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Abstract
The invasive seed bug Leptoglossus occidentalis, a species native to Western North America, is of major 
concern for the producers of stone pine seeds in the Mediterranean countries. The large size of these edible 
seeds and their nutritive content may represent a pull factor for the seed bug. Cone and seed traits of three 
main Mediterranean pine species: P. pinea, P. pinaster, and P. halepensis, were evaluated. Preference trials 
with cone-bearing branches, individual cones and seeds were conducted to test host preference among the 
three host species.

Considering the kernel size, stone pine seeds provide 4 to 13 times more reward than P. pinaster and P. ha-
lepensis seeds, respectively, but also needed a greater effort to be reached as measured by coat thickness. Still, 
the benefit/cost ratio was higher on P. pinea. Individual seeds and cones of P. pinea were 2 to 3 times more 
consumed than those of the two other pine species. However, branch preference trials did not reveal any 
difference in bug visits. Moreover, adults manifested strong group behaviour on branches, frequently dissoci-
ating into two persisting groups. The implications of these results for P. pinea producing areas are discussed. 
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Introduction

The invasive seed bug, Leptoglossus occidentalis, Heidemann 1910 (Hemiptera: Corei-
dae), originating from Western North America, was first recorded in Europe in Italy in 
1999 (Taylor et al. 2001). Due to its high dispersal ability, and also probably assisted 
by more than one introduction event, this bug quickly spread all over Southern and 
Central European countries and later to the whole continent (Lesieur et al. 2018). Be-
sides of Europe, there has also been new records on other continents in the last decade: 
Asia (Ishikawa and Kikuhara 2009, Zhu 2010, Ahn et al. 2013), Africa (Jamâa et al. 
2013, Gapon 2015) and more recently, South America (Faúndez and Rocca 2017).

With the European invasion, this polyphagous insect, which feeds on cones and seeds 
of many conifer species in its native range (Koerber, 1963), encountered new potential 
hosts. In Europe, it has been observed feeding on Mountain pine (Pinus mugo), Europe-
an black pine (P. nigra), Scots pine (P. sylvestris), Maritime pine (P. pinaster), Aleppo pine 
(P. halepensis) and on Stone pine (P. pinea) (Villa et al. 2001, Tescari 2004, Tiberi 2007, 
Kment and Baňař 2008, Lis et al. 2008, Rabitsch 2008, Roversi 2009, Petrakis 2011, 
Hizal 2012). The last three hosts are the predominant pines species in the Mediter-
ranean region of Europe. Maritime pine is native to the Western Mediterranean Basin, 
but it can be found in other parts of southern Europe and North Africa (EUFORGEN 
2009). The aleppo pine is distributed mainly along the coastal areas in the western 
Mediterranean regions, being an important forest species in North Africa, France and 
Italy (EUFORGEN 2009). Finally, the European distribution of P. pinea extends across 
the entire Mediterranean basin, from Portugal to Syria (EUFORGEN 2009). For more 
than a century, all three have been important species in reforestation and afforestation 
programs since they can grow in arid and unstable soils (EUFORGEN 2009). Maritime 
pine is also planted for timber and to extract resin. Aleppo pine, in turn, is also used in 
the pulp and paper industry (EUFORGEN 2009). Differently, the stone pine P. pinea is 
largely known by its ecological and landscape value but also by its edible seeds, known 
as Mediterranean pine nuts, of high commercial value, which may reach 100 € per kg in 
retail (Mutke et al. 2012). In response to this high market value, the plantation area of 
P. pinea has increased in the last decades in several Mediterranean countries, like Spain, 
Portugal, Italy and Turkey (Mutke and Calama 2016). The high value of this non-wood 
forest product is precisely the focus of the vast majority of impact studies on the seed 
feeder L. occidentalis, in the Mediterranean countries (Bracalini et al. 2015, Calama et 
al. 2016, 2017, Farinha et al. 2018a, 2018b). During the last ten years, several countries 
have reported a strong decrease in cone production and cone yield (i.e., the percentage 
of commercial kernels per kg of fresh cones) (Mutke et al. 2014), and L. occidentalis has 
been suggested as the most plausive cause of such decrease (Roversi 2009, Bracalini et al. 
2013, Mutke and Calama 2016, Parlak 2017). Like all hemipterans, L. occidentalis has 
sucking mouthparts and, it feeds by inserting its stylets deep into the cone until reaching 
the seed from which it removes the endosperm (Koerber 1963).

Although feeding on a wide range of conifers, L. occidentalis seems capable of dis-
tinguishing between clones of P. contorta (Blatt and Borden 1996, 1999, Richardson 
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et al. 2017) and between cones of P. pinea of different physiological status (Farinha et 
al. 2018b). This host selection capability strongly indicates that the bug can probably 
discriminate between different host conifers.

Evaluating host preference of this seed feeder under natural conditions is not a 
straightforward task due to the difficulty in detecting the bug and the absence of vis-
ible damage on cone surface. The only study on L. occidentalis feeding preference was 
carried on under laboratory conditions using individual mature seeds, extracted from 
cones (Lesieur et al. 2014). Having offered such seeds to adults in choice tests, Lesieur 
et al. (2014) did not find any preference among several European conifers (P. sylves-
tris, P. nigra, Abies nordmanniana subsp. bormuelleriana, Larix decidua and Picea abies) 
compared to the Nearctic Douglas-fir, Pseudotsuga menziesii var. glauca. However, al-
though quite extensive this study did not include P. pinea seeds and to our knowledge, 
no other studies tested bug preferences for this host species.

Seeds of P. pinea are large-sized and highly nutritive which can be a pull factor to 
a seed-eater like L. occidentalis. On the other hand, larger seeds also mean a thicker 
seed coat which may represent an obstacle for the piercing mouthparts of the bug. We 
hypothesized that in preference trials using seeds, the bigger individual seeds of P. pinea 
might visually lead to a host preference towards a higher reward whereas the harder 
seed coat may constitute an additional cost. Seed volume is a proxy to the seed reward 
and thickness may represent a proxy to the effort. 

Selective behaviour in the field is known to operate at sequential levels. First, in-
dividuals select a tree, then a cone and lastly a seed to feed upon (Blatt 1997). So, we 
presumed that host preference may differ regarding the plant component tested; either 
using seeds, cones, branches or trees. Furthermore, it would be relevant to compare 
results and discuss the pros and cons when using different methodologies.

In this study, our objectives were to evaluate the host preferences of L. occidentalis 
for branches, cones, and seeds of the three main pine species in the Mediterranean Ba-
sin, P. pinaster, P. halepensis and P. pinea. For this purpose, we compared cone volume,

seed weight and volume and seed thickness of the three species, and then tested 
bug preferences in choice tests.

Methods

Three separated choice experiments using different substrates, cone-bearing branches, 
fresh last year cones and mature seeds, were conducted to evaluate the preference of L. 
occidentalis adults among Pinus pinea, P. pinaster and P. halepensis. All the experiments 
were carried out under laboratory conditions. Only adults of L. occidentalis were used 
since nymphs are apterous and thus not capable of actively choosing the tree or the 
host where they will feed in natural conditions. All individuals came from a permanent 
laboratory colony with adults collected in Santarém region, Portugal during the sum-
mer of 2015. The colony was supplemented each summer with more adults from the 
same region to avoid consanguinity thus consisting of individuals with mixed ages. 
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The colony was reared at Centro de Estudos Florestais, Lisbon, Portugal in a climatic 
room under the following controlled conditions: 21 °C with 60% RH and 14:10 light/
dark cycle. Branches and cones from P. pinea were used as food source. Trials began 
by removing experimental adults from the permanent colony and marking them with 
an individually coloured and numbered label painted in the thorax. All marked adults 
were put in a cage with cone-bearing branches and seeds of the three hosts during 
one week. Individuals were then subjected to a 24-hour starvation period after which 
the trials began. Adults used to replace dead ones were removed from the permanent 
colony, marked but were immediately placed in the cages or test boxes.

Cone-bearing branches used in trials were collected in different locations for 
each of the pine species: stone pine branches were collected in Monsanto, Lisboa 
(38°43.09'N; 09°12.41'W) in a natural pure stand of adult trees; maritime pine 
branches were collected in Sobreda, Almada (38°38.06'N; 09°12.66'W) in an urban 
patchy stand; finally, branches of aleppo pine were collected in the university campus, 
Lisbon (38°72.80'N; 09°12.66'W). Cones / seeds used in preference trials were from 
branches / cones from the same locations as above with the exception of stone pine 
seeds which came from a pure, grafted stand in Santarém region, Portugal (39°6.50'N; 
08°21.91'W) and maritime pine seeds in the two-choice trail which came from Setúbal 
region, Portugal (38°34.82'N; 09°11.09'W).

Assessing the differences in size of cones and seeds among the three Mediterranean 
pine species

The volume of a sample of the cones used in the experiments was measured by dis-
placement of water in a graduated cylinder (n=6 for P. pinea and P. pinaster and n=12 
for P. halepensis).

Respecting mature seeds, all that were used in preference trials were weighted at 
the beginning and at the end of the experiments. At the end of the trials, all seeds from 
the three pine species were opened, and the volume of the kernels showing no feeding 
damage were measured by displacement of water in a graduated cylinder with a sensi-
tivity of 0.25 ml. Due to the very small size of P. pinaster and P. halepensis, these seeds 
were measured in batches of 20 seeds and then the individual volume was extrapolated. 
The thickness of the seed coat for each host species was measured on the images collect-
ed by the Scanning Electron Microscope (SEM) using Image J software. The coats of 
three seeds per host were photographed in SEM with 20 measures taken in each photo.

Branch preference trials

Choice experiments were conducted in large cages (100×50×40) cm made up of a 
wooden frame and mesh walls. Preference among the three host species, P. pinea, P. 
pinaster and P. halepensis was tested in pairs by offering two potted branches of differ-
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ent plant species per cage to ten adults. All branches used in the trials bear cones at all 
development stages (1st and 2nd year for P. pinaster and P. halepensis and 1st, 2nd and 3rd 
year for P. pinea). The number of last-year cones (2nd year for P. pinaster and P. halepensis 
and 3rd year for P. pinea) in the tested branches was the same for the pair P. pinaster - P. 
pinea (ranging from 1 to 2 cones each), but not for the pairs P. pinaster - P. halepensis 
and P. pinea - P. halepensis in which the number of P. halepensis cones varied between 2 
and 5 due to their smaller size. Young conelets (1st cones for P. pinaster and P. halepensis 
and 1st and 2nd cones for P. pinea) varied in number in all three species between 1 and 
4. The experiment was replicated three times, on 21–22 April, 28–29 April and 5–6 
May 2016. Branches for each experiment were collected at the end of the afternoon of 
the day before the start of the experiment and kept in the refrigerator until then. Ten 
adult bugs were assigned to each of the three big cages. Cage number 1 had three males 
and 7 females and cages number 2 and 3 had four males and 6 females. All adults were 
individually marked in the thorax with a colour and number. The group of insects of 
each cage remained constant in all three trials varying only the host pairs to be tested. 
Between trials all individuals were kept together in a single big cage in the laboratory 
under controlled conditions and with branches from all the three hosts. For each trial, 
the ten adults were introduced into the cages by placing them one by one, within a 
two minutes interval, at the centre of the cage, between the two potted branches. Indi-
vidual bug’s behaviour and localization was recorded after that, at 1-h intervals from 8 
a.m. until 6 p.m. for two days.

Cone preference trials

Three separate laboratory trials, with 3 to 5 days length each, were conducted from 
April to September 2017, using a video camera BRINNO TLC200 Pro. In each trial, 
two video cameras each videotaping two plastic boxes (23×20×19) cm simultaneously, 
were set. Each box contained a small branch of P. pinea, a petri dish with wet cotton 
to keep moisture and small aluminium cases filled with sand to place the cone. In 
this way, the insect was not allowed to hide underneath the cones. Similarly as in the 
branch preference trials, the bugs were individually marked with a coloured label. One 
cone of P. pinea, one of P. pinaster, two of P. halepensis and three adults of L. occidentalis 
were then added to each box. All cones were from last year of development which cor-
responds to the 3rd year in P. pinea and 2nd year in P. pinaster and P. halepensis. Experi-
ments were carried on in a room under control conditions (26 °C, 60 % RH, 16:8 
L:D) from 20–24 April, 2–6 May and 12–14 September of 2017. The videotaping 
was done using the time lapse function with one picture taken every two minutes, and 
played back at a speed of one frame per second. Videos were analysed with the program 
VLC media player 2.2.6 Umbrella for windows (https://www.videolan.org/vlc/index.
html). Both the number of times each bug started feeding on a cone (frequencies), 
and the duration of the feeding was recorded. Feeding was assumed to have occurred 
whenever stylet insertion was observed.
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Testing bug preference for seeds among the three pine species

Two laboratory trials were carried out to evaluate bug preferences for individual seeds 
of the Mediterranean pines. A two-choice test compared P. pinea and P. pinaster where-
as a three-choice test included the three species. The first trial lasted three weeks whilst 
the second one lasted four weeks. The experiments were carried out using small plastic 
boxes (20×15×10) cm with a perforated lid for gas exchange in a climatic chamber 
under controlled conditions (21 °C, 60 % RH, 16:8 L:D).

The two-choice trials were carried out at INRA Orléans, France, and the three-
choice one at Centro de Estudos Florestais Lisbon, Portugal.

In the two-choice experiments boxes containing both P. pinea and P. pinaster seeds 
(nseeds=5 and nseeds=12, respectively) were set (nbox =2). No-choice, control experiments 
were conducted using boxes with only P. pinea seeds (nseeds=10 per box; nbox=6) and 
boxes only with P. pinaster seeds (nseeds=24 per box; nbox=2). The experiments were car-
ried out in February and March of 2015 with four adults per box.

The three-choice experiment was performed during January and February of 2017. 
Twelve boxes, each with ten seeds per pine species, acted as replicates. Each box had 
three adults.

All boxes included for water supply and as a substrate for resting and laying eggs, a 
twig of P. nigra in the two-choice and of P. pinea in the three-choice trial. Previous trials 
using boxes have shown that insect mortality increases greatly when there is no fresh 
twig inside (personal observation). The use of different pine species was dependent on 
conifer availability near the laboratory where the experiments took place. In addition 
to the twig, a petri dish with wet cotton to keep moisture and foam to support the 
seeds were also added to each box. Control boxes with no bugs were present in both 
trials. The sex of the adult specimens was not considered since previous studies found 
no significant differences in the consumption of conifer seeds between sexes (Bates et 
al. 2000, 2002, Lesieur et al. 2014). Bug mortality was checked every working day, and 
dead individuals were replaced immediately, using the stock available from the perma-
nent colony. All seeds from the two-choice trial were radiographed before the trial using 
the HP Faxitron-43855 X-raying apparatus and X-ray sensitive films (Kodak ‘Industrex 
M’), following the procedures described in Roques and Skrzypczyńska (2003) but op-
timized for the seeds of the pine species tested. Seeds from the three-choice trial were 
X-rayed at the University of Lisbon, Faculty of Veterinary using the Philips Practix 300 
machine and the constants 45Kv / 25mAs-1. Only seeds showing no damage on the 
X-rays were used in the trials. Each seed was followed individually. Kernel consump-
tion was estimated by subtracting the final seed weight from the initial. During the 
trial, seeds were radiographed every week for four weeks to track the damage by L. 
occidentalis. In the end, all seeds were opened manually, and kernels were separated 
into damaged and not damaged. Damaged kernels were photographed using a camera 
Canon 1100 D and their seed coat was carefully analysed under a stereomicroscope and 
a Scanning Electron Microscope (SEM) TM3030Plus Tabletop microscope Hitachi.
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Statistical analysis

The size of the mature seeds, the thickness of the seed coat and the volume of the 
cones all had a normal distribution. The analysis was made using a one-way ANOVA, 
with three levels corresponding to the three-host species (P. pinea, P. pinaster and P. ha-
lepensis). Post-hoc pairwise comparisons were made using the Student-Newman-Keuls 
(SNK) test. In both the cone and branch preference trials we used Generalized Linear 
Models (GLM) with repeated measures (each bug was an individual with repeated 
observations). To compare frequencies among cones and branches, we used GLM with 
a Poisson distribution, log link function, and Wald Chi-Square test. In the branch 
preference trials, we performed the analysis for the overall data for each pine species 
combination, pulling the three cages, as well as per cage. Finally, we used GLM with 
normal distribution and log link function to analyse differences in the feeding duration 
time in the cone trials. Again, each bug was considered an individual with repeated 
measures. For the seed preference trials, to compare frequencies among seeds, we used 
GLM with a Poisson distribution, log link function, and Wald Chi-Square test. In 
the two-choice seed trial, we compared: i) the mean number of seeds consumed be-
tween choice and non-choice tests for each pine species; ii) the mean number of seeds 
consumed between pine species on both choice and iii) on non-choice tests. In the 
three-choice trial, we analysed the differences in the mean number of seeds consumed 
between the three pines species with boxes considered as repeated measures. We further 
compared the seed weight consumed and the percentage of kernel consumed per host 
and box in both seed trials using GLM with normal distribution and log link function. 
Boxes with no consumption were removed from the analysis.

All statistical analyses were performed using SPSS, version 24.0 (IBM Corp., Ar-
monk, New York) with a statistical significance level of 0.05.

Results

Size of cones and seeds and coatw thickness

The volume of last-year cones differed significantly among pine species (F=92.38; 
df=2; p<0.001), with the volume of P. pinea cones being two and three times larger 
than those of P. pinaster and P. halepensis, respectively. The weight of mature coated 
seeds also differed significantly among species (F=10387.92; df=2; p<0.001) as well 
as the kernel volume (F= 1526.33; df=2; p<0.001), and coat thickness (F= 4681.251; 
df=2; p<0.001: Table 1). Seed kernel was 4 times larger in P. pinea than in P. pinaster 
and 13 times larger than in P. halepensis. Seed coat thickness was more than 3 times 
greater in P. pinea than in P. pinaster and 12 times greater than in P. halepensis. The ratio 
kernel volume/coat thickness (KV:CT) that could be used as a proxy of benefit/cost for 
the bug showed a higher value in P. pinea (Table 1).
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Branch preference

No host preference was detected in either of the three host pine choice combina-
tions on the frequencies of visits per bug (P. halepensis x P. pinea: Wald Chi2=2.485, 
p=0.115; P. pinaster x P. pinea: Wald Chi2=0.005, p=0.943; P. halepensis x P. pinaster: 
Wald Chi2=0.008, p=0.927). Overall, 70% of the individuals remained on the same 
host species during the trial period (48h) with the few changes happening on the first 
day. When each cage was consider separately, a significant preference was observed for 
one branch or the other, whereas preferred host species may differ from one trial to the 
other for the same host species combination (Figure 1).

As a general trend, we observed that the ten individuals from each cage dissociated 
into one or two fix groups in the three trials (Figure 1). The record of the specific place 
in the plant where the adults were revealed that in more than 80% of the observations 
the insects were resting between the needles or on the last year cones, regardless the host.

Cone preference

We found no differences between the three trials and so results were analysed togeth-
er. The adults were observed visiting and feeding more frequently on P. pinea cones 
in comparison with cones from the other two species (visiting: Wald Chi2 =17.42; 
p<0.001; feeding: Wald Chi2 =15.31; p<0.001). Per feeding meal, the adults also 
spent more time feeding on P. pinea cones in comparison with other cones (Wald Chi2 

=12.05; p=0.002) (Table 2).

Seed preference trials

Bug preference between seeds of P. pinea and P. pinaster

For four weeks, the four individuals always ate two, out of ten, seeds of P. pinea per box, 
either if it was offered alone (non-choice tests) or mixed with P. pinaster seeds (choice 
tests) (Table 3). Conversely, when adults fed on P. pinaster alone, the number of seeds con-
sumed was on average 5.5 ± 1.7, which was higher than the P. pinaster seeds consumed in 
choice tests, 0.5 ± 0.5 (Wald Chi2=5.271, df=1, p=0.022). Considering non-choice tests 

Table1. Cone and seed average measures (± SE) of the three host species. Different letters within a col-
umn indicate significant differences between the values per host species after ANOVA tests (p-value=0.05) 
followed by SNK test.

Host species Cone volume 
(cm3) Mature seed weight (g) Kernel volume (KV) 

(mm3)
Coat thickness (CT) 

(mm) KV: CT

P. pinea 90.0 ± 7.6a 0.867 ± 0.008a 202 ± 17.0a 1.438 ± 0.030a 140.5
P. pinaster 43.0 ± 1.7b 0.062 ± 0.001b 50 ± 11.0b 0.380 ± 0.009b 131.6
P. halepensis 27.3 ± 7.7c 0.022 ± 0.000c 15 ± 1.0c 0.117 ± 0.003c 128.2
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Table 2. Bug behaviour averages (± SE) in the cone preference trials. Different letters within a column 
indicate significant differences between the values per host species after GLM tests (p-value=0.05).

Host species Visiting frequency Feeding frequency Time spent per feeding meal (minutes)
P. pinea 13.4 ± 4.2a 5.5 ± 1.2a 131.9 ± 25.9a

P. pinaster 5.1 ± 1.2b 2.0 ± 0.6b 53.2 ± 12.0b

P. halepensis 3.7 ± 1.5b 1.1 ± 0.5b 62.5 ± 13.3b

Figure 1. Branch preference trials. Bugs distribution per host in each cage and for each host pair com-
parison in the preference trials using potted branches. Numbers with asterisk on the x axis correspond to 
male bugs. The absence of bars means that individuals were never observed on the branches during the 
trial, but remained on the floor or on the walls of the cage.

alone, the number of P. pinaster seeds was significantly higher than those of P. pinea (Wald 
Chi2=4.74, df=1, p=0.029). Nevertheless, the consumption of seeds expressed on kernel 
weight consumed was higher on P. pinea than P. pinaster both on the choice test (Wald 
Chi2=6.800, df=1, p=0.009) and non-choice test (Wald Chi2=25.450, df=1, p<0.001).
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Table 3. Seed consumption in choice and non-choice trials. Average number (± SE) of consumed seeds 
per box, kernel weight consumed per box and bug and percentage of the kernel that was consumed in 
each of the seed preference trials. Different letters within a trial indicate significant differences between the 
values per host species after GLM tests (p-value=0.05).

Type of trial Host (s) Seeds 
(total)

number of seeds 
consumed kernel consumed (mg) kernel consumed 

(%)
two-choice P.pinea 5 2.0 ± 0.0 11.71± 2.53a 97.12 ± 15.01a

P. pinaster 12 0.5 ± 0.5 1.28 ± 3.58b 5.77 ± 21.23b

non-choice P. pinea 10 2.5 ± 0.7 21.03± 2.21 –
P. pinaster 24 5.5 ± 1.7 4.13 ± 2.12 –

three-choice P. pinea 10 2.7 ± 1.2 23.91 ± 1.40a 92.30 ± 10.62a

P. pinaster 10 3.0 ± 1.8 3.69 ± 1.76b 29.14 ± 10.61b

P. halepensis 10 5.3 ± 2.7 4.51 ± 1.55b 39.73 ± 12.26b

Figure 2. Seed three-choice trial. A sample of seeds consumed by L. occidentalis on the three-choice trial. 
Each row corresponds to a different host pine: (from top to bottom) P. pinea, P. pinaster and P. halepensis, 
with seeds arranged in each row from the less (left) to the more damaged (right). Photographs taken by 
Canon 1100 D. The marks on the scale correspond to 1mm. (Photos were taken by Charlene Durpoix).

Testing bug preference among seeds of P. pinea, P. pinaster, and P. halepensis

Seed consumption was observed on 8 out of the 12 boxes (Figure 2). On these boxes 
overall, there were no significant differences in the number of seeds consumed be-
tween species (Wald Chi2=0.011, df=2, p=0.995) (Table 3). The total number of seeds 
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consumed was 15, 16 and 15, respectively for P. pinea, P. pinaster, and P. halepensis. 
However, when considered the weight of the seed kernel eaten by the adults, we found 
significant differences among pine seeds (Wald Chi2=117.632, df=2, p<0.001). On 
average the bugs ate more P. pinea seed kernel than the two other species (p<0.001) 
which, in turn, had no difference between them (p=0.726). When analysing the con-
sumption in terms of the percentage of consumed kernel per host in each box and trial 
differences were obtained in both two and three-choice trial (Wald Chi2=1002.485 
df=1, p<0.001, Wald Chi2=15.625, df=2, p<0.001, respectively). The adults consumed 
a higher percentage of P. pinea kernels that the other two hosts (p<0.001 for both 
comparisons) (Table 3).

Discussion

The impact of an invasive species must be assessed at different levels from the individ-
ual to the ecosystem processes level (Parker et al. 1999). The seed feeder, L. occidentalis 
is classified as having a negative impact to the native biodiversity at the individual level 
(herbivory, predation, competition, disease transmission) and, in addition, a negative 
economic impact (Rabitsch 2008). Indeed, the presence of the bug in the Mediterra-
nean Basin is a severe threat to the Mediterranean pine nut production as very relevant 
non wood forest product (Roversi 2009, Calama et al. 2016, 2017, Mutke et al. 2017) 
by causing direct damage to cones and seeds and as putative vector of the fungus Dip-
loidia pinea (Luchi et al. 2012, Tamburini et al. 2012). Here we tested the preference of 
the bug on the three main lowland conifer species in the Mediterranean Basin region, 
P. pinea, P. pinaster and P. halepensis at three levels of selection: branch, cone, and ma-
ture seed. These three pine species significantly differ in the shape of the tree silhouette 
and also in the cone size, seed size, and seed coat thickness. Cues behind tree selection 
by cone feeders may be related to these morphology traits (Turgeon et al. 1994), but 
also to chemical factors which are indicators of the tree nutritional quality or of its level 
of chemical defence (Schultz 1988). In fact, there are two predominant hypotheses for 
the process of host selection by insects: first, that an increased abundance of insects is 
explained by increased plant vigor (Plant Vigor Hypotheses, Price 1991), or secondly, 
that it is explained by increased plant stress (Plant Stress Hypotheses, White 1969). 
Studies on how herbivores select the host plant reported responses according to the 
theory of plant vigor (Moran and Whitham 1988, Waring and Price 1988, Kimberling 
et al. 1990, Mopper and Whitham 1992, Hull-Sanders and Eubanks 2005, Mitchell 
2006), plant stress (Bjorkman et al. 1991, Rappaport and Wood 1994, Cobb et al. 
1997, Virtanen and Neuvonen 1999) or even both simultaneously (Fernandes 1992, 
Pérez-Contreras et al. 2008) depending on the insect species, its trophic sub-guild 
(e.g. herbivores that feed on growing plant parts seems more likely to attack vigorous 
plants (Price 1991, White, 1993) or even on the type of experiment (Waring and Cobb 
(1992), in a review found that on observational studies, White’s theory was prevalent 
whilst on experimental studies was the vigor hypothesis).
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Under natural conditions, L. occidentalis has been shown to select a host in a multi-
level process. At first, the bug selects a tree, then a cone and finally a seed where to feed 
upon (Blatt 1997). Regarding the selection of the tree, the bug tends to select vigorous 
trees, i.e. denser canopies and longer needles, (Farinha et al. 2018b) bearing moderate 
crops because it is usually a sign of having larger cones and therefore larger seeds (Blatt 
1997, Blatt and Borden 1999, Richardson et al. 2017).

With all that has been said in mind, we hypothesized that branch selection by this 
bug, a polyphagous insect that feeds on growing plant parts, should rely mostly on vig-
our (e.g., increased resources, higher food quality, and lack of induced defensive com-
pounds) and cone size and not so much on plant species and their chemical profiles.

In our experimental trials using potted branches with cones, the seed bug showed 
no clear preference between the three host species but rather a preference for one of the 
two branches on each trial. The plant vigour hypothesis (Price 1991) for the selection of 
the host may explain this result. The vigour of the chosen branch (e.g. nutritional state, 
morphology) and the size of the cones on the branch may have been more critical for a 
polyphagous insect like L. occidentalis than the species of the host plant. Although, we 
choose branches with similar size, with no signs of diseases and always bearing cones 
of all ages, yet differences on the number of cones and on its physiological status (e.g. 
nutritional quality, allelochemicals) might have caused differences between host spe-
cies and between trials. Furthermore, since branches came from different locations and 
trees, there could be both a tree and site effects.

Preference studies on a related species, L. phyllopus (L.), which is also polyphagous, 
have evidenced that nutritional and host quality issues (wild vs cultivated plants) are 
more determinant in host plant selection rather than plant species (Mitchell 2006). A 
study of L. occidentalis impact in a P. pinea plantation, also revealed higher bug damage 
on irrigated and fertilized trees than on control ones, showing a bug preference for high 
vigour trees (denser canopies, greater needles) (Farinha et al. 2018b).

The branch preference trial also revealed an overall trend for L. occidentalis to form 
two groups of individuals per cage, one in each plant. In general, the composition of 
the two groups remained similar in each cage in all three trials. During the time be-
tween trials, all insects (n=30, 10 from each cage) were placed together in a single cage 
but when they were replaced one by one again in the test cage they regrouped in the 
same way as in the very first trial. Furthermore, once the individuals had chosen one 
of the plants, they remained there, in 70% of the cases, throughout the experiment. 
Group dynamics and not an individual host selection is, thus, a more suitable explana-
tion for the results obtained. The gregarious behaviour of this insect has already been 
proposed by other authors (Koerber 1963, Mitchell 2006).

Preference for a host species was further tested exposing cones to adults in tri-
als using video cameras. The use of video recording can be very informative on the 
insect preference because it allows capturing the behaviour of the insect continuously. 
Moreover, the use of cameras with time lapse mode made it possible to process all data 
since it condenses several days of filming in movies of few minutes. So, by tracking the 
feeding behaviour, a clear bug preference could be observed for visiting and feeding on 
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P. pinea cones. Furthermore, the individuals spent twice more time feeding, by each 
feeding meal, on this host species than on the other two species. A higher reward per 
seed would probably keep insects feeding longer times. It has also to be noted that the 
seed coats were not yet totally hardened inside cones because we used last year cones 
collected in the spring. Under natural conditions, the larger cones of P. pinea could 
be more attractive since visual stimuli are important to this bug in the process of host 
selection (Blatt and Borden 1999, Richardson et al. 2017). The higher reward value 
may further benefit the performance of L. occidentalis, when feeding on P. pinea seeds, 
namely through a higher survival rate and faster development, as indicated by Ponce 
et al. (2017). Bernays and Minkenberg (1997) in an experimental study with seven 
polyphagous insects (four Lepidoptera and two Hemiptera) came to the conclusion 
that it is the greater resource availability rather than the nutritional enhancement or 
differences in allelochemicals among host species that resulted in a higher performance 
(survivorship, gain in mass and fecundity). We assume that in our cone preference 
experiments, the larger cones of stone pine represent a greater resource availability 
comparing to the other hosts.

In respect to seed trials, no clear preference between mature seeds of P. pinea, P. 
pinaster and P. halepensis was observed if we compare the number of seeds consumed. 
However, P. pinea kernels are much larger than the others. Furthermore, it has been 
shown that the same insect feeds several times on the same seed and that different 
insects may also feed on that same seed by sharing the feeding hole (from video re-
cording observations, data not showed) (Farinha et al. 2018a). Therefore, the mass or 
the percentage of kernel consumed is a better indicator of the real consumption by 
the individuals. When considering kernel consumption, P. pinea emerges as the most 
consumed host species in all trials. When expressed in percentage of consumed kernel 
per host species and per box, L. occidentalis consumed about 97% and 92% of P. pinea 
kernels in two-choice and three-choice tests, respectively.

Other preference study at the seed level showed that L. occidentalis appeared capa-
ble of differentiating a viable seed from one infested by chalcid, Megastigmus spermotro-
phus (Hymenoptera: Torymidae), discarding the latter (Blatt 1997). However, since all 
the seeds used in our trial were first radiographed and only the healthy ones were used, 
we hypothesize that feeding onset in a given seed might be random or visually deter-
minate. After first opening a hole on the seed, feeding activity would be concentrated 
on that seed, which in the case of P. pinea seeds would satiate longer, further requir-
ing less number of consumed seeds per bug. Also, bigger seeds may result in higher 
nutrients income in shorter periods which optimize the feeding. This result becomes 
evident when we compare P. pinea and P. pinaster kernel consumption in non-choice 
tests (over 5 times more mass consumed in boxes with P. pinea seeds) (Table 2). In 
another preference trial using mature seeds, Lesieur et al. (2014) found no difference 
between host species. Still, in that study, the size of the seeds did not differ so much 
among tested host species.

Despite the larger size of P. pinea seeds, which constitute a more significant reward, 
the seed coat implies a higher cost, being three and twelve times thicker than that of 
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P. pinaster and P. halepensis, respectively. Even so, a benefit/cost analysis pointed to P. 
pinea seeds as being more advantageous. Feeding behaviour videos show that drilling a 
hole in P. pinea seeds can take more than 8 hours to complete (unpublished data) but 
then the benefit is high and, most importantly, it is shared by the remaining insects of 
the box as other bugs use the same hole to feed. We should note that, although easy to 
replicate under laboratory conditions, host selection trials resourcing to mature seeds 
have a limited ecological significance because the seeds, enclosed within the cones, are 
not subjected to selection in natural conditions.

Conclusions

In spring or early summer, depending on the climatic conditions, this insect be-
comes active and begins to search for a site with coniferous where to feed and 
reproduce. No data can be found on the bug behaviour when leaving its winter 
shelter except for an inconclusive study by Richardson (2013) in Lodgepole pine 
seed orchards for two consecutive years. Does it return to the same place as the year 
before or disperse elsewhere? How does it select the site to colonize? Is there any 
host preference at this moment?

Among the three main pine species in the Mediterranean Basin, P. pinea, P. pinaster 
and P. halepensis, our results support evidence that the cones and seeds of P. pinea are 
highly rewarding for L. occidentalis. From a nutritional point of view, we may then 
expect that P. pinea trees and plantations may favour L. occidentalis population growth. 
Whereas in seeds and cones there was always a preference trend for P. pinea, no clear 
preference for host species was detected when we used potted branches.

It must be highlighted that the quality of the host plant rather than the species, and 
the aggregation behaviour of this bug are important factors to take into account when 
designing the methodology of future host preference studies. Furthermore, larger scale 
trials are required. The population dynamics of this insect must be a priority research 
topic. No management plan will succeed without understanding which factors influ-
ence the distribution and abundance of this pest, including the availability of, and its 
performance on, different hosts.
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Abstract
Decisions to allocate management resources should be underpinned by estimates of the impacts of bio-
logical invasions that are comparable across species and locations. For the same reason, it is important 
to assess what type of impacts are likely to occur where, and if such patterns can be generalised. In this 
paper, we aim to understand factors shaping patterns in the type and magnitude of impacts of a subset 
of alien grasses. We used the Generic Impact Scoring System (GISS) to review and quantify published 
impact records of 58 grass species that are alien to South Africa and to at least one other biogeographical 
realm. Based on the GISS scores, we investigated how impact magnitudes varied across habitats, regions 
and impact mechanisms using multiple regression. We found impact records for 48 species. Cortaderia 
selloana had the highest overall impact score, although in contrast to five other species (Glyceria maxima, 
Nassella trichotoma, Phalaris aquatica, Polypogon monspeliensis, and Sorghum halepense) it did not score 
the highest possible impact score for any specific impact mechanism. Consistent with other studies, we 
found that the most frequent environmental impact was through competition with native plant species 
(with 75% of cases). Socio-economic impacts were recorded more often and tended to be greater in 
magnitude than environmental impacts, with impacts recorded particularly often on agricultural and 
animal production (57% and 51% of cases respectively). There was variation across different regions and 
habitats in impact magnitude, but the differences were not statistically significant. In conclusion, alien 
grasses present in South Africa have caused a wide range of negative impacts across most habitats and 
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regions of the world. Reviewing impacts from around the world has provided important information for 
the management of alien grasses in South Africa, and, we believe, is an important component of manage-
ment prioritisation processes in general.

Keywords
alien grasses, environmental impact, GISS, impact assessment, impact magnitude, impact mechanism, 
socio-economic impact.

Introduction

Grasses (family Poaceae) are among the most introduced species around the world; 
they occur on every continent and in various habitat types (Linder et al. 2018, van 
Kleunen et al. 2015, Visser et al. 2016). Alien grasses are often introduced for their 
high economic value. They are the source for the most consumed staple foods in the 
world (cereal grains) (Prescott-Allen and Prescott-Allen 1990), pasturage for livestock 
in agriculture (Boval and Dixon 2012), energy through biofuels (Pimentel and Patzek 
2005), and they are used in alcoholic beverages such as beer and whisky (Solange et 
al. 2014). Alien grasses have also, however, been introduced to new areas as transport 
contaminants and stowaways. For example, a study by Whinam et al. (2005) found 
that the major source of alien grass (such as Agrostis stolonifera) introductions into sub-
Antarctic islands was the transport used for ship to shore food transfers.

Whether such introductions were accidental or deliberate, and regardless of the 
many benefits they provide, the introduction of alien grasses can result in invasions 
that cause substantial negative environmental and socio-economic impacts (Early et al. 
2016, D’Antonio and Vitousek 1992, Driscoll et al. 2014). Grasses such as Andropo-
gon gayanus have been reported to increase fire frequencies and intensity in fire-prone 
ecosystems (Rossiter-Rachor et al. 2004, Rossiter-Rachor et al. 2009, Setterfield et 
al. 2010). Arundo donax is known to change community structure, thereby causing 
habitat loss for birds and small mammals in the USA (Bell 1997). And in China, Avena 
fatua is reported to cause economic losses of US$500 million annually by invading 
agricultural land and reducing crop yields (Willenborg et al. 2005).

Less is known about how these impacts vary across different introduced ranges, 
but it has been suggested that some introduced ranges experience fewer recorded im-
pacts from alien grasses due to context-dependent factors (Hulme et al. 2013); e.g. the 
level of grass invasions might track variation in fire regimes, or might be an artifact of 
how well studied invasions are (Visser et al. 2016). Either way, impacts of alien grasses 
are most likely still increasing due to factors such as climate change and propagule 
pressure (Chuine et al. 2012, Fensham et al. 2013). We therefore need to understand 
these impacts and take precautionary measures in order to prevent or reduce them 
(Hulme 2003, 2006, Keller and Perrings 2011). Impact assessments are cost-effective 
tools used to estimate the impacts of alien species and help in the decision-making 
process during the prioritization of limited resources (Jeschke et al. 2014, Kumschick 
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et al. 2012, Kumschick and Richardson 2013). Impact assessments have also been 
used to try to identify factors that predict impacts. Studies have found that traits such 
as a high fecundity, a habitat generalist strategy, a wide native range, a large body size 
and a large clutch size are associated with high environmental impacts for mammals, 
birds, and amphibians (Kumschick et al. 2013, Measey et al. 2016), and traits such as 
height, life form and life history are associated with greater impacts for plant species 
(Pyšek et al. 2012, Rumlerová et al. 2016). However, traits have generally been much 
more successful in predicting invasion success than in predicting impact magnitude. 
Moreover, impact magnitude has been found to be independent of invasion success 
(Ricciardi and Cohen 2007).

Similar to the ‘invasive elsewhere’ strategy of predicting invasion (Gordon et al. 
2010), is the use of records of ‘impact elsewhere’ to quantify the potential impacts of 
alien species (Kumschick et al. 2015, Ricciardi 2003). This approach can be useful in 
predicting the impacts of species such as grasses with biased impact records, i.e. uneven 
research effort across their introduced ranges. This is because it allows species with 
limited information to be assessed, compared against other species, and be included in 
management strategies. Furthermore, the approach also facilitates the search for pat-
terns related to the impact mechanisms and magnitudes, which can ultimately lead to 
a more predictive understanding of invasions.

Here we assess the environmental and socio-economic impacts of selected alien 
grasses occurring in South Africa by consolidating their impact records across their 
introduced ranges (e.g. see Kumschick et al. 2015 for examples of this for alien plants 
and animals in Europe, and Measey et al. 2016 for amphibians). We do this with the 
aim of providing quantitative estimates in order to determine which alien grasses have 
the greatest impacts, and to therefore assist decision makers when prioritising which 
alien grasses to manage. Furthermore, in order to improve our understanding of the 
likely impacts, we assess which factors contribute to an increased magnitude of impact 
in alien grasses by investigating habitats impacted by the species across different re-
gions and determining the mechanisms through which impacts occur.

Methods

Species selection

There are approximately 256 alien grasses introduced into South Africa (Visser et al. 
2017). Of these, we assessed impacts for the 58 species that occur as aliens in at least 
one of the other following regions: Australia, Chile, Europe or the USA. We adopted 
this approach because: (i) there is a limited number of studies of grass impacts in 
South Africa; (ii) these regions have a relatively large literature on alien grasses; and (iii) 
the regions are assumed to be representative of different major biogeographical realms 
across the world (Visser et al. 2016).
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Literature search

We searched for relevant literature on the impacts caused by the selected alien grasses up 
to June 2016 using the Web of Science, Google Scholar, as well as biological invasion 
websites and databases such as Centre for Agriculture and Biosciences International 
(CABI) Invasive Species Compendium (www.cabi.org/isc), Invasive Species Specialist 
Group (ISSG) Global Invasive Species Database (www.iucngisd.org/gisd), Hawaiian 
Ecosystems at Risk project (HEAR) (www.hear.org), California Invasive Plant Council 
Inventory (www.cal-ipc.org). The grass species’ scientific binomial names were used as 
search terms. We used synonyms and previous species names obtained from the Inte-
grated Taxonomic Information System (ITIS) (www.itis.gov) as search terms for spe-
cies with no literature record. We then selected relevant publications from the search 
results based on the titles and abstract content.

We used primary literature when possible, otherwise, we referred to the literature’s 
reference list to acquire the cited literature, and the full reference to the cited literature 
was searched in Google Scholar. If we were still unable to access the primary literature, 
we noted this and recorded the primary literature as it is cited by the secondary source.

A total of 1300 published sources including >100 websites and databases were 
reviewed; 352 published references and 98 websites and databases were considered for 
the impact assessment (Appendix 1).

Impact scoring

Different methods have been developed to quantify the environmental and socio-eco-
nomic impacts of alien species, with recent notable schemes including the Environ-
mental Impact Classification for Alien Taxa (EICAT) (Hawkins et al. 2015) and the 
Socio-Economic Impact Classification for Alien Taxa (SEICAT) (Bacher et al. 2018). 
In this study, however, we chose to use the Generic Impact Scoring System (GISS) 
(Nentwig et al. 2016) (see Hagen and Kumschick 2018 for a comparison of the EI-
CAT, SEICAT, and GISS schemes) as the GISS has been used widely to assess impacts 
of different species, and we wanted to relate our results with other previous assess-
ments. The GISS classifies impacts into two major classes, namely (1) environmental 
and (2) socio-economic, with six impact mechanisms assigned for each impact class: 
(1.1) impacts on native plants or vegetation through mechanisms other than competi-
tion; (1.2) impacts on animals through predation, parasitism, or intoxication; (1.3) 
impacts on native species through competition; (1.4) impacts through transmission 
of diseases or parasites to native species; (1.5) impacts through hybridisation; (1.6) 
impacts on ecosystems (which includes changes in nutrient pools and fluxes, habi-
tat modifications and changes in disturbance regimes); (2.1) impacts on agricultural 
production; (2.2) animal production; (2.3) forestry production; (2.4) human health; 
(2.5) human infrastructure and administration; and (2.6) human social life (Nentwig 
et al. 2016). For each impact mechanism a six-point ranked scale is used, ranging 
from zero (no impact detectable) to five (highest impact possible at a site) (Kumschick 
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et al. 2015). The GISS contains definitions and descriptions for the impact mecha-
nisms and the impact scores within them. We assigned an impact mechanism and 
score to every recorded impact obtained according to the definitions and descriptions 
of the GISS. Scores can be summed over mechanisms to get a total score per species, 
with a maximum overall impact score of 60 (12 categories * a maximum impact score 
of 5 in each category—see details on the scoring system in Kumschick et al. 2015, 
Nentwig et al. 2016). In this study, we used the maximum impact score recorded per 
mechanism of each species for both environmental and socio-economic impacts to 
rank species (see Table 1). This method of aggregating only the maximum impacts per 
species per mechanism was used by Kumschick et al. (2015); we also adopted it in 
order to make our results comparable.

Because scores are based on published research, species that receive more research at-
tention might be expected to have higher scores (Pyšek et al. 2008). Therefore, we tested 
the relationship between the species’ overall impact scores and the number of published 
papers used per species using a Pearson correlation test (Kumschick et al. 2017). We also 
tested whether there is a correlation between the species’ overall and maximum impact 
score in any one impact mechanism using a Kendall’s tau correlation test.

Impacts across habitat types and regions

For each impact reference, we recorded the habitats where the impacts were said to occur, 
using the habitats classified according to the first level of the International Union for the 
Conservation of Nature (IUCN) Red List Habitat Classification Scheme (Version 3.1) 
(www.iucnredlist.org). In cases where the study was not in a natural habitat (e.g. green-
house or laboratory) or the habitat was not stated, we recorded the habitat as ‘not specified’.

We also noted the country where the impacts occurred for each impact recorded 
and determined whether the grass species was native or alien in that specific country. 
Impact records from the native range were excluded from further analyses. We did, 
however, retain cases where the country was not specified but the grass species was 
referred to as “alien”, “introduced”, or “non-native”. We assigned each record to one of 
eight regions based on the location of the country in which the impacts were recorded. 
We used a Kendall’s tau test to determine the correlation between the maximum im-
pact of alien grasses in South Africa and the maximum impact elsewhere.

Statistical analysis

In contrast to the approach taken above to rank species, when testing the relationship 
between impact and habitats and region, we used the raw data on impact scores (i.e. 
each impact record was considered as a separate datum). The impact scores analysed 
here are therefore ordinal variables in which the scores are ordered (but which closely 
resemble a logarithmic scale). As such, we used a cumulative link mixed-effects model 
in the R package ‘ordinal’ (Christensen 2015) to test whether habitats and regions influ-



Khensani V. Nkuna et al.  /  NeoBiota 41: 19–65 (2018)24

Table 1. Grasses alien to South Africa and one other region (Chile, Europe, Australia and the USA) 
ranked according to impacts. The numbers under environmental and socio-economic impacts are the 
respective sums of the maximum impact scores per impact mechanism of a species. Species that score a 
maximum of 5 in any one impact mechanism are highlighted in bold. NA indicates no impact found for 
that species, hence not applicable. Total impact represents the overall sum of the environmental and socio-
economic impacts. Species marked with an asterisk* have impacts recorded in South Africa. Literature 
used and detailed maximum scores per mechanism are available in the Supporting Information (Appendix 
S1 and Table S1).

Species name Environmental 
impacts

Socio-economic 
impacts Total impact

Cortaderia selloana* 7 11 18
Arundo donax* 10 7 17
Avena fatua* 10 7 17
Elymus repens* 10 7 17
Festuca arundinacea 8 9 17
Nassella trichotoma* 6 9 15
Sorghum halepense* 6 8 14
Bambusa vulgaris 8 5 13
Bromus tectorum* 7 8 13
Cortaderia jubata 7 8 13
Paspalum notatum 3 10 13
Bromus rubens* 9 3 12
Glyceria maxima* 4 8 12
Brachypodium distachyon 9 2 11
Vulpia myuros 2 9 11
Holcus lanatus 7 3 10
Hordeum murinum* 7 3 10
Paspalum dilatatum 2 8 10
Phalaris aquatica 5 5 10
Agrostis stolonifera* 6 3 9
Arrhenatherum elatius 5 4 9
Bromus rigidus 2 7 9
Dactylis glomerate 3 6 9
Hordeum jubatum 4 5 9
Poa annua* 5 4 9
Polypogon monspeliensis 2 7 9
Vulpia bromoides 5 4 9
Bromus madritensis 5 3 8
Lolium multiflorum 4 4 8
Aira caryophyllea 4 3 7
Avena barbata 6 1 7
Bromus catharticus* 6 1 7
Lolium perenne 2 5 7
Poa pratensis 5 2 7
Briza maxima 6 NA 6
Bromus diandrus NA 6 6
Digitaria sanguinalis 3 3 6
Lolium temulentum 2 4 6
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ence impact magnitude. Since we found multiple studies that assess the same impacts 
for the same species in the same region or habitat, we included species identity, as well 
as mechanism nested in impact type (environmental or socio-economic) as random fac-
tors and impact mechanism, habitat type, and region as fixed effects. We also tested a 
model in which mechanism nested within impact type was included as a fixed effect but 
found this made no difference to the results. We did not investigate interactions among 
predictors because of the limited number of observations. To determine the goodness 
of fit for the model we calculated pseudo R2 by fitting a null model with no predic-
tor variables and compared it against the full model using the ‘nagelkerke’ function 
within the R package ‘rcompanion’ (Mangiafico 2016). We tested the significance of 
fixed effects using analysis of deviance of single-term deletion models tested against the 
full model using a chi-squared distribution from the ‘drop1’ command. We used least-
squares means with P values adjusted using the Tukey method, to determine significant 
differences between the levels of each predictor (mechanism, habitat and region).

All statistical analyses were performed using R version 3.4.4 (R Core Team, 2018).

Results

Grasses ranked by impact

Of the 58 alien grasses selected for impact assessment, we found records of impact 
for 48 species, i.e. 10 species (Suppl. material 1: Table S1) were data deficient with 
no record of impact. The species with the highest overall impact score was Cortaderia 
selloana (impact magnitude = 18), followed by Arundo donax, Avena fatua, Elymus 
repens, and Festuca arundinacea (all with impacts of 17, Table 1). However, a different 
set of species scored the maximum possible impact of five on any one particular impact 
mechanism, namely, Glyceria maxima (animal production), Nassella trichotoma (ani-
mal production), Phalaris aquatica (predation or parasitism or intoxication and animal 
production), Polypogon monspeliensis (animal production), and Sorghum halepense (ag-
ricultural production) (see Suppl. material 1: Table S1).

Species name Environmental 
impacts

Socio-economic 
impacts Total impact

Paspalum urvillei 4 2 6
Pennisetum setaceum* 5 1 6
Cenchrus spinifex 2 2 4
Cynosurus echinatus 4 NA 4
Paspalum quadrifarium* 3 1 4
Avena sterilis NA 3 3
Bromus hordeaceus 3 NA 3
Oryza sativa 2 NA 2
Panicum miliaceum NA 2 2
Pennisetum villosum* 1 1 2
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We used a total of 352 published literature sources; however, the literature was highly 
skewed, ranging from one to 23 publications per species. Some literature sources report-
ed on more than one species. We found a significant positive correlation (tau = 0.48, P = 
0.006) between the overall impact scores per species and the number of publications used 
to score the impacts. However, this potentially only affects the relative rankings of species 
according to impact scores (Table 1), because for the mixed effect model analyses, we did 
not aggregate maximum records of the species and used each paper as a separate record.

Impact magnitudes across mechanisms

We found that three-quarters (36 out of 48) of alien grass species have records of causing 
environmental impacts through competition with native species, and half (24 out of 48) 
of the species have records of causing impacts on ecosystems (Figure 1). We found the 
fewest records and the lowest overall impact through the ‘plants or vegetation’ mecha-
nism, which according to the GISS includes allelopathy or the release of plant exudates 
(Nentwig et al. 2016). Most socio-economic impacts are caused through agricultural 
and animal production, with 29 and 26 cases respectively, while forestry production 
was represented by few species (Figure 1). The maximum impact possible (5), was re-
corded for impacts on animals through predation or parasitism, animal production and 
agricultural production. When comparing scores between impact types, greater impact 
magnitudes of 4 and 5 were obtained for socio-economic than environmental impacts.

The effects of impact mechanisms, impacted regions, and habitat types on im-
pact magnitude

We found that impact mechanism is the only statistically significant predictor of im-
pact magnitude (P < 0.001, Table 2). Results from the model show that alien grasses 
have a lower impact magnitude through the transmission of diseases or parasites to 
native species and greater impacts on native animals through food availability or palat-
ability and intoxication (Figure 2). There is a trend towards greater impact magnitude 
in Antarctica (Suppl. material 1: Figure S1); however, differences across regions are 
not significant (P = 0.057, Table 2). We found nine habitats impacted by alien grasses; 

Table 2. Cumulative link mixed effects model estimating the effect of habitat, region and impact mecha-
nism on overall impact magnitude of the studied alien grasses (m1). The significance of predictor variables 
was determined using single-term (predictor) deletion models tested against the full model. Models were 
run with species identity, and mechanism nested within mechanism type (environmental or socio-eco-
nomic) as random factors. AIC is the Alkaike’s Information Criterion, and P is the chi-squared p-value.

Model Df AIC P
m1 2203.4
Habitats 9 2193.8 0.49
Regions 8 2202.5 0.06
Mechanisms 11 2219.3 < 0.001
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Figure 1. Number of alien grass species per impact mechanism for each impact magnitude. On the x-axis 
are the GISS environmental and socio-economic impact mechanisms, and on the y-axis are the impact 
scores according to GISS. The size of the points represents the number of species which had the corre-
sponding maximum recorded impact score for that mechanism (out of the 48 species with impact records). 
See Suppl. material 1: Table S1 for the full details.

Figure 2. The impact magnitude of the 48 studied alien grasses across different impact mechanisms. On the 
x-axis are the least-squares means of the impact scores as derived from a cumulative link mixed effects model, 
and on the y-axis are the GISS impact mechanisms with the number of species in brackets. The points repre-
sent the impact magnitudes and the error bars represent 95% confidence intervals. Letters on the right side 
of the confidence intervals are level groupings indicating significant differences among the mechanisms (level 
groupings with the same letters are not significantly different, comparisons are Tukey adjusted).
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Figure 3. Comparison between impact magnitude of alien grasses in South Africa and elsewhere in the 
world. The values 1 to 5 on the x- and y-axis represent the GISS impact magnitudes and NA indicates 
no impact record found. The size of the points represents the frequency of species with impacts records.

however,as with "region" as a predictor of impact magnitude, habitat type was also not 
a significant predictor (P = 0.49, Table 2), and differences among habitats were not 
statistically significant (Suppl. material 2: Figure  S2). Including mechanism nested 
within impact type (environmental or socio-economic) as a random effect provided no 
improvement in model fit (Suppl. material 1: Table S2). However, we kept this nested 
random effect in the analysis because it accounts and corrects for non-independence of 
the observations and reflects the actual design of this study.

Impact of alien grasses in South Africa versus elsewhere

We found that only 16 of the 58 alien grasses had recorded impacts in South Africa, 
13 for inland and three for the offshore islands (Table 1). These impacts were mostly 
lower than elsewhere, with the exception of Nassella trichotoma and Hordeum murinum 
(Figure 3). However, there is no correlation (τ = 0.14, P = 0.28) between impacts of 
alien grasses in South Africa and those recorded elsewhere in the world.

Discussion

This study is the first environmental and socio-economic impact assessment to focus 
specifically on alien grasses. Using the GISS we were able to quantify the impacts of 
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alien grasses using information from across the globe. This study, therefore, provides a 
useful overview of the literature on evidence-based impacts of alien grasses and high-
lights potential risks to South Africa. Furthermore, it shows gaps in the available litera-
ture as some species could not be assessed due to a lack of impact studies.

We found that alien grasses generally scored higher for socio-economic than en-
vironmental impacts. Grass impact scores were particularly high for agricultural and 
animal production. This might reflect the large number of agricultural weeds that are 
grasses (Daehler 1998) or their initial introduction for agricultural purposes (Hancock 
2012). Alien grasses scored the lowest for impacts caused via transmission of diseases 
or parasites to native species, with a maximum score of 2, which represents a minor 
impact (Nentwig et al. 2016), while the frequency under this mechanism was larger. 
On the contrary, mechanisms with scarce literature, such as impacts on native animals, 
obtained higher impact scores. This could be because impacts through the transmis-
sion of disease or parasites between plant species are not readily observed in the wild, 
most of the literature under this mechanism is form small-scale laboratory studies 
which do not report impacts on the overall population.

Despite most grasses not having very high overall impact scores compared to other 
species (e.g., Kumschick et al. 2015), many alien grasses scored high across the full 
range of impact mechanisms (i.e. alien grasses can cause a wide range of environmental 
and socio-economic impacts) and so had high total impact scores. For example, Corta-
deria selloana did not have any individual mechanism score over 3 but has the highest 
overall score (Table 1) due to the many different mechanisms through which it causes 
impacts. In contrast, Polypogon monspeliensis and Phalaris aquatica scored the highest 
impact (5) in certain impact mechanisms, but their overall score is lower. This trend is 
not observed in other studies, such as the one conducted on alien aquatics by Laverty 
et al. (2015), where the species with the highest overall score also obtained an impact 
score of 5 for two different mechanisms. Grasses thus provide an interesting case to 
explore whether we should be more concerned with invasive species that cause a range 
of different types of impacts or invasive species that only cause a few types of impacts 
but with greater magnitude.

Grasses are one of the most cosmopolitan plant families in the world and are 
present in almost all terrestrial habitats. They also impact a wide range of habitats, 
as demonstrated in this study. Knowledge about which habitats are most severely 
impacted by alien grasses is essential for their management. Grasses can cause rapid 
and dramatic transformation of non-grassy habitats into grass-dominated communi-
ties. For example, Bromus rubens and B. madritensis have caused widespread trans-
formation of shrubby systems in the Mojave Desert (DeFalco et al. 2007, Jurand et 
al. 2013). With regards to regions, we found that Antarctica (sub-Antarctic islands 
mostly) on average has the highest alien grass impact scores. Grasses such as Agrostis 
stolonifera reduce moss diversity, liverwort populations, and replace the rosaceous 
dwarf shrub (Acaena magellanica) with dense grassland patches on Marion Island 
(Gremmen et al. 1998). It is not clear, however, whether this trend is due to differ-
ences in sampling effort or a greater susceptibility of sub-Antarctic islands to impacts 
than the mainland (Hagen and Kumschick 2018).
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However, neither habitat nor region were found to be significant predictors of im-
pact magnitude. This could suggest that the impacts are the same across habitats and 
regions, but the lack of signal likely also reflects the low sample sizes for most habitat 
types and some regions. Furthermore, it will be interesting to repeat this study based 
on a more representative global sample of species (the bias in this current analysis to-
wards grasses alien to South Africa was simply for applied reasons).

When we compare impacts scores of alien grasses with impact scores of studies that 
assessed other plant taxa (Kumschick et al. 2015, Rumlerová et al. 2016), our results 
also show that the competition with native plant species is the most frequent mecha-
nism through which alien grasses cause impacts. Four species from our list were previ-
ously assessed in those studies (Kumschick et al. 2015, Rumlerová et al. 2016), and our 
results were similar to them for two of the species (Arundo donax and Paspalum dilatat-
um), each with a difference of less than 5 between the overall impact scores. However, 
we obtained higher overall impacts than Kumschick et al. (2015) and Rumlerová et al. 
(2016) for the other two species (Cortaderia selloana and Hordeum jubatum), each with 
a difference of 9 and 8 respectively. These differences can be explained by the broader 
search criteria applied; for example, authors of the above-mentioned studies used key-
words such as ‘‘invas* or exot* or weed*’’ in addition to the species name, while we only 
used the species name as a search term.

Although impacts of alien grasses are poorly studied when compared to other species, 
such as birds and mammals, we were able to find impact records for more than 80% of the 
grass species selected for the assessment, which is higher than for other species, such as am-
phibians (41.3%) (Measey et al. 2016). The average number of papers (5.7) used to score 
impacts of alien grasses across the globe was also higher than the amphibians and other 
species (Kumschick et al. 2015, Measey et al. 2016). Similar to the mammals and other 
plants (Kumschick and Nentwig 2010, Kumschick et al. 2015), alien grasses were also re-
ported to cause impact across all impact mechanisms. This might be because grasses occur 
across a wide range of sectors and habitats, which allows them to exert impact across all 
mechanisms. When prioritising management of all alien species, our list can be compared 
to other assessments conducted for other species, such as birds, amphibians, mammals, and 
aquatic species (Kumschick and Nentwig 2010, Laverty et al. 2015, Measey et al. 2016, 
Nentwig et al. 2010). However, it is important to note that impact assessments of some of 
those species are based on impacts recorded only in Europe and not globally, which may 
cause a bias to the overall impact scores. More impact studies are still needed for alien grass 
species, especially when it comes to species with no impact records across all introduced 
ranges, but with taxonomic characteristics of invaders (such as Bambusa balcooa, Canavan 
et al. 2016). It will be interesting to see if the findings of Canavan et al. (2018a), that bam-
boos have similar impacts in their native and alien ranges are the same for other grasses or 
perhaps only other tall-statured grasses (Canavan et al. 2018b). However, we suspect there 
are qualitative differences between the impacts in the native and alien ranges, for the grasses 
studied here, as the impacts observed are not primarily a response to human disturbance.

Two species were scored as causing very high impacts (4 or 5) outside of South Africa, 
but only low levels of impact (1 or 2) in South Africa. For instance, Glyceria maxima obtained 
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a score of 5 because it is associated with the death of livestock through poisoning in Australia 
(Barton et al. 1983), but such impacts have not (yet) been recorded in South Africa. This 
can flag species that could potentially cause high impacts in South Africa and which should 
therefore be monitored, or preventative measures put in place to limit such impacts occur-
ring in future. In most other cases the impact elsewhere was either the same or slightly higher 
than that recorded in South Afica, except for Agrostis stolonifera, Hordeum murinum, and 
Nassella trichotoma. This included two species (Nassella trichotoma and Hordeum murinum) 
whose impacts in South Africa were one level higher than elsewhere. For example, Nassella 
trichotoma obtained a score of 5 in South Africa and 4 elsewhere (in Australia) for impacts on 
animal production by reducing livestock carrying capacity and pasture production (Klepeis 
et al. 2009). The lack of correlation between impacts found in South Africa and elsewhere 
should, however, be assessed with caution – it is indicative of a research gap. Records of im-
pacts are generally fewer in South Africa (with a maximum of five sources per species and an 
average of 1.9) and even lacking for most species. Alternatively, it could indicate that there is 
an impact debt (Rouget et al. 2016), i.e. species have not reached their full impact potential 
in South Africa (yet), as species with more information in South Africa did not show higher 
similarities in impact magnitudes to elsewhere. Finally, South Africa might be more resilient 
to grass invasions, and impacts are actually lower here (Visser et al. 2017). These hypotheses 
warrant more research and can only be disentangled once more data become available.

In summary, the lack of statistically significant differences in impact magnitudes 
across habitats and regions for alien grasses suggests that impact in this group is not 
habitat or region specific as in other groups (cf. Hulme et al. 2013, Pyšek et al. 2011). As 
such, we recommend that different habitats should be equally considered for alien grass 
impact management. While we recommend that impact scoring schemes, such as the 
one used in this study, should be incorporated in the decision-making processes for alien 
species management, we caution that extrapolations from other invaded regions indicate 
potential and not actual impacts.
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Abstract
Plant traits such as phenological development, growth rate, stress tolerance and seeds production may play 
an important role in the process of acclimatisation to new environments for introduced plants. Experi-
ments that distinguish phenotypic plasticity from ecotypic differentiation would allow an understanding 
of the role of plant traits in the invasion process. We quantified the variation in phenological and overall 
performance traits associated with the invasion process for three herbaceous species native to Spain and 
invasive to Chile (Trifolium glomeratum, Hypochaeris glabra and Leontodon saxatilis). We grew plants from 
native and exotic populations along rainfall gradients in outdoor common gardens, located in the na-
tive and the introduced ranges and measured plant survival, phenology (days to flowering), biomass and 
seed output. Days to flowering was positively correlated with precipitation of the origin population for 
T. glomeratum and the native populations of H. glabra, but this pattern was not adaptive, as it was not 
associated with an increase in performance traits of these species. Phenology may instead reflect ecotypic 
differentiation to the environmental conditions of the original populations. Comparison between ranges 
(i.e. performance in both common gardens) was only possible for L. saxatilis. This species showed little 
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variation in phenology and both native and exotic populations had higher fitness in the introduced range. 
This suggests that plasticity enhances invasiveness through increased propagule pressure in the novel en-
vironment. Our findings highlight the utility of common garden experiments in examining patterns of 
phenological and performance traits that relate to species invasiveness.

Keywords
Asteraceae, biological invasions, biomass, common garden, Hypochaeris glabra, invasiveness, Leontodon 
saxatilis, phenology, precipitation, range expansion, seed output, survival, Trifolium glomeratum

Introduction

Despite recently gaining attention and considerable resources having been invested 
into studying habitat invasibility and species invasiveness (Richardson and Pyšek 2006, 
Guo et al. 2015), understanding the role played by invasive plant traits in the process 
of acclimatisation to the novel conditions along the introduced range still remains a 
key knowledge gap in invasion biology (but see MacDougall and Turkington 2005, 
Molina-Montenegro et al. 2010, Moravcová et al. 2015). Some overall performance 
traits have been suggested to be crucial for plant invasiveness, such as plant growth 
rate, environmental tolerance, phenological development and seed production (Noble 
1989, Pyšek and Richardson 2007, van Kleunen et al. 2010, Moravcová et al. 2015). In 
this sense, it has been shown that greater plant growth and seed output account for the 
invasiveness of many alien plant species (Grotkopp and Rejmánek 2007), where spe-
cies producing a greater number of seeds increase their propagule pressure and hence, 
their chances for establishment. However, the role of plant phenology in biological in-
vasion processes and species invasiveness has often been neglected despite considerable 
differences in phenological development between native and invasive species having 
already been pointed out (Wolkovich and Cleland 2011, Godoy and Levine 2014).

Plant invasiveness often involves rapid adaptive evolution and/or genetic drift. 
Thus, invasive plants often undergo phenotypic differentiation to cope with novel 
environments through a combination of two processes, phenotypic plasticity and 
ecotypic differentiation (Maron et al. 2004, 2007, Molina-Montenegro et al. 2013). 
Phenotypic plasticity is the ability of a plant genotype to modify its physiology/mor-
phology in response to environmental conditions and has been indicated as a mecha-
nism that can mediate the establishment and dispersal in the new area (Valladares et al. 
2005, 2006, Rejmánek et al. 2005, Richards et al. 2006, Pyšek and Richardson 2007, 
Pichancourt and van Klinken 2012). However, plasticity is not necessarily adaptive 
(i.e. does not always improve fitness) and the role that it plays in invasion processes 
remains still unclear (but see Chambel et al. 2005). Ecotypic differentiation may occur 
for the invasive plant species in the introduced range through selection of the optimal 
phenotype that provides local adaptation in different geographic locations, leading to 
many genotypes adapting to particular environmental conditions and thus allowing 
increased fitness (Lande 2009, Molina-Montenegro et al. 2013, 2018a, Martín-Forés 
et al. 2017c, 2018). For example, in more humid environments, plant phenology can 
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show a delay which a priori gives plants more time to invest in biomass production and 
display more dispersal units (Pérez-Ramos et al. 2010).

It is known that these two processes can occur very quickly for annual Mediterra-
nean species (Cocks et al. 1982, Small and Lefkovich 1986, del Pozo et al. 2000) that 
have been expanded beyond their initial distribution centre. As a result, some func-
tional traits are expected to be affected and result in enhanced environmental tolerance 
and/or up-take of resources (Molina-Montenegro et al. 2018b).

Mediterranean-type ecosystems worldwide are considered as biodiversity hotspots 
and therefore targets for conservation policies (Myers et al. 2000), but despite many 
conservation efforts, the frequency and intensity of biological invasions in Mediter-
ranean ecosystems is still considerable (Arianoutsou et al. 2013, Martín-Forés et al. 
2017a). In this sense, the Mediterranean climate-type region of central Chile consti-
tutes an interesting natural lab for exploring variations in functional traits caused by 
these mechanisms. Associated with the Spanish conquest that took place in the 16th 
century, many exotic species were accidentally introduced into Chile (Martín-Forés 
et al. 2012, 2017a) and became naturalised in the Mediterranean climate region of 
central Chile.

Previous studies centred in the Mediterranean-type region of central Chile have 
shown a combination of these mechanisms for some species. For instance, for the 
invasive Asteraceae Taraxacum officinale, both plasticity and ecotypic differentiation 
for various traits were found in relation to latitudinal (Molina-Montenegro and Naya 
2012, Molina-Montenegro et al. 2013, 2018a) or altitudinal (Molina-Montenegro et 
al. 2012) gradients in Chile. Additionally, ecotypic differentiation along environmen-
tal gradients has been observed for phenological development of Medicago polymor-
pha in Chile (del Pozo et al. 2000, 2002a, 2002b). In relation to performance traits, 
two of the most common invasive species in Chile, the Asteraceae Leontodon saxatilis 
subsp. rothii and Hypochaeris glabra showed increased propagule pressure and longer 
distance dispersal for exotic populations and at the introduced range (Martín-Forés et 
al. 2017c, Martín-Forés et al. 2018).

In particular, this study focuses on three annual species that are native to Spain 
and invasive to Chile, being broadly distributed in both the native and the introduced 
ranges, far beyond the Mediterranean climate distribution (Martín-Forés et al. 2012, 
Casado et al. 2015, 2018; See Suppl. material 1: Figure S1 for detailed information). 
Here, we bring together and compare plasticity and ecotypic differentiation not only 
on performance traits but also on phenology of two representatives of the Asteraceae 
family, Leontodon saxatilis subsp. rothii and Hypochaeris glabra (Martín-Forés et al. 
2017, Martín-Forés et al. 2018) and one of the Fabaceae family, Trifolium glomeratum 
that has been selected because of its importance as a fodder plant.

Since the introduction of these three species into Chile (according to the first re-
cord, no more than 120 years ago; Castro et al. 2005), they have encountered different 
abiotic and biotic conditions in the introduced range from those of their native range 
(i.e. edaphic and climate characteristics, photoperiod, land use patterns, livestock graz-
ing) as well as community interactions such as competence, tolerance and facilitation 
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processes (Martín-Forés et al. 2015, 2016, 2017b). Accordingly, studies carried out 
in both the native and the introduced range of a species have been highlighted as of 
especial importance because they constitute the most direct test of determinants of 
invasiveness (Williams et al. 2008, van Kleunen et al. 2010). Thus, the aim of this 
study was to compare variations in phenology and performance traits associated with 
the invasion process of L. saxatilis, H. glabra and T. glomeratum into Chile. We used 
seeds from five Spanish populations and five Chilean populations collected along rain-
fall gradients in both countries and we evaluated all the populations in two common 
gardens located in Madrid, Spain and Cauquenes, Chile, that is in the native and in-
troduced range, respectively. We explored i) whether the geographic origin of the plant 
collections (hereafter populations) could explain differences in plant phenology and 
performance traits within the same common garden trial and ii) whether individuals of 
the three species responded through phenotypic plasticity to the different climatic con-
ditions existing in the two common garden trials regardless their population. The na-
tive populations of the three species have been longer exposed to local environmental 
conditions in the native range than exotic populations in the introduced one; therefore 
they have had more time to develop local adaptation through ecotypic differentiation. 
Thus, we would expect Spanish populations to present greater ecotypic differentia-
tion than Chilean ones; if so, the delay in phenology while increasing the amount of 
precipitation on the origin population would be stronger for Spanish populations. 
Likewise, if the delay in phenology turns out to be adaptive, plants will display greater 
biomass and seed output.

Methods

Study area

The study was conducted in grasslands of the Mediterranean regions of Spain and 
central Chile (typically called dehesas and espinales, respectively) used for extensive 
livestock grazing, especially sheep and cattle. These grasslands present slightly acidic 
soils and are adapted to Mediterranean-type climate, characterised by having scarce 
precipitation in summer (drought period from June to September in the Northern 
hemisphere and from December to February in the Southern hemisphere).

For the three species, we selected five Spanish native populations and five Chilean 
exotic populations representative of the rainfall gradient existing in the Mediterranean 
regions of both countries. In Chile, the five populations were located in the central re-
gion (from 32°31' to 37°00'S and 70°46' to 72°34'W), with mean annual precipitation 
ranging from 300 to 1200 mm (Table 1; Suppl. material 2: Figure S2). In Spain, the 
five populations were located in the centre-west of the Iberian Peninsula (from 38°16' 
to 39°33'N and from 5°23' to 6°20'W), with mean annual precipitation ranging from 
450 to 950 mm (Table 1; Suppl. material 2: Figure S2). The total annual precipitation 
(mm), mean annual temperature (°C) and number of months with drought period or 
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water deficit per year, an index calculated as the number of months in which monthly 
mean temperature is at least double the monthly precipitation, were determined for 
each population (Table 1). Climate variables were obtained from WorldClim (Hijmans 
et al. 2005), at a resolution of 30 arc-seconds.

Selected populations ideally contained the three species studied. Flower heads of L. 
saxatilis, H. glabra and T. glomeratum were collected from the five native (i.e. Spanish) 
and the five exotic (i.e. Chilean) populations in spring of 2010, at the end of flower-
ing periods for most plants (i.e. May-June in Spain and October-November in Chile). 
Mature flower heads were randomly collected from 50 individuals of each species at 
each population; the distance between the individuals selected within each population 
was at least 1 m from each other and they were haphazardly distributed around an area 
of approximately one hectare (for detailed information about data collection for L. 
saxatilis and H. glabra, see Martín-Forés et al. 2017c, 2018, respectively).

Common garden growing conditions

Seeds from the 50 collected flower heads were pooled together. In each range, seeds 
randomly chosen from each population were germinated in petri dishes on to filter 
paper and irrigated every two days with 5 ml of distilled water. In the case of L. saxa-
tilis and H. glabra, peripheral fruits and unbaked fruits were respectively chosen for 
subsequent planting because of their greater success in pre-germination studies (see 
Martín-Forés et al. 2017c, 2018 for detailed information). In the case of T. glomera-
tum, seeds were previously scarified by immersing them in boiling water for 5 minutes; 
afterwards, they were inoculated with Rhizobium trifolii before transplanting the seed-
lings to the common garden to ensure nodulation and nitrogen fixation.

Table 1. Geographic and climatic characteristics of the populations of Hypochaeris glabra, Trifolium 
glomeratum and Leontodon saxatilis. TMED is mean annual temperature; P is the annual precipitation and 
MWD is the number of months with drought period or water deficit per year.

Country Site Code Species collected Latitude Longitude TMED 
(ºC)

P 
(mm)

MWD

Chile Runge Ch1a T. glomeratum 33°00'25"S 70°53'45"W 14.27 303 8
Chile Catapilco Ch1b H. glabra 32°35'53"S 71°18'50"W 16.19 352 8
Chile Melipilla Ch2a H. glabra, T. glomeratum 33°49'18"S 71°18'58"W 17.00 412 8
Chile Pumanque Ch2b L. saxatilis 34°37'48"S 71°42'54"W 15.01 719 5
Chile Boldo Ch3 H. glabra, T. glomeratum, L. saxatilis 35°58'52"S 72°13'38"W 14.33 794 5
Chile Quirihue Ch4 H. glabra, T. glomeratum, L. saxatilis 36°15'20"S 72°32'58"W 13.14 972 5
Chile Yumbel Ch5 H. glabra, T. glomeratum, L. saxatilis 37°00'26"S 72°34'01"W 13.33 1168 4
Spain Castuera S1 H. glabra, T. glomeratum, L. saxatilis 38°46'20"N 5°34'48"W 16.89 468 4
Spain Fuente de Canto S2 H. glabra, T. glomeratum, L. saxatilis 38°16'33"N 6°20'22"W 15.81 572 4
Spain Madroñera S3 H. glabra, T. glomeratum, L. saxatilis 39°25'23"N 5°47'48"W 15.42 666 4
Spain Ibor S4 H. glabra, T. glomeratum, L. saxatilis 39°32'53"N 5°22'57"W 14.46 859 4
Spain Logrosán S5 H. glabra, T. glomeratum, L. saxatilis 39°21'28"N 5°25'04"W 16.17 913 3
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When the radicles of plants (F2) reached 5 mm, seedlings were transplanted into 
subplots within two common garden trials, one located at the Faculty of Agronomy 
of the Polytechnic University of Madrid, Spain (40°26'N, 3°44'W; 600 m a.s.l.; 15 °C 
mean annual temperature; 484 mm mean annual precipitation) in the native range and 
the other one located in central Chile, at the Experimental Centre of Cauquenes-INIA, 
Chile (35°58'S, 72°17'W; 140 m a.s.l.; 14.4 °C; 748 mm mean annual precipitation), in 
the introduced range. The experiments were set outdoors under semi-controlled condi-
tions where large herbivores were excluded. Planting was conducted directly in the soil 
when the rain period started, i.e. in June 2012 in Chile and October 2012 in Spain. For 
each species in the Spanish trial, 20 seedlings of each population were planted in subplots 
of 200 x 50 cm after removing surface vegetation through ploughing; however, due to 
space limitations, in the Chilean trial, only ten seedlings of each population were planted 
and the subplots size was 100 × 50 cm. In both countries, the distance between plants 
was 20 cm and the separation between neighbouring subplots was 30 cm. A complete 
randomised design was used with three replicated subplots per population. Thus, there 
was a total of 87 subplots within each site: 45 containing populations from Spain (three 
species × five populations × three replicates) and 42 containing populations from Chile 
(three species x five populations (four in the case of L. saxatilis) x three replicates). The 
total number of individuals planted in Chile was 870 and in Spain was 1740. The non-
targeted surface vegetation was continuously removed over the experimental period by 
hand to ensure plants in both common gardens experienced similar levels of competition. 
No additional treatment, such as fertilisation, occurred in any of the common gardens.

Functional traits

The experiment lasted for 180 and 250 days at the Chilean and Spanish common 
gardens, respectively. At each common garden, weekly values of precipitation and 
daily values of mean temperature were obtained from the meteorological stations that 
were located closest to the experiments (i.e. Cauquenes INIA meteorological station: 
35°57'S, 72°17'W; 164 m a.s.l. in Chile and Madrid Ciudad Universitaria meteoro-
logical station: 40°27'N, 3°43'W; 640 m a.s.l. in Spain; see graphs in Fig. 1 and the 
Suppl. material 3: Figure S3 for detailed meteorological data).

Plant survival and phenology were recorded three times a week from sowing to 
flowering and every two days from flowering to plant fructification. Plants that died 
prior to accomplishing fruit maturity were no longer employed for assessing perfor-
mance traits, while plants that accomplished maturity were considered dead after reach-
ing 75% senescence. Phenological observation included the date when each individual 
got the first floral bud and was used to calculate the days from planting to flowering.

The number of flower heads per plant was counted for every individual. Flower 
heads were collected after they had produced fruits but before the infructescence opened, 
to ensure we captured all seeds and avoided propagules spreading. The average number 
of fruits per flower head was calculated for each individual by averaging the number of 
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fruits counted over five flower heads that were collected from each plant when it reached 
around 50% senescence. The total seed output per plant was estimated by multiplying 
the average number of fruits per flower head by the number of flower heads per plant.

Once each individual had reached around 75% senescence, plants were harvested. 
Flower heads were removed and then the vegetative part was oven-dried at 60 °C for 72 
hours. Afterwards, aboveground dry biomass (hereafter biomass) was weighed.

Due to the high mortality rate of H. glabra and T. glomeratum in the Spanish trial, 
further comparisons of phenology and performance traits between ranges (common 
gardens) were only possible to assess for L. saxatilis.

Data analyses

All analyses were performed in R v 3.2.3 (R Core Team 2015). To check differences in 
survival rates associated with climatic conditions of both common gardens, the cumu-
lative survivals of the three species, expressed by their Kaplan-Meier curves, were plot-
ted taking into consideration the environmental conditions of each common garden. 
For each species, comparisons for populations of both countries of origins (Spanish 
vs. Chilean) between Kaplan-Meier curves from the time seedlings were sown were 
performed with the R package survival (Therneau 2015).

We used mixed effects models using the base stats package plus lme4 (Bates et al. 2014) 
to explore differences in phenological and performance traits of L. saxatilis, H. glabra and 

Figure 1. Kaplan-Meier survival curves for Leontodon saxatilis (a), Hypochaeris glabra (b) and Trifolium 
glomeratum (c) in trials at both the native (green line) and the introduced ranges (orange line). Daily 
medium temperature values (°C) during the experiment are shown with a continuous brown line, while 
precipitation (mm/week) is represented by blue bars for both the common garden at the introduced 
range (d) and the common garden at the native range (e).
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T. glomeratum associated with the country of origin of the populations. We considered the 
plant individual as the unit of analysis (L. saxatilis: n = 340; H. glabra: n = 186; T. glom-
eratum: n = 268). Models were fitted taking into account phenology (i.e. days to flower-
ing), plant growth (i.e. dry aboveground biomass) and estimated seed output per plant as 
response variables. We used mixed effects models with a Gaussian error distribution for the 
three response variables. Fixed effects included the country of origin (Spain and Chile) and 
the precipitation on the population (as populations were selected along a rainfall gradi-
ent) for H. glabra and T. glomeratum. In the case of L. saxatilis, we also explored whether 
phenology and performance traits of this species varied between common gardens located 
in the native and in the introduced ranges; thus not only the previous fixed factors but 
also the range where the common garden was emplaced were included. The subplot where 
populations were planted in the common garden was included as the random effect nested 
within population. All the possible models, including origin and precipitation (and range 
in the case of L. saxatilis) as predictors (as well as their interactions), were computed.

We compared the possible models differing in the structure of fixed effects fitted 
by maximum likelihood. We calculated the Akaike Information Criterion corrected 
for small sample size (AICc). We selected the best-fit models (lowest AICc presenting 
differences in their AICc lower than 2; Burnham and Anderson 2002) employing the 
AICcmodavg package (Mazerolle 2015). The parsimony principle was applied on the 
subset of best models based on AICc and the model with the lowest number of param-
eters was chosen for subsequent analyses (Cox et al. 2006). Selected models were fitted 
by Restricted Maximum Likelihood and significant values for fixed effects were calcu-
lated with a type-III ANOVA analysis with the lmerTest package (Kuznetsova 2017). 
Model validation of the best-fit model was based on visually assessing the normality of 
residuals. To test over-dispersion, we checked that the residual deviance was lower than 
the residual degrees of freedom (Zuur et al. 2009).

In order to evaluate whether a delay in phenological development could entail an 
increase in plant performance, we also performed mixed-effects models for performance 
traits (biomass and seed output) in which we entered days to flowering as predictor, pre-
cipitation as co-variable and subplot where populations were planted in the common 
garden nested within the population as random effects. These models were performed 
by splitting the plant individuals by origin (i.e. Spanish and Chilean). Marginal r coef-
ficients of these relationships as well as of the relationships between precipitation and 
phenology and performance traits were obtained per country of origin employing the 
R package MuMIn (Barton 2018). Finally, outliers that exceeded three times the inter-
quartile range were removed prior to analyses, which only occurred for 1.5% of cases.

Results

There were differences between the climatic conditions of both Mediterranean regions; 
rainfall gradient was broader and number of months with water deficit longer in Chile 
than in Spain (300–1200 mm vs. 450–950 mm and 4–8 months vs. 3–4 months, 
respectively; Table 1).
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The cumulative survivals of the three species, expressed by their Kapplan-Meier 
curves, were clearly different at both ranges, being significantly lower in the native 
range (Spanish trial) than in the introduced range (Chilean trial) (Fig. 1a–c, Suppl. 
material 4: Figure S4). In the Spanish trial, H. glabra and T. glomeratum – and, to a 
lesser extent also L. saxatilis – showed an abrupt mortality after 100 days from plant-
ing, whereas in the Chilean trial, the cumulative survival remained high (around 90%) 
until the end of the experiment. The high mortality in the native range could be related 
to the scarce precipitation during late autumn and winter (from 1 December to 22 
March; see Fig. 1d–e and Suppl. material 3: Figure S3). Due to the high mortality of 
H. glabra (84%) and T. glomeratum (94%) in the Spanish common garden, the com-
parison of phenology and performance traits between ranges (common gardens) was 
only possible for L. saxatilis.

According to the generalised linear mixed-effects models, the factors that explained 
most of the variation of phenology and performance traits for different populations 
varied amongst species (Table 2). For T. glomeratum, both origin of and precipita-
tion on the population had a significant effect on days to flowering, that being the 
phenological development was significantly longer for Spanish populations than for 
Chilean ones (days to flowering for Spanish populations: 142 ± 3; days to flowering 
for Chilean populations: 131 ± 3). The relationship between days to flowering and 
the precipitation on the population were significant, regardless of the country of ori-

Table 2. Model coefficients (and Wald-chi square) for the selection of linear models after applying the 
parsimony criterion on the subset of best models based on AICc, regarding the effects of the country of 
origin, annual precipitation on the populations (Precip) and range of the common garden on Leontodon 
saxatilis, Hypochaeris glabra and Trifolium glomeratum traits: days to flowering, biomass and estimated 
total seed output. Subplot nested within population was considered as random factor in every model. All 
were fitted to a Gaussian distribution. First factor level: Chile; second factor level: Spain.

L. saxatilis H. glabra T. glomeratum
Days to 

flowering
Biomass Seed 

Output
Days to 

flowering
Biomass Seed 

Output
Days to 

flowering
Biomass Seed 

Output

Intercept 106.50 56.45 13867.45 115.9 19.18 7522.9 116.5 8.78 5568.4
(42.20***) (218.09***) (16.35***) (2038.6***) (83.3***) (37.6***) (738.2***) (109.7***) (46.1***)

Origin -1.77 – 12518.95 8.73 10.39 6262.4 11.7 2.78 3285.1
(0.01) – (6.79**) (5.4*) (10.6**) (11.5***) (18.4***) (5.4*) (7.7**)

Precip 0.00 -0.04 -4.41 0.38 – – 0.02 – –
(0.07) (65.90***) (1.44) (0.03) – – (13.6***) – –

Range 124.91 -48.86 -11406.30 – – – – – –
(244.74***) (107.38***) (11.20***) – – – – – –

Origin*Precip 0.01 – -13.51 14.10 – – – – –
(0.18) – (5.52*) (9.2**) – – – – –

Origin*Range -75.57 – -10587.77 – – – – – –
(43.45***) – (4.85*) – – – – – –

Precip*Range -0.06 0.03 6.51 – – – – – –
(56.55***) (38.01***) (3.10) – – – – – –

Origin*Precip* 0.07 – 11.25 – – – – – –
Range (26.38***) – (3.71) – – – – – –
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gin (Spanish populations: r = 0.53; P < 0.05; Chilean populations: r = 0.28; P < 0.05; 
Fig. 2) In the case of H. glabra, the country of origin and its interaction with precipita-
tion had an effect on the days to flowering; there was a close and positive relationship 
between days to flowering and the precipitation on the population for the Spanish 
populations (r = 0.69; P < 0.05) but not for the Chilean ones (Table 2; Fig. 2). For 
T. glomeratum and H. glabra, differences in days to flowering between the most preco-
cious populations (from the driest provenances) and the latest flowering ones (from 
the wetter provenances) were up to 27 days. For L. saxatilis, the interaction between 
range and origin (model coefficient for the interaction origin(Spanish)*range(native): 
t = -6.59; p < 0.001) had a significant influence on phenology (i.e. days to flowering) 
in the native range, while the effect of precipitation on the population origin was only 
significant for Spanish populations grown in the native range (model coefficient for 
the interaction origin(Spanish)*precipitation*range(native): t = 5.14; p < 0.001; Ta-
ble 2; Fig. 2). Contrary to what was expected, no significant relationships were found 
between days to flowering and both biomass and seed output (P > 0.05) for any spe-
cies considered, indicating that a longer time for development does not involve greater 
reproductive effort.

For T. glomeratum and H. glabra, the biomass was only determined by the country of 
origin, with significantly larger plants coming from native populations (T. glomeratum: 

Figure 2. Relationships between annual precipitation on the populations and plant traits (days to flower-
ing, aboveground dry vegetative biomass and seed output per plant) for Leontodon saxatilis (a), Hypocha-
eris glabra (b) and Trifolium glomeratum (c) evaluated in common garden conditions at the introduced 
range. Significant relationships are shown by discontinuous (Chilean populations) or continuous (Spanish 
populations) lines. More detailed results about performance traits of L. saxatilis and H. glabra are available 
in Martín-Forés et al. (2017c, 2018).
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Spanish populations: 11.8 g ± 0.8 g; Chilean populations: 8.7 g ± 0.5 g; H. glabra: 
Spanish populations: 33.3 g ± 4.2 g; Chilean populations: 19.5 g ± 1.8 g; Table 2; Fig. 
2). However, for L. saxatilis, there was a negative relationship between biomass and pre-
cipitation regardless of the origin of the populations considered (Fig. 2).

Seed output displayed by T. glomeratum and H. glabra was only determined by 
the country of origin, with native populations displaying greater number of seeds (T. 
glomeratum: Spanish populations: 8978 ± 1106; Chilean populations: 5525 ± 320; H. 
glabra: Seed output: Spanish populations: 14686 ± 2142; Chilean populations: 7500 
± 1545; Table 2; Fig. 2). For L. saxatilis, there was a negative relationship between seed 
output of native populations and precipitation on the population (Fig. 2).

Common garden comparisons showed that all the studied parameters were mainly 
influenced by range. Hence, phenology was significantly shorter in the introduced 
range than in the native one; while biomass and seed output were significantly greater 
in the introduced range than in the native one (Fig. 3).

Discussion

The need to carry out comparative studies of native versus introduced populations in 
order to detect key aspects to explain the invasion success as those related with func-
tional traits of invaders has been highlighted in the scientific literature (Bossdorf et al. 
2005, Molina-Montenegro et al. 2010, 2011, Lemoine et al. 2016). In this sense, our 
study highlights the differences existing in performance traits and especially in plant 
phenology associated with the invasion process of three herbaceous plants native to 
Spain but invasive to Chile.

However, comparison between native and introduced ranges was only possible for 
L. saxatilis due to the high mortality of H. glabra and T. glomeratum in the Spanish 
common garden. The three species presented a similar survival curve in the intro-
duced range, where the weather conditions during the common garden experiment 
were milder and more benign. In this sense, the high survival rate showed by L. saxatilis 
in the native range, regardless of the extreme weather conditions during the Spanish 
common garden experiment and its resilience after a major drought event (see Fig. 1) 
could itself constitute an indicator of the plasticity of this species. However, please note 
that our results regarding phenotypic plasticity should be carefully interpreted as we 
could not account for genetic distances between mother sources and inter-population 
gene flow.

The phenology of L. saxatilis was mainly influenced by range instead of by country 
of origin of the populations; thus days to flowering showed different responses for the 
same population (either native or exotic ones) under different environmental condi-
tions (native vs. introduced range). The variation in L. saxatilis phenology between 
ranges reflects its great capacity to acclimatise to changing environmental conditions 
(Geng et al. 2007, Gratani 2014). The delay in time to flowering of both Chilean and 
Spanish populations in the native range (Spain) can be attributed to the lower temper-
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atures in autumn and spring and lower precipitation compared to the introduced range 
(Chile) (Fig. 1 and Suppl. material 3: Figure S3). It is known that higher temperatures 
(Bradley et al. 1999) and longer day length accelerates plant development in temperate 
species (Molina-Montenegro and Naya 2012) and differences in day length and night 
length become more extreme at higher latitude (Bradshaw and Holzapfel 2008). Thus, 
in Madrid (latitude 40°26'N), the day length or photoperiod is shorter in autumn and 
winter, but longer in spring and summer than in Cauquenes (latitude 35°58'S). These 
patterns in temperature and photoperiod gave rise to large differences in the length of 
the growing season observed between the native and the introduced range.

Changes in flowering phenology amongst different populations constitute an in-
dicator of ecotypic differentiation to the environmental conditions of the provenances 
where populations originated. According to our findings, populations of T. glomeratum 
and H. glabra have mainly undergone variation in their phenology to acclimatise to 
the new environmental conditions. These species exhibited clear differences in their 
phenology associated with the country of origin of the populations. In the case of T. 
glomeratum, phenological development was shorter for populations (both native and 
exotic ones) originating in drier provenances and phenology became lengthened for 
populations originating in more humid provenances (Table 2; Fig. 3). In fact, similar 
results were reported by del Pozo et al. (2000, 2002a, 2002b) in another Fabaceae, 
Medicago polymorpha. Regarding H. glabra, a similar delay was observed in phenologi-
cal development for Spanish populations originating in more humid provenances, but 
this trend was not observed for Chilean populations. The fact that exotic populations 
of T. glomeratum originating in more humid provenances showed a phenological delay 
in relation to those originating in drier provenances (although this was not shown for 
exotic populations of the two daisies) could be related with the time since introduc-
tion of the three invasive species in central Chile. The leguminous M. polymorpha and 
T. glomeratum were first recorded before 1799 and in 1897, respectively (Castro et al. 
2005), so they had been naturalised in the introduced range for several decades, possibly 
with enough time to undergo acclimatisation. Following the same criteria, H. glabra, 
a species that was first recorded in Chile in 1905 (Fuentes et al. 2013), showed differ-
ences between native and exotic populations; nevertheless, Chilean populations did 
not show ecotypic differences amongst them. In contrast, L. saxatilis was first recorded 
in Chile in 1963, therefore it has had only a short time to undergo rapid evolution 
(Buswell et al. 2011) or to develop further strategies, relying mainly in plastic responses 
in its phenology and performance traits. However, the significant interactions between 
range, country of origin and precipitation found in L. saxatilis point to ecotypic differ-
ences for Spanish populations grown in the native range, where populations from drier 
provenances have shortened their period of phenological development.

In any case, contrary to what might be expected, the delay in phenology associated 
with the precipitation on the population showed by T. glomeratum and by the native 
populations of H. glabra was not adaptive sensu stricto as it did not increase the per-
formance traits of these species. Therefore, this mechanism could allow populations to 
acclimatise to a wider environmental range (i.e. enhance their invasiveness via increas-
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Figure 3. Comparisons between trials at the native and the introduced ranges for native and exotic 
populations of Leontodon saxatilis. Graphs show mean values and standard errors of days to flowering (a), 
biomass per plant (b) and seed output per plant (c) grouped by origin of the population. Percentages of 
variation between the native trial and the invasive one are also shown. The arrow indicates the direction of 
the colonisation process, from the source to the recipient region.
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ing range expansion) but it did not increase plant growth (i.e. biomass) nor propagule 
pressure (i.e. seed output did not result in enhanced days to flowering). Similarly, the 
delay in L. saxatilis phenological development at the native range was not invested in 
producing more biomass or displaying more seed output, probably due to the lower 
precipitation at the trial located in the native range compared to the trial at the intro-
duced range. In the case of this species, no consistent patterns were found associated 
with the country of origin of the populations.

Regarding performance traits, T. glomeratum exhibited clear differences in their 
biomass and seed output displayed associated with the country of origin of the popula-
tions. Contrary to what we expected, exotic populations have not apparently under-
gone selection for traits that allowed them to outperform native populations of the 
same species; in fact, native populations displayed greater seed output when cultivated 
under common garden conditions in the introduced range (Table 2). The very same 
trend was observed for H. glabra and L. saxatilis. This can be related to the fact that 
native populations of the three species showed a much lower survival rate than exotic 
ones under the novel environmental conditions of the introduced range (see Suppl. 
material 4: Figure S4). Exotic populations of these species might have overcome greater 
hydric stress typical from the Mediterranean-type region of central Chile by evolving 
resistance mechanisms, (presumably costly) which in turn trade off against biomass 
and seed output. Performance traits for L. saxatilis were mainly influenced by range 
(see Martín-Forés et al. 2017c for further discussion); in this sense, the increase in bio-
mass and seed output displayed by L. saxatilis in the introduced range compared to the 
native one, especially highlighted for native populations, reflects the invasive ability of 
this species, which shows an enhanced propagule pressure in the introduced range and 
the capacity to spread there. Our findings support the invasion patterns of L. saxatilis 
in central Chile, as it is the most frequent exotic species in this region (Martín-Forés 
et al. 2012) and it is widely distributed due to its invasiveness (Martín-Forés et al. 
2015, 2017c). It is also an invader in other Mediterranean regions such as California 
and southern Australia (Groves et al. 2003, DiTomaso et al. 2007); thus, such a great 
plastic response might raise the potential of this species to spread in a global changing 
scenario (Guerin et al. 2014).

Their particular dispersal pathways could also influence these differences identified 
amongst species. For instance, Trifolium glomeratum has animal-dispersed fruits with 
low spreading capacity, probably needs to rely more on acclimatising to local condi-
tions and adjusting its phenological development in relation to the precipitation on 
the origin of the population. On the contrary, both H. glabra and L. saxatilis have fruit 
dimorphism (i.e. heterocarpy; Baker and O’Dowd 1982, Brändel 2007); they are not 
only animal-dispersed but also undergo long distance dispersal events by wind (Mar-
tín-Forés et al. 2017c, 2018); in this case, a plastic response in survival, phenology and 
performance traits could be the most successful mechanism in the novel environment. 
However, further detailed research would be necessary to elucidate whether different 
mechanisms operate in the acclimatisation process to a new environment depending of 
the dispersal pathway of the species.
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Conclusion

Overall, the studied invasive species have evolved in their native range for millennia, 
while in their introduced range, they have only been present for few decades or over 
the last few centuries. Once they arrived to Chile, they spread and adapted to the whole 
Chilean climatic gradient. Trifolium glomeratum and H. glabra mainly relied on ecotyp-
ic differentiation for plant phenology associated with the population origin while L. 
saxatilis mainly showed plasticity when growing in different ranges. However, changes 
in phenology were not reflected in greater biomass or seed output display but might 
rather be related to range expansion processes. Despite relying on different strategies, 
all these species have resulted as successful invaders in the Mediterranean Biome. All 
this highlights that, not only performance traits, but also phenology and plant survival 
are key traits that need to be targeted to account for species invasiveness and therefore 
to predict future invasions and control for existing ones.

Acknowledgements

We thank the Spanish Ministry of Science and Innovation for the financial support 
received to carry out this study (CGL2009-08718) and the grants REMEDINAL 
(S2013/MAE-2719 REMEDINAL3-Comunidad de Madrid) and SPONFOREST 
(BiodivERsA3-2015-58, PCIN-2016-055) and the Spanish Ministry of Education, 
Culture and Sport, because of the pre-doctoral FPU scholarship of the main author 
(AP2009-0518). We thank the State Meteorological Agency for providing meteoro-
logical data (AEMET, http://www.aemet.es/es/portada). We are especially grateful for 
the advice and suggestions provided by Greg Guerin. We would like to acknowledge 
Teresa Aravena, María Elena Díaz, Teresa Moreno Vicente, Marta Avilés, Devayana 
Valero and Ricardo Prentice for their support in phenological observations and Laura 
Sánchez-Jardón and Carlos Ovalle for field support. Likewise, we would like to ac-
knowledge the whole INIA-Cauquenes Institution, in central Chile and the team from 
the Faculty of Agronomy of the Polytechnic University of Madrid, especially Daniel 
de la Torre Llorente.

References

Arianoutsou M, Delipetrou P, Vilà M, Dimitrakopoulos PG, Celesti-Grapow L, Wardell-
Johnson G, Henderson L, Fuentes N, Ugarte-Mendes E, Rundel PW (2013) Compara-
tive patterns of plant invasions in the Mediterranean Biome. PloS ONE 8: e79174. 
https://doi.org/10.1371/journal.pone.0079174

Aronson J, Kigel J, Shmida A, Klein J (1992) Adaptive phenology of desert and Mediterranean 
populations of annual plants grown with and without water stress. Oecologia 89: 17–26. 
https://doi.org/10.1007/BF00319010



Irene Martín-Forés et al.  /  NeoBiota 41: 67–89 (2018)82

Aronson J, Kigel J, Shmida, A (1993) Reproductive allocation strategies in desert and Mediter-
ranean populations of annual plants grown with and without water stress. Oecologia 93: 
336–342. https://doi.org/10.1007/BF00317875

Aronson J, del Pozo A, Ovalle C, Avendaño J, Lavin A, Etienne M (1998) Land use changes 
and conflicts in Central Chile. In: Rundel PW, Montenegro G, Jaksic F (Eds) Landscape 
Disturbance and Biodiversity in Mediterranean Type Ecosystems. Springer, Berlin, 155–
168. https://doi.org/10.1007/978-3-662-03543-6_9

Arroyo MTK, Marticorena C, Matthei O, Cavieres LA (2000) Plant invasions in Chile: present 
patterns and future predictions. In: Mooney HA, Hobbs RJ (Eds) Invasive Species in a 
Changing World. Island, Washington, 395–421.

Baker A, O’Dowd DJ (1982) Effects of parent plant density on the production of achene 
types in the annual Hypochoeris glabra. Journal of Ecology 70: 201–215. https://doi.
org/10.2307/2259873

Barton K (2018) MuMIn: Multi-Model Inference. https://CRAN.R-project.org/package=MuMIn. 
R package version 1.40.4

Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H (2014) lme4: Line-
ar mixed-effects models using Eigen and S4. 1–6. https://cran.r-project.org/package=lme4 
[R package version 1]

Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and 
genetic differentiation between native and introduced plant populations. Oecologia 144: 
1–11. https://doi.org/10.1007/s00442-005-0070-z

Bradley NL, Leopold AC, Ross J, Huffaker W (1999) Phenological changes reflect climate 
change in Wisconsin. Proceedings of the National Academy of Science USA 96: 9701–
9704. https://doi.org/10.1073/pnas.96.17.9701

Bradshaw WE, Holzapfel CM (2008) Genetic response to rapid climate change: it’s seasonal 
timing that matters. Molecular Ecology 17: 157–166. https://doi.org/10.1111/j.1365-
294X.2007.03509.x

Brändel M (2007) Ecology of achene dimorphism in Leontodon saxatilis. Annals of Botany 
(London) 100: 1189–1197. https://doi.org/10.1093/aob/mcm214

Buswell JM, Moles AT, Hartley S (2011) Is rapid evolution common in introduced plant spe-
cies? Journal of Ecology 99: 214–224. https://doi.org/10.1111/j.1365-2745.2010.01759.x

Burnham KP, Anderson DR (2002) Model selection and multimodel inference: A practical 
information-theoretic approach (2nd edn). Springer-Verlag, New York.

Casado MA, Acosta-Gallo B, Sánchez-Jardón L, Martín-Forés I, Castro I, Ovalle C, del Pozo A, 
de Miguel JM (2015) Interactive effects of source and recipient habitats on plant invasions: 
distribution of exotic species in Chile. Diversity and Distributions 21: 609–619. https://
doi.org/10.1111/ddi.12326

Casado MA, Martín-Forés I, Castro I, de Miguel JM, Acosta-Gallo B (2018) Asymmetric flows 
and drivers of herbaceous plant invasion success among Mediterranean-climate regions. 
Scientific Reports 8:16834.

Castro SA, Figueroa JA, Muñoz-Schick M, Jaksic FM (2005) Minimum residence time, bio-
geographical origin, and life cycle as determinants of the geographical extent of natural-
ized plants in continental Chile. Diversity and Distributions 11: 183–191. https://doi.
org/10.1111/j.1366-9516.2005.00145.x



Functional attributes in biological invasions 83

Chambel MR, Climent J, Alía R, Valladares F (2005) Phenotypic plasticity: a useful framework 
for understanding adaptation in forest species. Investigaciones Agrarias: Sistemas de Recur-
sos Forestales 14: 334–344. https://doi.org/10.5424/srf/2005143-00924

Cocks PS, Craig AD, Kenyon RV (1982) Evolution of subterranean clover in South Australia. II. 
Change in genetic composition of a mixed population after 19 years’ on a commercial farm. 
Australian Journal of Agriculture Research 33: 679–695. https://doi.org/10.1071/AR9820679

Cox GM, Gibbons JM, Wood ATA, Ramsden SJ, Crout NJM (2006) Towards the systematic 
simplification of mechanistic models. Ecological Modelling 198: 240–246. https://doi.
org/10.1016/j.ecolmodel.2006.04.016

D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, 
and the global change. Annual Review of Ecology and Systematic 23: 63–87. https://doi.
org/10.1146/annurev.es.23.110192.000431

del Pozo A, Ovalle C, Aronson J, Avendaño J (2000) Developmental responses to temperature 
and photoperiod in ecotypes of Medicago polymorpha L. along an environmental gradient 
in central Chile. Annals of Botany 85: 809–814. https://doi.org/10.1006/anbo.2000.1141

del Pozo A, Ovalle C, Aronson J, Avendaño J (2002a) Ecotypic differentiation in Medica-
go polymorpha L. along an environmental gradient in central Chile. I. Phenology, bio-
mass production and reproductive patterns. Plant Ecology 159: 119–130. https://doi.
org/10.1023/A:1015506914038

del Pozo A, Ovalle C, Aronson J, Avendaño J (2002b) Ecotypic differentiation in Medicago 
polymorpha L. along an environmental gradient in central Chile. II. Winter growth as 
related to phenology and temperature regime. Plant Ecology 160: 53–59. https://doi.
org/10.1023/A:1015884930876

del Pozo A, Ovalle C, Casado MA, Acosta B, De Miguel JM (2006) Effects of grazing intensity 
in grasslands of the Espinal of central Chile. Journal of Vegetation Science 17: 791–798. 
https://doi.org/10.1111/j.1654-1103.2006.tb02502.x

DiTomaso JM, Healy EA (2007) Weeds of California and Other Western States. Vol. 3488, 
UCANR Publications. Oakland, CA.

Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adap-
tive evolution, and the role of multiple introductions. Molecular Ecology 17: 431–449. 
https://doi.org/10.1111/j.1365-294X.2007.03538.x

Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends 
in Ecology and Evolution 14: 135–139. https://doi.org/10.1016/S0169-5347(98)01554-7

Ehrman T, Cocks PS (1990) Ecogeography of annual legumes in Syria: distribution patterns. 
Journal of Applied Ecology 27: 578–591. https://doi.org/10.2307/2404303

Ehrman T, Cocks PS (1996) Reproductive patterns in annual legume species on an aridity 
gradient. Vegetatio 122: 47–59. https://doi.org/10.1007/BF00052815

Figueroa JA, Castro SA, Marquet PA, Jaksic FM (2004) Exotic plant invasions to the Mediter-
ranean region of Chile: causes, history and impacts. Revista Chilena de Historia Natural 
77: 465–483. https://doi.org/10.4067/S0716-078X2004000300006

Fox GA (1989) Consequences of flowering-time variation in a desert annual: Adaptation and 
history. Ecology 70: 1294–1306. https://doi.org/10.2307/1938189

Fox GA (1990) Drought and the evolution of flowering time in desert annuals. American Jour-
nal of Botany 77: 1508–1518. https://doi.org/10.1002/j.1537-2197.1990.tb12563.x



Irene Martín-Forés et al.  /  NeoBiota 41: 67–89 (2018)84

Funk JL (2008) Differences in plasticity between invasive and native plants from a low re-
source environment. Journal of Ecology 96: 1162–1173. https://doi.org/10.1111/j.1365-
2745.2008.01435.x

Galen C, Shore JS, Deyoe H (1991) Ecotypic divergence in alpine Polemonium viscosum: ge-
netic structure, quantitative variation and local adaptation. Evolution 45: 1218–1228.

Gea-Izquierdo G, Allen-Diaz B, Miguel AS, Canellas I (2010) How do trees affect spatio-
temporal heterogeneity of nutrient cycling in Mediterranean annual grassland? Annals of 
Forest Science 67: 112. https://doi.org/10.1051/forest/2009091

Geng YP, Pan XY, Xu CY, Zhang WJ, Li B, Chen JK, Lu BR, Song ZP (2007) Phenotypic 
plasticity rather than locally adapted ecotypes allows the invasive alligator weed to colonize 
a wide range of habitats. Biological Invasions 9: 245–256. https://doi.org/10.1007/s10530-
006-9029-1

Godoy O, Levine JM (2014) Phenology effects on invasion success: insights from coupling field 
experiments to coexistence theory. Ecology 95: 726–736. https://doi.org/10.1890/13-1157.1

Gratani L (2014) Plant phenotypic plasticity in response to environmental factors. Advances in 
Botany 2014: e208747. http://doi.org/10.1155/2014/208747

Grotkopp E, Rejmánek M (2007) High seedling relative growth rate and specific leaf area are 
traits of invasive species: phylogenetically independent contrasts of woody angiosperms. 
American Journal of Botany 94: 526–532. https://doi.org/10.3732/ajb.94.4.526

Groves RH, Hosking JR, Batianoff GN, Cooke DA, Cowie ID, Johnson RW, Keighery GJ, 
Lepschi BJ, Mitchell AA, Moerkerk M, Randall RP, Rozefelds AC, Walsh NG, Waterhouse 
BM (2003) Weed categories for natural and agricultural ecosystem management. Bureau 
of Rural Sciences, Canberra. http://doi.org/10.1155/2014/208747

Guerin G, Martín-Forés I, Biffin E, Baruch Z, Breed MF, Christmas MJ, Cross HB, Lowe AJ 
(2014) Global change community ecology beyond species-sorting: a quantitative frame-
work based on Mediterranean-biome examples. Global Ecology and Biogeography 23: 
1062–1072. https://doi.org/10.1111/geb.12184

Guo Q, Fei S, Dukes JS, Oswalt CM, III BVI, Potter KM (2015) A unified approach for 
quantifying invasibility and degree of invasion. Ecology 96: 2613–2621. https://doi.
org/10.1890/14-2172.1

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution inter-
polated climate surfaces for global land areas. International Journal of Climatology 25: 
1965–1978. https://doi.org/10.1002/joc.1276

IBM Corp (2013) IBM SPSS Statistics for Windows, Version 22.0. IBM Corp, Armonk, NY.
Imbert E (1999) The effects of achene dimorphism on the dispersal in time and space in Crepis sanc-

ta (Asteraceae). Canadian Journal of Botany 77: 508–513. https://doi.org/10.1139/b99-011
Imbert E (2002) Ecological consequences and ontogeny of seed heteromorphism. Perspectives 

in Plant Ecology 5: 13–36. https://doi.org/10.1078/1433-8319-00021
Joffre R, Rambal S, Ratte P (1999) The dehesa system of southern Spain and Portu-

gal as a natural ecosystem mimic. Agroforestry Systems 45: 57–79. https://doi.
org/10.1023/A:1006259402496

Kuznetsova A (2017) lmerTest: Tests in Linear Mixed Effects Models. https://CRAN.R-project.
org/package=lmerTest [R package version 2.0–36]



Functional attributes in biological invasions 85

Lemoine NP, Burkepile DE, Parker JP (2016) Quantifying differences between native and intro-
duced species. Trends in Ecology and Evolution 31: 372–381. https://doi.org/10.1016/j.
tree.2016.02.008

Loi A, Howieson JG, Cocks PS, Caredda S (1993) The adaptation of Medicago polymorpha to a 
range of edaphic and environmental conditions: effect of temperature on growth, and acid-
ity stress on nodulation and nod gene induction. Australia Journal of Agriculture Research 
33: 25–30. https://doi.org/10.1071/EA9930025

MacDougall AS, Turkington R (2005) Are invasive species the drivers or passengers of change 
in degraded ecosystems? Ecology 86: 42–55. https://doi.org/10.1890/04-0669

Maron JL, Vilà M, Bommarco R, Elmendorf S, Beardsley P (2004) Rapid evolution of an inva-
sive plant. Ecological Monographs 74: 261–280. https://doi.org/10.1890/03-4027

Maron JL, Elmendorf SC, Vilà M (2007) Contrasting plant physiological adaptation to climate 
in the native and introduced range of Hypericum perforatum. Evolution 61: 1912–1924. 
https://doi.org/10.1111/j.1558-5646.2007.00153.x

Martín-Forés I, Casado MA, Castro I, Ovalle C, del Pozo A, Acosta-Gallo B, Sánchez-Jardón L, 
de Miguel JM (2012) Flora of the Mediterranean basin in the Chilean espinales: evidence 
of colonization. Pastos 42: 135–158.

Martín-Forés I, Sánchez-Jardón L, Acosta-Gallo B, del Pozo A, Castro I, de Miguel JM, Ovalle 
C, Casado MA (2015) From Spain to Chile: environmental filters and success of her-
baceous species in Mediterranean-climate regions. Biological Invasions 17: 1425–1438. 
https://doi.org/10.1007/s10530-014-0805-z

Martín-Forés I, Castro I, Acosta-Gallo B, del Pozo A, Sánchez-Jardón L, de Miguel JM, Ovalle C, 
Casado MA (2016) Alien plant species coexist over time with native ones in Chilean Mediter-
ranean grasslands. Journal of Plant Ecology 9: 682–691. https://doi.org/10.1093/jpe/rtw043

Martín‐Forés I (2017a) Exotic Plant Species in the Mediterranean Biome: A Reflection of Cultural 
and Historical Relationships. In: Fuerst-Bjeliš B (Ed.) Mediterranean Identities – Environment, 
Society, Culture. InTech Open, Croatia. 180–202. https://doi.org/10.5772/intechopen.69185

Martín-Forés I, Guerin GR, Lowe AJ (2017b) Weed abundance is positively correlated with na-
tive plant diversity in grasslands of southern Australia. PLoS ONE 12: e0178681. https://
doi.org/10.1371/journal.pone.0178681

Martín-Forés I, Avilés M, Acosta-Gallo B, Breed MF, del Pozo A, de Miguel JM, Sánchez-
Jardón L, Castro I, Ovalle C, Casado MA (2017c) Ecotypic differentiation and phenotypic 
plasticity combine to enhance the invasiveness of the most widespread daisy in Chile, Leon-
todon saxatilis. Scientific Reports 7: 1546. https://doi.org/10.1038/s41598-017-01457-1

Martín-Forés I, Acosta-Gallo B, Castro I, de Miguel JM, del Pozo A, Casado MA (2018) The 
invasiveness of Hypochaeris glabra (Asteraceae): Responses in morphological and repro-
ductive traits for exotic populations. PLoS ONE 13: e0198849. https://doi.org/10.1371/
journal.pone.0198849

Mazerolle MJ (2013) AICcmodavg: Model selection and multimodel inference based on (Q)
AIC(c). http://cran.r-project.org/web/packages/AICcmodavg/index.html [R package 1.35]

McDowell SCL (2002) Photosynthetic characteristics of invasive and non-invasive species of 
Rubus (Rosaceae). American Journal of Botany 89: 1431–1438. https://doi.org/10.3732/
ajb.89.9.1431



Irene Martín-Forés et al.  /  NeoBiota 41: 67–89 (2018)86

Molina-Montenegro MA, Atala C, Gianoli E (2010) Phenotypic plasticity and performance of 
Taraxacum officinale (dandelion) in habitats of contrasting environmental heterogeneity. 
Biological Invasions 12: 2277–2284. https://doi.org/10.1007/s10530-009-9638-6

Molina-Montenegro MA, Naya DE (2012) Latitudinal patterns in phenotypic plasticity and 
fitness-related traits: assessing the climatic variability hypothesis (CVH) with an invasive 
plant species. PLoS ONE 7: e47620. https://doi.org/10.1371/journal.pone.0047620

Molina-Montenegro MA, Peñuelas J, Munné-Bosch S, Sardans J (2012) Higher plasticity in 
ecophysiological traits enhances the performance and invasion success of Taraxacum of-
ficinale (dandelion) in alpine environments. Biological Invasions 14: 21–33. https://doi.
org/10.1007/s10530-011-0055-2

Molina-Montenegro MA, Palma-Rojas C, Alcayaga-Olivares Y, Oses R, Corcuera LJ, Cavieres 
LA, Gianoli E (2013) Ecophysiological plasticity and local differentiation help explain 
the invasion success of Taraxacum officinale (dandelion) in South America. Ecography 36: 
718–730. https://doi.org/10.1111/j.1600-0587.2012.07758.x

Molina-Montenegro MA, Acuña-Rodríguez IS, Flores TSM, Hereme R, Lafón A, Atala C, 
Torres-Díaz C. (2018a) Is the success of plant invasions the result of rapid adaptive Evolu-
tion in Seed Traits? Evidence from a latitudinal rainfall gradient. Frontiers in Plant Science 
9: 208. https://doi.org/10.3389/fpls.2018.00208

Molina-Montenegro MA, del Pozo A, Gianoli E (2018b) Ecophysiological basis of the Jack-
and-Master strategy: Taraxacum officinale (dandelion) as an example of a successful invader. 
Journal of Plant Ecology 11: 147–157.

Moravcová L, Pyšek P, Jarošík V, Pergl J (2015) Getting the right traits: reproductive and dis-
persal characteristics predict the invasiveness of herbaceous plant species. PloS One 10: 
e0123634. https://doi.org/10.1371/journal.pone.0123634

Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J (2000) Biodiversity hot-
spots for conservation priorities. Nature 403: 853–858. https://doi.org/10.1038/35002501

Neuffer B (1990) Ecotype differentiation in Capsella. Vegetatio 89: 165–171. https://doi.
org/10.1007/BF00032168

Noble IR (1989) Attributes of invaders and the invading process: terrestrial and vascular 
plants in Biological invasions: a global perspective. Wiley, Chichester, 301–313.

Ovalle C, Aronson J, del Pozo A, Avendaño J (1990) The espinal: agroforestry systems of the 
Mediterranean-type climate region of Chile. Agroforestry Systems 10: 213–239. https://
doi.org/10.1007/BF00122913

Ovalle C, Del Pozo A, Casado MA, Acosta B, De Miguel JM (2006) Consequences of landscape 
heterogeneity on grassland diversity and productivity in the espinal agroforestry system of 
central Chile. Landscape Ecology 21: 585–594. https://doi.org/10.1007/s10980-005-3498-y

Pérez-Ramos IM, Ourcival JM, Limousin JM, Rambal S (2010) Mast seeding under increasing 
drought: results from a long-term data set and from a rainfall exclusion experiment. Ecol-
ogy 91: 3057–3068. https://doi.org/10.1890/09-2313.1

Piano E, Pecetti L, Carroni AM (1996) Climatic adaptation in subterranean clover popula-
tions. Euphytica 92: 39–44. https://doi.org/10.1007/BF00022826

Pichancourt JB, van Klinken RD (2012) Phenotypic plasticity influences the size, shape and 
dynamics of the geographic distribution of an invasive plant. PLoS ONE 7: e32323. htt-
ps://doi.org/10.1371/journal.pone.0032323



Functional attributes in biological invasions 87

Pineda FD, Montalvo J (1995) Dehesa systems in the western Mediterranean. In: Halladay P, 
Golmour DA (Eds) Conserving biodiversity outside protected areas. IUCN, Cambridge, 
107–122.

Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: where do we 
stand? In: Nentwig W (Ed.) Biological Invasions, Ecological Studies 193. Springer, Berlin 
and Heidelberg, 97–126. https://doi.org/10.1007/978-3-540-36920-2_7

R Core Team (2015) R: A language and environment for statistical computing. R Foundation 
for Statistical Computing, Vienna. https://www.R-project.org/

Rejmánek M, Richardson DM, Higgins SI, Pitcairn MJ, Grotkopp E (2005) Ecology of in-
vasive plants: state of the art. In: Mooney HA, Mack RN, McNeely JA, Neville LE, Schei 
PJ, Waage JK (Eds) Invasive Alien Species a New Synthesis. Island Press, Washington DC, 
104–161.

Richards CL, Bossdorf O, Muth NZ, Gurevitch J, Pigliucci M (2006) Jack of all trades, mas-
ter of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters 9: 
981–993. https://doi.org/10.1111/j.1461-0248.2006.00950.x

Richardson DM, Pyšek P (2006) Plant invasions: merging the concepts of species invasive-
ness and community invasibility. Progress in Physical Geography 30: 409–431. https://doi.
org/10.1191/0309133306pp490pr

Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ (2000) Naturaliza-
tion and invasion of alien plants: Concepts and definitions. Diversity and Distributions 6: 
93–107. https://doi.org/10.1046/j.1472-4642.2000.00083.x

Sexton JP, McKay JK, Sala A (2002) Plasticity and genetic diversity may allow saltcedar to in-
vade cold climates in North America. Ecological Applications 12: 1652–1660. https://doi.
org/10.1890/1051-0761(2002)012[1652:PAGDMA]2.0.CO;2

Simberloff D, Martin J-L, Genovesi P, Maris V, Wardle DA, Aronson J, Courchamp F, Galil 
B, García-Berthou E, Pascal M, Pyšek P, Sousa R, Tabacchi E, Vilà M (2013) Impacts of 
biological invasions: what´s what and the way forward. Trends in Ecology and Evolution 
28: 58–66. https://doi.org/10.1016/j.tree.2012.07.013

Small E, Lefkovich LP (1986) Relationships among morphology, geography and infertility in 
Medicago. Canadian Journal of Botany 11: 41–76.

Therneau T (2015) Survival: A Package for Survival Analysis in S. version 2.38. https://
CRAN.R-project.org/package=survival

Valladares F, Dobarro I, Sánchez-Gómez D, Pearcy RW (2005) Photoinhibition and drought 
in Mediterranean woody saplings: scaling effects and interactions in sun and shade pheno-
types. Journal of Experimental Botany 56: 483–494. https://doi.org/10.1093/jxb/eri037

Valladares F, Sánchez‐Gómez D, Zavala MA (2006) Quantitative estimation of phenotypic plas-
ticity: bridging the gap between the evolutionary concept and its ecological applications. 
Journal of ecology 94: 1103–1116. https://doi.org/10.1111/j.1365-2745.2006.01176.x

van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between inva-
sive and non-invasive plant species. Ecology Letters 13: 235–245. https://doi.org/10.1111/
j.1461-0248.2009.01418.x

Williams JL, Auge H, Maron JL (2008) Different gardens, different results: native and in-
troduced populations exhibit contrasting phenotypes across common gardens. Oecologia 
157: 239–248. https://doi.org/10.1007/s00442-008-1075-1



Irene Martín-Forés et al.  /  NeoBiota 41: 67–89 (2018)88

Wolkovich EM, Cleland EE (2011) The phenology of plant invasions: a community ecol-
ogy perspective. Frontiers in Ecology and the Environment 9: 287–294. https://doi.
org/10.1890/100033

Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and ex-
tensions in ecology with R. Statistics for Biology and Health. Springer-Verlag, New York, 
USA. https://doi.org/10.1007/978-0-387-87458-6

Supplementary material 1

Figure S1
Authors: Irene Martín-Forés, Miguel A. Casado, Isabel Castro, Alejandro del Pozo, 
Marco A. Molina-Montenegro, José M. de Miguel, Belén Acosta-Gallo
Data type: occurrence
Explanation note: Distribution of Leontodon saxatilis, Hypochaeris glabra and Trifolium 

glomeratum in both the native (Spain) and the introduced (Chile) ranges.
Copyright notice: This dataset is made available under the Open Database License 

(http://opendatacommons.org/licenses/odbl/1.0/). The Open Database License 
(ODbL) is a license agreement intended to allow users to freely share, modify, and 
use this Dataset while maintaining this same freedom for others, provided that the 
original source and author(s) are credited.

Link: https://doi.org/10.3897/neobiota.41.29965.suppl1

Supplementary material 2

Figure S2
Authors: Irene Martín-Forés, Miguel A. Casado, Isabel Castro, Alejandro del Pozo, 
Marco A. Molina-Montenegro, José M. de Miguel, Belén Acosta-Gallo
Data type: occurrence
Explanation note: Map of the studied areas of Mediterranean grasslands in Spain and 

Chile, including populations sampled following a rainfall gradient (see Table 1). 
The location of the common gardens is shown (x). This figure has been adapted 
from Martín-Forés et al. (2015, 2018).
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Figure S3
Authors: Irene Martín-Forés, Miguel A. Casado, Isabel Castro, Alejandro del Pozo, 
Marco A. Molina-Montenegro, José M. de Miguel, Belén Acosta-Gallo
Data type: species data
Explanation note: Daily maximum and minimum temperatures (A and B) and precipi-

tation (C, D) at Cauquenes, Chile (A, C) and Madrid, Spain (B, D). Data are from 
1 January – 31 December 2011 in Chile and 1 July 2011 – 30 June 2012 in Spain. 
The arrows indicate transplanting dates.
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Figure S4
Authors: Irene Martín-Forés, Miguel A. Casado, Isabel Castro, Alejandro del Pozo, 
Marco A. Molina-Montenegro, José M. de Miguel, Belén Acosta-Gallo
Data type: statistical data
Explanation note: Tree diagrams for Leontodon saxatilis, Hypochaeris glabra and Trifo-

lium glomeratum showing significant differences in survival curves. Each diagram 
represents the comparison of Kaplan-Meyer curves considering common garden 
range (first level: introduced vs native), country of origin (second level: Chile vs 
Spain), and populations (third level: nomenclature as in Table 1). For each popula-
tion the percentage of survival is shown and the lowercase letters indicate similar 
groups amongst populations.
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