varied due to extent of habitat.
We used artificial nest blocks to evaluate the effects of invasive ants on H. anthracinus nests. Each wooden block (a section of untreated lumber 30 cm × 3.8 cm × 8.9 cm) had 20 potential nest sites, 10 on each side (Figure
Treatment (left) and control (right) blocks hanging in Scaevola taccada. The rope suspending treatment blocks was treated with a sticky barrier (Tree Tanglefoot) to prevent invasive ants from accessing the blocks.
Hawaiian yellow-faced bee (Hylaeus anthracinus) adult female and nest with three cells in plastic tubing from an artificial nest block on Oahu, Hawaii.
During each monitoring session, the status of each potential nest site was assessed by carefully pulling out each transparent plastic tube and observing any nests. When nests were observed, we recorded the number of cells in the nest, whether a larva or pupa was present in each cell and any other relevant observations, such as discolouration or runny consistency of pollen, evidence of predation or provision raiding or the presence of moisture. Each nest was tracked over its entire development to determine its fate (i.e. the final stage reached). Nests were classified as successful if at least one adult H. anthracinus appeared to have emerged from the nest, failed if they did not produce at least one adult bee or unknown if the fate could not be determined.
When possible, we identified the likely cause of failure for each failed nest. Potential causes of failure included depredation by ants, lack of development (no larvae observed), presumed pathogen infection, displacement by invasive bee or wasp nests and flooding by rain or seawater. Presumed pathogen infection was based on abnormal colouration or consistency of pollen provisions and may have included fungal, bacterial or viral pathogens, amongst which we did not distinguish. Although we checked nests twice a week, we undoubtedly missed some nesting attempts (i.e. bees started nests that were depredated before the next monitoring event) and we were not able to attribute outcomes to all nests. Nests in which only a back seal was observed with no pollen provisions were not counted as nests and not included in analyses.
A paired t-test and a Wilcoxon signed-rank test for matched pairs were used to evaluate differences in the number of successful nests and the number of adults produced, respectively, in control vs. treatment blocks at each point (n = 20). All statistical tests were done using JMP Version 14 (SAS Institute Inc., Cary, NC, 1989–2020). The two Turtle Bay points were flooded during a high wave event three months into the project and were excluded from analyses because no nests produced adults in treatment or control blocks and H. anthracinus was no longer observed at the site through the end of the study in December 2016. The differences between the number of successful nests in control vs. treatment blocks were normally distributed (Shapiro-Wilk test: W = 0.954, P = 0.43), enabling the use of a paired t-test. We hypothesised that the mean difference between pairs of observations would be greater than zero.
We used a Wilcoxon signed-rank test for matched pairs as a non-parametric equivalent to a paired t-test to evaluate differences in number of adults produced from control vs. treatment blocks because data were not normally distributed (Shapiro-Wilk test: W = 0.89, P = 0.029). We hypothesised that the mean difference between the number of successful nests in control blocks and the number of successful nests in treatment blocks would be greater than zero.
We observed a total of 961 H. anthracinus nests from 22 points at three study sites from December 2015 to December 2016. This included 686 nests at JCNWR, 253 nests at Ka Iwi and 22 nests at Turtle Bay. The first sign of nest initiation was the appearance of a cellophane-like lining that sealed the back of the nest tube; this is typical in the family Colletidae. After this back lining was made, the females would deposit pollen, presumably lay an egg and then seal the chamber off and sometimes begin another cell immediately (Figure
We were able to determine if the nest was successful or failed in 927 of the 961 nests and were able to attribute causes (i.e. successful, depredated, lack of development, pathogen, nesting by invasive wasp, flooded or adult unable to emerge) to 889 nests. In some cases when nests failed, the cause was unclear. For example, a nest may have failed due to the growth of a pathogen and was then invaded by ants. In these cases, we knew the nest failed, but were not able to attribute an outcome. In control and treatment blocks combined, 235 of the 889 (26.4%) nests produced at least one adult and the remaining 682 failed (76.7%). Of the failed nests, 654 (95.9%) could be attributed to a cause including depredated by ants (n = 324, 47.5%), lack of development (n = 201, 29.5%), pathogen (n = 52, 7.6%), nesting by an invasive wasp (n = 62, 9%), flooded (n = 13, 1.9%) or adult unable to emerge (n = 2, 0.3%) and 38 (5.6%) could not be attributed to a cause.
We found support for both of our hypotheses. Treatment blocks from which ants were excluded produced a higher number of successful nests than control blocks that could be accessed by ants (paired t-test: t-ratio = 4.05, DF = 19, P > t = 0.0003). The pattern was similar at individual sites, with treatment blocks having significantly higher nest success at both JCNWR (paired t-test: t-ratio = 3.20, DF = 14, P > t = 0.0032) and Ka Iwi (paired t-test: t-ratio = 2.68, DF = 4, P > t = 0.0275). In treatment blocks, 38.2% (174 of 456) of nests produced at least one adult, compared to only 14.1% (61 of 433) of nests in control blocks (Table
The main reason nests in control blocks failed was predation by invasive ants. Throughout the project, we observed ant predation while it was occurring in 274 instances and each time, O. glaber was the culprit. We found that ants invaded 70.2% (304 of the 433 nests) of the nests in control blocks (Table
Following predation by ants, lack of development was the second leading cause of failure in control blocks and the primary cause of failure in the treatment blocks. In control blocks, where ant predation accounted for 70.2% of failed nests, lack of development accounted for 9.9%, nesting by invasive bee or wasp accounted for 3% and the remaining two outcomes (pathogen or flooding) accounted for less than 2% each (Figure
Difference in number of successful nests in control vs. treatment blocks at James Campbell National Wildlife Refuge (JC), Ka Iwi (KC) and Turtle Bay (TB). Numbers above zero indicate points where there were more successful nests in the treatment block (Paired t-test: t-ratio = 4.05, DF = 19, P > t = 0.0003). The two Turtle Bay points did not have successful nests due to flooding.
Difference in number of adults produced by control vs. treatment blocks at James Campbell National Wildlife Refuge (JC), Ka Iwi (KC) and Turtle Bay (TB). Numbers above zero indicate points where there were more adults produced in treatment blocks (Wilcoxon Signed Rank: S = 75.0, P = 0.0012). The two Turtle Bay points did not have successful nests due to flooding.
Between 3 December 2015 and 24 February 2016, we found 22 nests at the two points on the Turtle Bay property. All nests failed either due to predation by invasive ants (n = 9) or due to inundation (n = 13) during a large swell on 24 February 2016. As with JCNWR and Ka Iwi, only O. glaber was observed depredating nests. We monitored the Turtle Bay site for adults and nests through the end of the study in December 2016 and we did not observe H. anthracinus return; however, we did observe the invasive H. strenuus recolonising the site.
Summary of control and treatment blocks invaded by invasive ants at Turtle Bay, James Campbell National Wildlife Refuge (JCNWR) and Ka Iwi on Oahu, Hawaii. The two Turtle Bay points were flooded during a high wave event three months into the project and were excluded from analyses because no nests produced adults in treatment or control blocks.
Site | Block | # points | # Successful nests | # adults produced | Mean # adults/ nest | Mean #adults/ block | # Nests invaded by ants | Total nests |
---|---|---|---|---|---|---|---|---|
Turtle Bay | Control | 2 | 0 | 0 | 0 | 0 | 9 (64.2%) | 14 |
Turtle Bay | Treatment | 2 | 0 | 0 | 0 | 0 | 0 | 8 |
JCNWR | Control | 15 | 47 (15.1%) | 71 | 0.22 | 4.7 | 234 (75.2%) | 311 |
JCNWR | Treatment | 15 | 122 (37.3%) | 152 | 0.46 | 10.1 | 10 (3.1%) | 310 |
Ka Iwi | Control | 5 | 14 (12.7%) | 25 | 0.23 | 5 | 61 (56.5%) | 108 |
Ka Iwi | Treatment | 5 | 52 (37.7%) | 104 | 0.75 | 20.8 | 10 (7.2%) | 138 |
All sites | Control | 22 | 61 (14.1%) | 96 | 0.21 | 4.4 | 304 (70.2%) | 433 |
All sites | Treatment | 22 | 174 (38.2%) | 256 | 0.54 | 11.6 | 20 (4.4%) | 456 |
Yellow-faced bee (Hylaeus sp.) populations in areas where invasive ants are present are known to be smaller than populations in uninvaded areas (
Nest outcomes including causes of failure in control (n = 433, top) and treatment (n = 456, bottom) blocks across the three sites (Turtle Bay, James Campbell National Wildlife Refuge and Ka Iwi) on Oahu, Hawaii.
In the areas where P. megacephala and O. glaber were the dominant ant species, O. glaber was regularly seen forming recruiting lines into nests and removing the contents including pollen, eggs, larvae and pupae (Figure
Hawaiian yellow-faced bees are known to nest in dead, hollow stems or holes on the ground in soil, sand, coral rubble and under rocks (Cole et al. 1992;
While H. anthracinus populations may be able to persist with O. glaber and P. megacephala, we found no evidence that it can co-exist with the yellow crazy ant (A. gracilipes). Anoplolepis gracilipes was invading JCNWR from the east and was present in high densities at two points (14 and 15) and at low densities at point 13 at the beginning of our study (Figure
Yellow crazy ant (Anoplolepis gracilipes) investigating a nest tube in one of the nesting blocks on Oahu, Hawaii.
Hylaeus anthracinus appeared to have few defences against invasive ants. One type of behaviour we observed that may be beneficial in deterring ants involved the female adult bee remaining stationary at the entrance of the nest facing outwards. It is unclear if adult bees seen exhibiting this behaviour are simply resting or actively guarding the nest from kleptoparasites or other parasites or predators. Regardless of its origins, we observed this behaviour preventing ants from accessing nests on several occasions. However, female bees were typically observed in their nests only during active construction. Once all nest cells were completed and sealed, the bees were no longer present, leaving nests vulnerable to ant predation during brood development.
Our study design and monitoring methods had weaknesses. Although we monitored the nest boxes twice a week for a year, some bee nests were initiated and depredated in between visits, so it is possible the number of failed nests and those depredated by ants is an underestimate. Alternatively, it is possible that our estimate of nest predation by ants is higher than that which occurs in a natural setting. As outlined in the Methods section, our wooden blocks had 20 pre-drilled holes, 10 on each side. In control blocks, it is possible that, once invasive ants found the block, they were more likely to depredate all nests present in the block. This contrasts to natural conditions where nests are distributed in hollow stems across a host plant and are likely to be further apart and require additional foraging effort on the part of the ants. Similarly, the structure of the nest blocks may have increased the likelihood of invasive competitors easily utilising the available nest holes and/or of pathogens spreading quickly between nests. Additionally, nests in treatment blocks appeared to fail at a higher rate due to lack of development (34.5%) than nests in control blocks (9.9%). We surmise that high levels of predation by ants in control blocks across all available nests may mask what would otherwise be higher numbers of nest failures due to lack of development. The seemingly high number of nests that failed to develop may have been associated with elevated levels of moisture in the plastic tubing used in our artificial nests, although we lack data from natural nests for comparison. A comparison of nest success rates in a variety of artificial nest materials, including more porous or breathable tubes, would be valuable.
While this study was not designed to evaluate other threats to H. anthracinus, the loss of all surviving nests (n = 13) and apparently the entire population, on the peninsula at Turtle Bay due to inundation during the large swell on 24 February 2016 illustrates and documents their vulnerability to storms, large swell events and sea-level rise compared to most species. Although this species was widespread historically (
The lowland arthropod fauna of Hawaii has been largely eclipsed by non-native species and less than 5% of arthropod species in coastal areas on Oahu are native (
Once widespread, most species of Hawaiian yellow-faced bees are now extremely rare and, given their small size and cryptic nature, very little is known about their nesting ecology, including factors limiting nest success. Hylaeus anthracinus is one of a limited number of native terrestrial invertebrates persisting in coastal areas of the main Hawaiian Islands, but its populations are sparse and patchily distributed. We found that invasive ants had a severe to catastrophic effect on nesting H. anthracinus, depending on the ant species present. In our study, the invasive ant O. glaber depredated the majority (70%) of bee nests built in unprotected nest blocks. In areas invaded and with high densities of yellow crazy ant (A. gracilipes), no nests were initiated and no adult bees were observed, suggesting that invasion by these ants may completely exclude H. anthracinus. The compounding effects of predation by invasive ants, habitat loss and resource competition with invasive Hymenoptera are unknown, but all are likely to have contributed to the decline of H. anthracinus. The few remaining H. anthracinus populations on Oahu are constrained to a narrow strand of coastal habitat just above the high tide line, making the species vulnerable to sea level rise and increased storm frequency and intensity, both of which are predicted as the climate changes.
Hawaiian yellow-faced bees evolved with elements of the flora to form mutualistic plant/pollinator relationships (
Thanks to Jackie Smith and Ryan Colle for assistance with data collection. We also want to thank the staff at James Campbell National Wildlife Refuge, Hawaii Department of Land and Natural Resources – State Parks Division and Turtle Bay Resort for allowing access and supporting this project. Thanks also to Paul Krushelnycky of the University of Hawaii, Karl Magnacca of Oahu Army Natural Resources Program and two anonymous reviewers for comments which improved this manuscript. Financial support was provided by the U.S. Fish and Wildlife Service’s Pacific Island’s Coastal Program, the State of Hawaii – Department of Land and Natural Resources and the Department of Defense Legacy Resource Management Program.