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Abstract
Cirsium arvense is one of the worst weeds in agriculture. As herbicides are not very effective and not ac-
cepted by organic farming and special habitats, possible biocontrol agents have been investigated since 
many decades. In particular plant pathogens of C. arvense have received considerable interest and have 
been promoted as “mycoherbicides” or “bioherbicides”. A total of 10 fungi and one bacterium have been 
proposed and tested as biocontrol agents against C. arvense. A variety of experiments analysed the noxious 
influence of spores or other parts of living fungi or bacteria on plants while others used fungal or bacte-
rial products, usually toxins. Also combinations of spores with herbicides and combinations of several 
pathogens were tested. All approaches turned out to be inappropriate with regard to target plant specific-
ity, effectiveness and application possibilities. As yet, none of the tested species or substances has achieved 
marketability, despite two patents on the use of Septoria cirsii and Phomopsis cirsii. We conclude that the 
potential of pathogens for biocontrol of C. arvense has largely been overestimated.
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Introduction

Cirsium arvense (L.) Scop. (Canada thistle) is a perennial root-budding geophyte capa-
ble of sprouting from creeping roots that make it a vigorous pioneer in open, disturbed 
habitats especially on nutrient-rich deep soils (Tiley 2010). Likely to be native of Eu-
rope, Western Asia and North Africa (Kazinczi et al. 2001), it has spread worldwide 
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(Figure 1), to become one of the most noxious weeds on agricultural land (Skinner et 
al. 2000). The most severe problems are caused in cereal fields and pastures, especially 
in Europe (Guillerm and Maillet 1982, Franzini 1982, Dietl 1982, Niemeth 2001, 
Purgar and Hulona 2008, Macak et al. 2008, Privalov et al. 2008), North America 
(Alex 1966) and New Zealand (Rahman 1982). Canada thistle was introduced to 
North America probably in the 17th century from Eurasia (Moore 1975, Tiley 2010). 
There it has become an invasive weed that aggressively suppresses crops on cultivated 
land and native plants on fallow land ( Moore 1975, Stachion and Zimdahl 1980).

C. arvense reproduces sexually with seeds and vegetatively with an expanding sys-
tem of root buds. While seeds aid long distance dispersal, the clonal propagation via 
the root system is considered to be most important for the effective colonization of a 
given location. New shoots develop out of root buds and build up dense patches of 
thistle shoots over the whole growth period. The formation of 106 shoots per square 
metre supported by a root system measuring 399 m in total length was observed by 
Stach (1996). With respect to the effect of Canada thistle on agriculture it is notewor-
thy that new shoots can develop out of very short root parts if the latter bear at least 
one root bud. At the end of the growing season only the above ground green parts of 
the plants die, while the root system overwinters.

The density of shoots and the long root system suppress the growth of most other 
plants. In the case of arable crops this causes a suppression of the cultivated plants. 
Yield losses of up to 60% have been reported depending on the kind of crop and on 
the weed density. In cereal crops for example, densities of 6 to 20 Canada thistle shoots 
per square metre cause up to 30% loss in grain yield. The overall global annual losses 
have been estimated at 320 million US$ (Bailey et al. 2000).

In conventional farming, herbicides are commonly applied to control Canada 
thistle. However, herbicides can damage non-target plant species (Matarczyk et al. 
2002, Rodwell and Sheffield 2005), other trophic levels (Bunemann et al. 2006) and 
adjacent ecosystems (Hayes et al. 2002, Relyea 2005, Perez et al. 2007). Additionally, 
in the case of C. arvense herbicides mostly affect the aboveground plant parts and not 
the root system. Therefore, they need to be applied several times a year and every year 
anew, making this procedure ineffective and expensive. In New Zealand, for example, 
the annual costs for herbicides, mowing and vaccination of grazing animals wounded 
by the thistle’s spines (Gourlay 2004) amount to NZ$ 27 million just for the pastoral 
industry in two regions of New Zealand.

In organic farming, where herbicides are not accepted, several other methods 
for thistle growth control are used. Hoeing and mowing, for example, are used as 
mechanical control methods (Hurrell and Bourdot 1996, Bacher et al. 1997, Kluth 
et al. 2003, Graglia et al. 2006, Lukashyk et al. 2008). Both of them do not harm 
the thistle substantially as they do not destroy the root system. On the contrary, hoe-
ing can even support the clonal spread of thistles, because they are able to form new 
shoots out of very short root cuttings. Mowing may even have a positive effect on 
the performance of the thistle as it can reduce the competitiveness of associated plant 
species (Edwards et al. 2000).



Plant pathogens as biocontrol agents of Cirsium arvense – an overestimated approach? 3

Another possibility to curtail weeds is biological control with the help of biocon-
trol agents, usually insects, fungi, bacteria or viruses (McFadyen 1998). In the case of 
Canada thistle, useful control agents have been sought especially among competing 
plant species, herbivorous insects and fungus species. Experiments were performed 
with different competing clover species (Lukashyk et al. 2008) and grass/clover mix-
tures (Graglia et al. 2006) which, together with mowing, resulted in a reduction of C. 
arvense shoot density of up to 90%. Additionally, a strongly decreased above ground 
biomass was achieved, presumably by suppressing the regrowth of thistle shoots after 
mowing. Ang et al. (1994) showed for arable crops that increased interspecific compe-
tition from non-crop plants can reduce the abundance of C. arvense. Though Edwards 
et al. (2000) found similar results in a permanent grassland community, this technique 
has been classified as too intense and costly to be accepted among organic growers 
(Graglia et al. 2006). This technique is also not applicable in ruderal sites or habitats 
of conservational value.

Additionally, numerous studies about herbivores as potential biocontrol agents of 
C. arvense were performed. In a recent review, Cripps et al. (2011) reviewed five insect 
species that have been released in North America and New Zealand, however with-
out any indications of successful control. Neither the coleopterans Altica carduorum 
Guérin-Méneville, Lema cyanella (L.) (Chrysomelidae), Hadroplontus litura (F.) (= Ceu-
torhynchus litura), and Rhinocyllus conicus (Frölich) (Curculionidae), nor the dipteran 
Urophora cardui (L.) (Tephritidae) could be established at all locations, where they were 
released. Additionally, none of the species had a significant influence on the Canada 

Figure 1. Distribution area of Cirsium arvense. The green area represents the native area, red indicates 
the invaded area. Circles indicate major invaded island groups. For northern Africa it seems not to be 
clear if this is part of the native area or already invaded. In South America the hatched area indicates that 
the invaded area could be larger but references seem to be scarce. According to Meusel and Jäger (1992), 
Weber (2003), Tiley (2010), ISSG (2011).
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thistle populations (Cripps et al. 2011, Julien and Griffith 1999). Some other her-
bivorous beetles, like the chrysomelid Cassida rubiginosa Müller (e.g. Ang et al. 1995, 
Bacher and Schwab 2000, Clough et al. 2007) or the curculionid Larinus planus (F.) 
were accidentally introduced to North America. They became established at several lo-
cations, but also had little or no impact on Canada thistle (Julien and Griffiths 1999). 
The curculionid Cleonus piger Scop. (Watson and Keogh 1980) showed a considerable 
impact on C. arvense but has never been released as a biocontrol agent. A reason for 
this is certainly that the host range of Cleonus piger includes the artichoke and it could 
therefore not be considered as a suitable biocontrol agent (Cripps et al. 2011).

In their review Cripps et al. (2011) concluded that none of the herbivorous ar-
thropod species had a significant influence on Canada thistles. Since plant pathogens 
are often cited as second major group of biocontrol agents (e.g., Charudattan and 
Dinoor 2000), we analysed the existing studies on plant pathogens, mainly fungi and 
bacteria, as biocontrol agents to close this review gap. There are plenty of studies on 
this topic adopting a range of taxonomically diverse organisms and approaches. With 
the present paper we aim at summarizing the results of these works and at presenting 
a comprehensive review on the application of fungi and bacteria for biocontrol of 
Canada thistle, C. arvense.

Biological control is usually defined as the usage of living organisms to control 
other organisms. The current praxis, however, ranges from whole organism applica-
tions to the use of reproductive stages such as spores, parts of organisms and purified 
compounds. Such secondary metabolites may be included or excluded when defining 
biological control, see Ash (2010).The wide usage of the term “mycoherbicide” also 
plays with the obvious similarity between organisms, isolated compounds and syn-
thetic herbicides, when applied as an aerial spray. Therefore, we decided to include also 
fungal and bacterial products into this review, especially since six out of eleven biocon-
trol agents as listed below served as compound source and since they were specifically 
targeted against C. arvense.

Fungi as biocontrol agents

A total of 10 fungal species have been tested as biocontrol agents of C. arvense (Table 1). 
Some experiments tested the performance of the living fungi while others used fungal 
products, such as toxins.

Puccinia punctiformis

Most work was done on the biotrophic rust fungus Puccinia punctiformis (syn. P. ob-
tegens (Link) Tul. and C. Tul. and P. suaveolens (Pers.) Rostr.), which is considered to 
have the highest potential as a mycoherbicide (French and Lightfield 1990). The big 
advantage of P. punctiformis for a use as a biocontrol agent is its species specificity to 
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C. arvense. However, single reports of P. punctiformis on other Cirsium species and 
Asteraceae genera (Tykhonenko and Minter 2002, Berner et al. 2002) require further 
investigation. Research on P. punctiformis in biocontrol started almost 100 years ago 
when Olive (1913) studied how C. arvense became infected by the rust fungus and pro-

table 1. Pathogens of Cirsium arvense, proposed for biocontrol. For further details, compare text. Effec-
tivity is subdivided into high (ability to kill the plant) and limited (not able to kill the plant). Specificity is 
subdivided into very high (specific to one species), high (specific to a few species of one family), low (many 
species of one family), very low (many species of different families).

Systematics Pathogen Affected 
plant part Effectivity Specificity Main references

Basidiomycota Puccinia 
punctiformis

leaves, 
shoots

limited, 
local very high

Frantzen (1994), French et al. 
(1988), French and Lightfield 
(1990), Kluth et al. (2003)

Ascomycota Phomopsis 
cirsii

dead stems 
and leaves, 
roots

high high
Leth and Andreasen (1999), 
Leth and Andreasen (2000), 
Leth et al. (2008) 

Sclerotinia 
sclerotiorum

dead and 
decaying 
stems and 
leaves

limited, 
local very low Brosten and Sands (1986), 

Bourdot et al. (1993, 1995)

Alternaria 
cirsinoxia leaves limited low

Berestetskii et al. (2010), 
Green and Bailey (2000 a, b), 
Green et al. (2001a)

Phoma 
destructiva

dead and 
living plant 
material

high unclear Guske et al. (1996), Guske 
(2002), Kruess (2002)

Phoma 
exigua leaves inconsistent very low

Bithell and Steward (2001), 
Waipara ( 2003), Bilder and 
Berestetsky (2006), Scott et al. 
(1975)

Stagonospora 
cirsii leaves high, with 

restrictions low 
Gasich and Berestetskiy 
(2006), Mitina et al. (2005), 
Yuzikhin et al. (2007)

Septoria cirsii leaves high very high Leth (1985, 1990)

Phyllosticta 
cirsii

unknown, 
only 
extracted 
phytotoxins 
tested

unknown unknown Berestetskiy et al. (2005), 
Evidente et al. (2007, 2008a)

Fusarium 
spec.

seeds, 
seedlings, 
leaves, roots

inconsistent low
Bailey BA et al. (1997 b, 
2000), Bailey KL et al. (2000), 
Gronwald et al. (2004)

Bacteria
Pseudomonas 
syringae pv. 
tagetis

leaves, 
shoots high low

Bailey KL et al. (2000), 
Johnson and Wyse (1991), 
Johnson et al. (1996), 
Lukens and Durbin (1985), 
Rhodehamel and Durbin 
(1985), Tichich and Doll ( 
2006)
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duced systemically infected shoots. The importance of these observations for a possible 
control of C. arvense was recognized by Cockayne (1915) and Ferdinandsen (1923). 
Later studies were carried out attempting to stimulate spore germination (French et al. 
1988, French 1990, French and Lightfield 1990, Frantzen 1994, French et al. 1994), 
to artificially spread spores in order to obtain higher infection rates (Thomas et al. 
1994, Guske et al. 2003, Kluth et al. 2003, Demers et al. 2006, Wandeler and Bacher 
2006, Müller et al. 2011) and studying interactions between P. punctiformis and insects 
(Friedli and Bacher 2001a, Kluth et al. 2001, Kluth et al. 2002, Cripps et al 2009).

Puccinia punctiformis causes two different kinds of infections, local and systemic 
infections. While local infections cause only small lesions on thistle leaves and influ-
ence the plant’s performance only marginally (Kluth et al. 2005), systemic infections 
usually kill the infected shoots within a few months, mostly before flowering (French 
and Lightfield 1990). Most studies were unable to reach higher rates of systemic infec-
tion than 20 to 50% by artificial inoculation (e.g., Van den Ende et al. 1987, French 
et al. 1988, Frantzen 1994, Wandeler and Bacher 2006, Müller et al. 2011). This is 
considered inadequate for a successful suppression of C. arvense (Van den Ende et al. 
1987, Van Leest and Scheepens 1994).

Wandeler and Bacher (2006) observed that the weevil Ceratapion (= Apion) onopordi 
Kirby (Coleoptera: Curculionidae) acts as a vector of P. punctiformis and that C. arvense 
becomes systemically infected after spore transmission. Only females were found to cause 
systemic infection (Friedli and Bacher 2001 a, b) suggesting that egg-laying, not feeding 
on the host plant is likely to be the underlying mechanism. Unfortunately, spore transmis-
sion by female C. onopordi did not result in an adequate infection and control level, either. 
The highest infection rate reached in this semi-field study was about 42%, whereas a rate 
of more than 80% or 90% would be necessary for effective control. Moreover, Cripps et 
al. (2009) found that rust infection rates were similar in areas with or without the weevil, 
indicating that its presence does not enhance systemic rust infection.

One can conclude that P. punctiformis as a potential biocontrol agent against C. ar-
vense presently has the serious handicap that there are no suitable methods to cultivate 
this biotrophic rust fungus, to produce sufficient amounts of infectious spores, and to 
applicate spores in an effective and economic manner to obtain the necessary infection 
rate. The most difficult step in this chain of argumentation is obviously the lack of 
understanding of the process by which a systemic infection is initiated.

Sclerotinia sclerotiorum

Sclerotinia sclerotiorum (Lib.) de By. is able to attack shoots and roots and can kill Canada 
thistles (Brosten and Sands 1986). Under natural conditions this fungus leads to localised 
patches of dead thistle shoots, ranging from one to several dead shoots. The extent of the 
destruction is possibly limited by Sclerotina’s slow rate of expansion (Brosten and Sands 
1986). All studies based on artificial infection showed mortality of vegetative shoots and 
a reduction in the root biomass (Bourdot et al. 1993, 1995, Bourdot and Harvey 1996). 
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Higher infection rates were achieved with plants that were experimentally wounded before 
the treatment (Bourdot et al. 2004). The potential of S. sclerotiorum as control agent seems 
to be limited, as thistle shoots need to be re-infected in the next growing season because 
the fungus seems to be unable to hibernate in the root system of the thistle (Bourdot et al. 
2006). A further limitation is the high variability of the impact of the fungus on the host 
population, leading to a reduction ranging between 20 and 95%. This depends on site, 
fungal strains and resistence of the C. arvense clones. Additionally, S. sclerotiorum needs a 
minimum of free water like rain or dew for a successful infection. This also limits the use 
as a biocontrol agent to some climate regions where free water is available (Brosten and 
Sands 1986). The major objection against the use of S. sclerotiorum, however, is its lacking 
host specificity and occurrence on several hundreds of known host plants. Whereas its 
virulence on C. vulgare, Carduus nutans and many more wildflower species (Bourdot and 
Harvey 1996) may not pose a problem, the virulence on canola and many vegetable spe-
cies Pennycook 1989) limits its use as a biocontrol agent. As S. sclerotiorum is not virulent 
on grasses and Trifolium ssp. Hurrell and Bourdot (1993) proposed using this pathogen 
on pastures. Since S. sclerotiorum can survive for a long time in the ground (Bourdot et al. 
2000) and as its spores are spread easily, its use on pastures may cause hazards after changes 
of land use and for adjacent areas, even if a safety zone is allowed (De Jong et al. 2002)

Alternaria cirsinoxia

Another fungus widely discussed as a biocontrol agent is Alternaria cirsinoxia E.G. 
Simmons and K. Mort., firstly isolated from C. arvense in Canada in 1993 (Sim-
mons and Mortensen 1997). Though it causes severe foliar necrosis (Green and 
Bailey 2000 a, b, Green et al. 2001a) its usefulness as a biocontrol agent is limited 
by a number of shortcomings. First, the fungus is not species-specific. Green et al. 
(2001a) tested several plant species from different families. With the exception of 
leafy spurge (Euphorbia esula, Euphorbiaceae) only Asteraceae were infected, but 
among these crops like sunflower (Helianthus annuus) and safflower (Carthamus 
tinctorius) could be found. Secondly, climatic conditions must be appropriate for 
the formation of appressoria and penetration of the leaf epidermis by the pathogen 
(Green et al. 2001a). Climatic conditions are also a limiting factor for the perfor-
mance of the mycelium. The mycelium survives at temperatures around 0°C and 
can also overwinter; temperatures above 40°C kill it, thus it could only be used in 
temperate climates. The growth optimum is reached at 20 to 25 °C (Green and 
Bailey 2000 b, Green et al. 2001b). Also humidity conditions are limiting for a 
survival of the fungus, as high air humidity or even free water is necessary for the 
germination of the conidia (Green and Bailey 2000b). Alternaria cirsinoxia is pri-
marily pathogenic on older, senescing leaves of C. arvense and infected plants can 
recover by developing new, healthy leaves (Green and Bailey 2000a, Gannibal and 
Berestetsky 2008) which additionally limits the fungus’ potential as a bioherbicide 
(Green and Bailey 2000a). Berestetskii et al. (2010) identified zinniol as one of the 
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phytotoxic substances in A. cirsinoxia. However, the use of zinniol as natural herbi-
cide is apparently limited by its non-specific phytotoxic activity and its cytotoxicity.

A combined treatment of A. cirsinoxia and the herbicide glyphosate on C. arvense 
was also tested. In a controlled environment, the combination of herbicide and the 
fungus caused more severe damage to Canada thistle than glyphosate alone, but did 
not reach a sufficient level of control. Moreover, the effects of A. cirsinoxia and glypho-
sate were not consistent in repeated field trials (Green and Bailey 2001). In conclusion, 
A. cirsinoxia is not suitable for the biological control of Canada thistle due to its low 
host specificity, unspecific toxicity and limited infection power.

Phomopsis cirsii

Phomopsis cirsii Grove, a necrotrophic fungus, was found on dead stems and leaves of C. 
arvense and C. eriophorum in Great Britain (Grove 1935) and later on those of C. palustre 
in Norway (Jørstad 1965) and Denmark (Leth 1985). In 2008, Leth et al. also found 
the fungus on seeds of C. arvense. Early season symptoms are black leaf veins and small 
limited necrotic lesions on stems, dying back of young shoots and wilting of shoots. Late 
season symptoms are black necrotised peduncles and bracts, black veins and black or 
brown necrotic lesions on the mature stems, often containing yellow patches with sporu-
lating pycnidia (Leth et al. 2008). It can overwinter in dead stems and forms conidia 
that are spread by rain splash or invertebrates. The fungus can be cultivated on artificial 
substrates, and several experiments showed that it is possible to infect shoots of C. arvense 
by spreading the fungal mycelium (Leth and Andreasen 1999, Leth and Andreasen 2000, 
Leth et al. 2008). Precondition is that conidia and mycelial fragments are in contact with 
free water at least for 18 h to cause infection. This time period can be shortened to 6 h by 
the addition of alginate (Leth and Andreasen 2000). Spraying the mycelium on two-year 
old thistle shoots resulted in a 50% reduction of fresh weight of the shoots (Leth and 
Andreasen 1999). In other experiments, isolates killed 100% of the inoculated plants 
(Leth et al. 2008), indicating a different virulence of different fungal strains. Leth et al. 
(2008) suggested that it may be possible to increase the pathogen’s virulence against a 
broad range of genotypes of C. arvense by optimising the cultivation practices. It remains 
to be investigated whether this fungus is really restricted to Cirsium species and whether 
it is able to kill whole thistle clones. If this turns out to be the case, the pathogen could 
become a promising candidate for the biocontrol of Canada thistle. Some applications of 
Ph. cirsii were covered by a patent (Leth 1985), for more details see below.

Phoma species

Phoma destructiva Plowr. was first mentioned in 1915 by Jamieson as the cause of a 
fruit rot in tomatoes. Later it was also mentioned to cause leaf blight in tomato (Eb-
ben and Critchle 1972) but the host spectrum is uncertain as Guske et al. (1996) and 
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Guske (2002) claim specificity of the fungus for C. arvense. This contradiction may 
be accounted for by the presence of different varieties or special forms within Ph. de-
structiva (Aulakh et al. 1969). Guske et al. (1996) were the first to mention this fungus 
as a biocontrol option against C. arvense. Germinating conidia cause systemic infec-
tions which influence the C/N ratio negatively and therefore reduce the plant growth 
(Huber 1998), leading to chlorosis of the above-ground plant parts, a reduction in the 
number of flower heads and seeds and a reduced biomass (Kruess 2002). It is possible 
to inoculate thistle shoots (Kruess 2002) with this perthotrophic (Guske 2002) fungus. 
Perthotrophic means that the fungus lives on dead plant material, killed before by the 
fungus itself. This reduced plant quality was mentioned as a contraindication against 
a combination of the fungal pathogen with the herbivorous beetle Cassida rubiginosa. 
Infected plants were less attractive as hosts and larval performance and survival of the 
beetle were reduced, so that synergistic effects were excluded (Kruess 2002) or perhaps 
masked through decreased attractiveness of thistles to this beetle.

Better results were reached by a combination of Ph. destructiva with other plant 
pathogens. The application of a mixture of four pathogens, Ph. destructiva, Ph. hederi-
cola (Durieu and Mont.) Boerema, Ph. nebulosa (Pers.) Mont. and a Mycelium steri-
lum significantly reduced the reproduction of the plants and also affected their roots, 
shown by a loss of dry root weight of 32% (Guske et al. 2004). A combination of Ph. 
destructiva with P. punctiformis reduced the shoot density (Kluth et al. 2005) but not all 
tested combinations of pathogens enhanced the control effect. A combination of Ph. 
hedericola and P. punctiformis was less effective than Ph. hedericola alone. The single ap-
plication of Ph. hedericola or Ph. nebulosa was less harmful to thistles than the combi-
nation of both. Application of Ph. nebulosa alone caused death of all main shoots. This 
fungus is nevertheless inappropriate as a biocontrol agent, as more secondary shoots 
arose after the primary ones died (Guske et al. 2004).

Another Phoma species found on C. arvense is Ph. exigua Desm. The weak leaf spot 
pathogen (Waipara et al. 1997), preliminarily identified as Ascochyta sonchi (Mel’nik 2000) 
and later reclassified to Ph. exigua (van der Aa et al. 2000, Boerema et al. 2004), parasitizes 
more than 300 plant species and is discussed as a biocontrol agent against Taraxacum 
officinale (Stewart-Wade and Boand 2004) and Gaultheria shallon (Zhao and Shamoun 
2006). The Canada thistle was originally not identified as a host of Ph. exigua (van der 
Aa 2000, Boerema et al. 2004) but could later be confirmed as such (Bithell and Steward 
2001, Waipara 2003, Bilder and Berestetsky 2006). Inoculation experiments showed that 
an artificial infection with the fungus is possible, but with inconsistent results between 
different isolates. The disease development was much faster on detached than on attached 
leaves, but the short-term experiment described by Bithell and Stewart (2001) does not 
allow further conclusions on the progress of this infection. Scott et al. (1975) identi-
fied several phytotoxins in Ph. exigua which they recommended for biocontrol. However, 
among these phytotoxins unspecific phyto- and cytotoxic cytochalasins are common and 
cytochalasin A and B even cause potato gangrene (Scott et al. 1975). Moreover, the main 
toxin ascosonchine is not virulent (Evidente et al. 2006), so that Ph. exigua cannot be 
recommended for biocontrol (Cimmino et al. 2008).
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Stagonospora cirsii

Stagonospora cirsii Davis is a causal agent of brown foliar lesions on C. arvense. If sprayed 
on seedlings during a dew period, it can kill nearly 100 % of the treated plants. The fungus 
can also be dusted as mycelium powder onto the soil surface which led to the death of 60% 
of treated seedlings in one study. Older plants are also affected but not killed. The fungus 
is able to survive over long periods, at least in sterile soil and remains viable on organic 
substrate after a cold winter period, but an infection of the thistle roots seemed to be im-
possible (Gasich and Berestetskiy 2006), which restricts its potential as a mycoherbicide.

S. cirsii also produces phytotoxins, demonstrated by the phytotoxic activity of 
culture filtrates to leaves and roots of C. arvense (Mitina et al. 2005). Yuzikhin et al. 
(2007) isolated a new phytotoxin, a nonenolid named stagonolide, from the fungus. 
The phytotoxin was shown to be unspecific in general but more selective against 
Asteraceae including sunflower (Helianthus annuus). Other crops, such as pepper 
(Capsicum annuum), tomato (Lycopersicon esculentum), wheat (Triticum aestivum), 
pea (Pisum sativum) and radish (Raphanus sativus) were also affected and displayed 
leaf necrosis. Stagonolide was most harmful to leaves and acts as a strong inhibitor 
of root growth in seedlings of C. arvense (30% decreased root length) and other 
Asteraceae. Other isolated nonenolides, stagonolide B-F, showed no toxicity against 
C. arvense (Evidente et al. 2008 b). Later, another four nonenolides were isolated by 
Evidente and coworkers (Evidente et al. 2008 c). Three were new compounds, named 
stagonolides G, H, and I, the fourth was identified as modiolide A, known from the 
fungus Paraphaeosphaeria sp., living on the horse mussel Modiolus auriculatus (Tsuda 
et al. 2003). Stagonolide G showed no toxic activity, whereas stagonolide H was most 
toxic to C. arvense leaves, causing necrotic lesions. Also other plant species tested 
showed necrotic lesions after inoculation with stagonolide H, but were less sensitive. 
The authors concluded that this phytotoxin is highly phytotoxic and selective and 
recommend it as a potential natural herbicide. However, as the fungus is highly infec-
tious on seedlings of various plants and its extracted toxins are not specific and also 
not that selective as mentioned by the authors, we question the potential of S. cirsii 
as a biocontrol agent of C. arvense.

Septoria cirsii

Septoria cirsii Niessl causes leaf spot on Canada thistle. Because of its host specificity 
and effective control of Canada thistle in the field, it had been proposed as a biocon-
trol agent (Leth 1985). Cultures of S. cirsii produce copious amounts of a phytotoxin 
which was identified as beta-nitropropionic acid. The toxin inhibits seed germination, 
root elongation and causes chlorosis and necrosis of the leaves of Canada thistle (Her-
shenhorn et al. 1993). S. cirsii is considered to be specific to the genus Cirsium, though 
infections were also found on artichoke (Cynara scolymus), another Asteraceae. Accord-
ing to susceptibility tests, no signs of infection were found in plants outside the tribe 
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Cardueae of Asteraceae (Leth 1985). Active components of the fungus were suggested 
as a mycoherbicide and their application seemed to be rather promising.

The application of Septoria cirsii and Phomopsis cirsii as mycoherbicide had been 
covered by the patent of Leth (1985, 1990). This patent looked interesting but so far 
never reached the market. At that time, Leth worked for Novo Industri A/S, Denmark. 
In the 1990’s, Novo Industri sold its plant protection division to Abbott including 
most of the patent rights, but not the Phomopsis patent. However, around 1999 Novo 
Industri abandoned the case due to lack of interest and eventually, all patents on bioher-
bicides were abandoned. If no other party showed interest in the meantime, the patents 
would have expired in 2004-2005 (personal communication Bo Hammer Jensen).

Phyllosticta cirsii

The fungus Phyllosticta cirsii Desm. has been evaluated as another possible biocon-
trol agent of Canada thistle (Berestetskiy et al. 2005). Since the genus Phyllosticta 
is known to produce bioactive metabolites, studies concentrated on the isolation 
of different phytotoxins. Evidente et al. (2007) identified the four phyllostictines 
A to D, and later isolated phyllostoxin and phyllostin as further compounds (Evi-
dente et al. 2008 a), with phyllostoxin being highly phytotoxic and phyllostin 
not being toxic. Phyllostoxin was proposed as a potential natural herbicide but 
its toxicity against other plant species was not tested and thus its specificity is 
unknown. Evidente et al. (2008 a) also investigated potential side-effects of this 
substance and concluded that antimicrobial or zootoxic activities were lacking. 
However, these results base on only limited tests with three bacteria species, one 
fungus species and one crustacean species and cannot be generalised. Until further 
data become available phyllostoxin or P. cirsii itself cannot be regarded as suitable 
biocontrol agents of Canada thistle.

Fusarium species

The genus Fusarium includes many species that are pathogenic to C. arvense, for example F. 
equiseti (Corda) Sacc. (Gasich and Berestetskiy 2007). Species that occur on seeds can cause 
the death of the seedlings, e.g. F. solani (Mart.) Sacc. and F. oxysporum E.F. Sm. and Swingle 
(Fischl et al. 2004). Isolates of different Fusarium species reduced the emergence of new 
shoots by 45-70% and shortened root growth by 25-52% when applied as a suspension on 
the surface of root cuts (Bailey et al. 2000). Nep 1, an extracellular protein produced by F. 
oxysporum f. sp. erythroxyli (Bailey 1995, Bailey et al. 1997 a), can cause necrosis of leaves of 
dicotyledonous plants after foliar application (Bailey et al. 1997b, 2000a, 2000b, Jennings 
et al. 2000). Gronwald et al. (2004) showed rapid desiccation and necrosis of leaves. The 
greatest effect was observed in recent, fully expanded leaves, with 60 to 80% of the leaves 
being necrotic after a few hours of foliar application. Two weeks after application the dry 
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weight of the shoots was reduced by 30 to 41%. Similar results were obtained by a foliar 
application of Nep 1 in combination with the bacterium Pseudomonas syringae pv. tagetis. 
However, as neither the Fusarium spp. nor the extracted protein Nep1 are species specific, 
they cannot be regarded as biocontrol agents.

Bacteria as biocontrol agents

The bacterium Pseudomonas syringae pv. tagetis (Pst), first found on Tagetes erecta (Hellmers 
1955), is able to cause leaf spot and apical chlorosis on a number of Asteraceae, including 
C. arvense (Johnson and Wyse 1991, Johnson et al. 1996, Rhodehamel and Durbin 1985, 
Styer and Durbin 1982). The apical chlorosis is due to the production of the unspecific 
compound tagetitoxin (Lukens and Durbin 1985, Durbin 1990). This toxin causes de-
creased vigour, inhibition of flowering and increased winter mortality (Johnson et al. 1996) 
and it led to study Pst as a potential biological weed control agent. Bacteria have many 
advantages compared to fungi: they grow very fast in liquid culture, can be stored frozen 
or dried and are suited for genetic manipulation and selection (Johnson et al. 1996). Nev-
ertheless, they were ignored for a long time as possible biocontrol agents mainly because 
of their inability to penetrate intact plants (Templeton 1982). Field studies with a spray 
application of Pst and a surfactant resulted in 100% disease incidence and greater severity 
of disease symptoms than observed in natural infections. This led to a mortality of 57% of 
the plants meaning a significant reduction of the thistle population (Johnson et al. 1996). 
Another field study by Hoeft et al. (2001) showed similar results.

Application of Pst resulted in reduced survival of C. arvense, less height growth 
and seed production. Less seed production leads to a reduced soil seed bank and less 
regrowth of the thistle. Gronwald et al. (2002) tested different application methods 
and effects of repeated applications. The authors found apical chlorosis in 67% of the 
plants, resulting in a 31% reduction of plant height; they counted 81% fewer flower 
heads and a survival rate reduced by 20% after two applications. Tichich and Doll 
(2006) also found repeated applications to be more effective than a single one, as a 
single application causes chlorosis but no loss of dry weight (Bailey 2000). In a growth 
chamber experiment with foliar application of Pst, Gronwald et al. (2002) showed 
a loss of dry weight of 52% and a loss of chlorophyll content of emerging leaves of 
92%. Tagetitoxin inhibits plastidic RNA polymerase III, thus preventing chloroplast 
biogenesis, so that infected plants produce new cells without chloroplasts and incapa-
ble of photosynthesis (Lukens and Durbin 1985, Lukens et al. 1987, Mathews and 
Durbin 1990, Steinberg et al. 1990). To target the photosynthetic activity of above-
ground plant parts appears to be a much better strategy than to try to deplete the roots’ 
reserves, followed by mechanical methods such as mowing (Tichich and Doll 2006).

However, also the repeated foliar application of the sap from naturally infected thistles 
led only to a 50% incidence of disease, still not sufficient to effectively suppress thistle 
growth (Tichich and Doll 2006). Further possibilities to increase the effectiveness of Pst as 
a biocontrol agent include a strict selection for humid application periods to ameliorate the 
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initial conditions for the plant pathogen (Tichich and Doll 2006, Tichich et al. 2006), se-
lecting strains that produce more toxin (Gronwald et al. 2002, Tichich and Doll 2006), or 
increase toxin production by optimal environmental and nutritional conditions (Bender et 
al. 1999, Li et al. 1998), especially a high nitrogen supply during cultivation (Styer 1982).

These studies succeeded due to the combined application of Pst with Silwet L-77 
or a similar organosilicone surfactant that facilitated the entry of bacteria into leaves 
(Zidack et al. 1992, Zidack and Backman 1996) via the stomata and hydathodes, be-
cause of their property to lower surface tension (Neumann and Prinz 1974, Field and 
Bishop 1988, Stevens et al. 1991). A combination of Pst with a chemical herbicide 
such as glyphosate further increased disease symptoms and reduction of fresh and dry 
weight significantly (Bailey et al. 2000). This suggests synergistic effects between the 
bacterial agent and the herbicide (Christy et al. 1993).

Host specificity tests showed that tagetitoxin acts on a variety of Asteraceae (John-
son and Wyse 1991, Johnson et al. 1996, Rhodehamel and Durbin 1985, Styer and 
Durbin 1982). Durban et al. (1989) described that wheat seedlings, after a first con-
tact with tagetitoxin, completely lacked chlorophyll and Durbin (1990) designated 
tagetitoxin a “non-host selective” compound. Obviously this substance is suitable as a 
non-selective herbicide but not as a highly selective biocontrol agent.

Conclusion

Mycoherbicides have been praised since decades to solve problems of weeds in a 
variety of habitats and as an upcoming strategy in organic farming but today re-
sults are still disappointing: only eleven products seem to have made it to the mar-
ket worldwide (Charudattan and Dinoor 2000, Khetan 2001, Ash 2010). A recent 
search among patents yielded 71 citations (Ash 2010) but this does not necessarily 
indicate a huge product pipeline but rather underlines that most of them never will 
be realised. On a global level, the reasons for this situation are multiple and het-
erogeneous but may be similar to those outlined for C. arvense and its pathogens. 
The primary reason for the failure of most of the tested plant pathogens against 
C. arvense is the missing host specificity (among the here presented pathogens, 
this refers, e.g., to Alternaria cirsinoxia, Sclerotinia sclerotiorum, Phoma exigua, and 
Pseudomonas syringae). A useful and safe biocontrol agent has to be as specific as 
possible. Species-specificity would be ideal but is obviously very difficult to find. 
Genus specificity may be acceptable quite often but has to be tested very carefully. 
Less pronounced specificity, e.g. on family level, usually cannot be accepted. Also 
the varying and low virulence of the pathogens pose a problem (e.g., Alternaria 
cirsinoxia, Sclerotinia sclerotiorum, Phomopsis cirsii) as constant levels of virulence 
must be ensured for a successful inhibition of the growth of the target weed. None 
of the proposed fungi is able to kill a thistle clone, thus confirming the conclusion 
in Charudattan’s (2005) review that weeds with a robust capacity for vegetative 
regeneration are more difficult to control with pathogens. Another restriction en-
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countered is the obligate biotrophic nature of the rust Puccinia punctiformis which 
poses the problem that this fungus cannot be cultivated in the laboratory to pro-
duce the necessary amount of inoculum.

This review shows for C. arvense, one of the single most important weeds of the 
world, that despite nearly 100 years of research it was so far not possible to use fungi and 
other pathogens as biocontrol agents. While it is generally undoubted that pathogens are 
important regulators of plant populations (e.g., Mitchell and Power 2003), the specific 
situation in a highly disturbed agricultural landscape is different since natural regulation 
mechanisms are not strongly developed against C. arvense. At least for Canada thistles, 
one could conclude that the potential of fungi as biocontrol agents has been overesti-
mated even if Charudattan (2005) would state that this approach is still underdeveloped. 
There is always a chance to find new and suitable biocontrol agents when increasing 
the search effort. Nevertheless, for us it is today very difficult, to advice on suitable and 
promising future research approaches for a biological control of Canada thistles.

The current regulatory situation where microbial products need to go through the 
same registration procedure as conventional pesticides certainly represents a huge bar-
rier for potential applicants. This may explain the considerable number of dead patents. 
Size and diversity of a research consortium and the financial power of the industrial 
partners may be further decisive parameters (Ash 2010, Bailey et al. 2010). Another 
problem is target selectivity. Good biocontrol praxis demands an as high target specific-
ity as possible. Economically speaking, however, such a small application basis is not 
interesting at all. Therefore one could propose to accept agents of only medium target 
selectivity since most applications would only occur in monocultures. While this even 
may be correct for C. arvense, further candidate habitats would certainly include more 
diverse landscapes and even natural habitats of conservational value. Since Canada this-
tles are invasive in most parts of the world, related, endemic thistle species, though pro-
tected and non-targets, suddenly could be affected by such an agent of low specificity.

In the case of C. arvense the research development of the last years, however, 
points into the direction of applying secondary plant compounds. Such substances 
quite often are structurally modified and can be produced synthetically. By this, 
unspecific but powerful herbicides may come up. Though sometimes the term 
“bioherbicide” is still used to indicate the biotic origin of such compounds they 
are as good or bad as chemical herbicides with the classic problems of effectivity, 
selectivity, degradability and potential side effects.
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Abstract
Within a population of invasive Hieracium pilosella in Chilean Patagonia we found two ploidy levels, 
pentaploid and hexaploid. Each ploidy level was represented by one clone. Their reproductive system was 
apomictic (and thus replicating the maternal genome), with a low degree of residual sexuality. It is neces-
sary to prevent the evolution of new biotypes via hybridisation with different clones of H. pilosella or other 
Hieracium species introduced into Patagonia.
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Introduction

In 2010, a paper on a Hieracium pilosella invasion in Patagonia (Tierra del Fuego, Ar-
gentina) was published by Cipriotti et al. (2010). Earlier, similar invasive behaviour by 
this species was described in Chilean Patagonia in an unpublished thesis by Cárdenas 
Vergara (2005). Thus, Hieracium pilosella has evidently invaded throughout south-
ernmost South America. One important aspect of invasion biology is connected with 
species reproduction, namely, how easily a species produces progeny and how variable 
these progeny are. This aspect of invasion biology was not addressed in either of the 
two papers mentioned.

Copyright F. Krahulec, A. Krahulcová. This is an open access article distributed under the terms of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

NeoBiota 11: 25–31 (2011)

doi: 10.3897/neobiota.11.1349

www.pensoft.net/journals/neobiota

ReseARCh ARtICle

Launched to accelerate biodiversity research

A peer-reviewed open-access journal

NeoBiota



František Krahulec & Anna Krahulcová /  NeoBiota 11: 25–31 (2011)26

Hieracium pilosella (syn. Pilosella officinarum) consists of several ploidy races (cy-
totypes), which combine with different reproductive modes (reviewed in Fehrer et 
al. 2007). Three ploidy levels (the basic chromosome number is x = 9) are common 
in Europe, which is the native distribution area of H. pilosella: tetraploids (mostly 
sexual,), pentaploids (mostly apomictic, rarely with sexual individuals), and hexaploids 
(both sexual and apomictic). Heptaploid individuals have only been found rarely, and 
always in mixed populations with other cytotypes; hence, it has been proposed that 
the heptaploids originate from cytotypes of lower ploidy via conjugation of unreduced 
gametes (Mráz et al. 2008). Both interspecific and intercytotype hybridisation is rather 
common in the whole subgenus Pilosella (Fehrer et al. 2007). Hieracium pilosella is an 
invasive species in other parts of the world (Tasmania, New Zealand, North America, 
South America; a summary is given in Fehrer et al. 2007). Its invasion has been espe-
cially studied in New Zealand; apomictic tetra-, penta-, and hexaploids occur in this 
secondary distribution area, but sexual plants have also been observed only occasion-
ally (Chapman and Bicknell 2000; Houliston and Chapman 2001).

Many species of the Hieracium subgen. Pilosella are facultatively apomictic, pro-
ducing predominantly progeny, which is genetically identical with their maternal par-
ent. Nevertheless, a (usually minor) proportion of their progeny are formed by sexual 
process. The degree of this residual sexuality varies among species and is generally un-
known, having not been studied thoroughly (for the quantification of residual sexual-
ity in three species, see Bicknell et al. 2003; Krahulcová et al. 2004). Residual sexuality 
may be extremely important for the formation of new genotypes, which could serve as 
a substrate for natural selection.

In 2005, we acquired seeds from Hieracium pilosella plants (and other subgen. Pi-
losella species) collected in Chilean Patagonia. Based on the collector’s information on 
the highly extensive populations of H. pilosella in this area, we presumed that this spe-
cies was reproducing apomictically. Therefore, we cultivated mature plants from seeds 
sampled in the field, and we determined their ploidy level and reproductive mode. 
Our data, which are complementary to those in a recently published paper (Cipriotti 
et al. 2010), are important for understanding the future of the H. pilosella invasion in 
Patagonia.

Materials and methods

In the summer of 2004/2005, Ladislava Filipová collected herbarium specimens of H. 
pilosella with seeds from the following localities:

Loc. 1. Patagonia, Kampenaike, Punta Arenas, Cerro Caballo; 52°43'02"S, 
70°57'46"W, alt. 30 m (4 plants).

Loc. 2. Patagonia, Kampenaike, Punta Arenas, Gali 2; 52°42'27"S, 70°59'48"W, 
alt. 29 m (3 plants).

Loc. 3. Patagonia, Kampenaike, N margin of Punta Arenas, Domaike, 53°7'24"S, 
70°52'14"W, alt. 4 m (2 plants).
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The seeds were extracted from pressed fruiting plants and were sown in 2005 into 
pots with sterilised garden soil. Later, the seedlings were replanted, and the mature 
plants were kept in outdoor beds in an experimental garden at the Institute of Botany 
at Průhonice, the Czech Republic. Specimens of the plants sampled in the field and of 
the plants cultivated from their seeds are deposited in the herbarium of the Institute of 
Botany, Průhonice, the Czech Republic (PRA).

Ploidy level and reproductive mode were determined using standard methods 
and following the procedures described by Krahulcová et al. (2004). Flow cytom-
etry of DAPI (4’ ,6-diamidino-2-phenylindole)-stained nuclei was used to determine 
DNA ploidy level (Suda et al. 2006), and the relative seed-set of emasculated versus 
open-pollinated capitula was used to determine the reproductive system (sexual ver-
sus apomictic). Potential residual sexuality (i.e., the capability of the production of 
sexually derived progeny) was assessed with apomictic maternal plants that were pol-
linated in the greenhouse by an appropriate cytotype of the same species, allowing for 
the origins of the progeny to be detected (Krahulcová et al. 2004). Specifically, the 
two detected H. pilosella cytotypes, pentaploid and hexaploid, were crossed with tetra-
ploid H. pilosella. The viability of the pollen from the tetraploid parent was sufficient 
for fertilisation (pollen stainability 75% − 89%), as pollen from this parent has been 
used successfully in previous intercytotype crosses (Krahulcová et al. 2004). Seeds ob-
tained from pollinated apomictic plants were analysed using the Flow Cytometric Seed 
Screen (FCSS) method, either in its conventional version processing seed doublets 
(Matzk et al. 2000), or in its modified version processing pooled samples of ten seeds 
(Krahulcová and Suda 2006). The origins of the progeny were inferred either from the 
ploidy level of the embryos as compared to the maternal ploidy level (using modified 
FCSS for the progeny originating from hexaploid × tetraploid crosses), or from the 
ploidy of the embryo and of its endosperm (using conventional FCSS for the progeny 
originating from pentaploid × tetraploid crosses).

The clonal (or genotypic) identity of the material from different localities was de-
termined by comparing the isozyme phenotypes of the respective cultivated plants; 
a combination of four enzymes (AAT, EST, LAP, PGM) was used because this sys-
tem has sufficient resolution efficiency in Hieracium subgen. Pilosella (Krahulec et 
al. 2004). In addition, variations in chloroplast DNA (cp-DNA) were examined in 
selected clones and compared with that recorded in H. pilosella in Europe (Fehrer et 
al. 2005; Krahulec et al., unpublished data). The procedure used for cp-DNA analysis 
(Southern blotting and minisatellite fingerprinting) and the characteristic cp-DNA 
haplotypes distinguished in the subgenus Pilosella follow Fehrer et al. (2005).

Results

A total of 57 plants were cultivated from seeds that were sampled from nine maternal 
plants at three localities in Patagonia. All 25 cultivated progeny plants originating 
from the four maternal plants at locality 1 (Materials and Methods) were pentaploid. 
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The other progeny plants, originating from both locality 2 (three maternal plants/11 
cultivated progeny plants) and locality 3 (two maternal plants/21 cultivated progeny 
plants), were hexaploid. All of the progeny plants were apomictic, and their morphol-
ogy was highly uniform within each cytotype: this fact implied an apomictic reproduc-
tive mode in the maternal plants collected in the field. For this reason, to detect the 
clonal structure among their presumably apomictic maternal parents, we chose only 
one progeny plant from each maternal array for isozyme analysis. Analysis showed 
that each cytotype was composed of only a single clone. Thus, the pentaploids and 
hexaploids were found to be clonally uniform. These two clones differed also in their 
cp-DNA haplotypes. The hexaploid clone had the main group II haplotype (namely 
subtype II/7), which predominates in H. pilosella in Europe (Fehrer et al. 2005). The 
haplotype detected in the pentaploid clone belonged to a main group I haplotype, 
namely subtype I/1.

The level of residual sexuality was low in both the pentaploid and hexaploid apom-
ictic clones. A total of 30 progeny seeds produced by the pentaploid clone pollinated 
by tetraploid H. pilosella were analysed using the FCSS method (two seeds were ana-
lysed per sample). All of these seeds (100%) had pentaploid embryos and decaploid 
endosperm, corresponding to autonomous apomixis giving rise to pentaploid apom-
ictic progeny. FCSS analysis of 190 progeny seeds showed that crossing the hexaploid 
clone with tetraploid H. pilosella also generated predominantly apomictic progeny. In 
the respective flow cytometric histograms (10 seeds were analysed per sample), 189 
hexaploid embryos were recorded in total; a clearly detectable small peak of apomictic 
dodecaploid endosperm was present in all of the histograms, which again corresponds 
to autonomous apomixis. Only one octoploid embryo (out of 190 embryos analysed) 
originated from the hexaploid × tetraploid cross, likely originating from an unreduced 
female gamete of the hexaploid maternal plant being fertilised by a diploid male gam-
ete of the tetraploid pollen parent. Consequently, the frequency of apomixis in hexa-
ploid apomictic H. pilosella was estimated to be 99.5%.

Discussion

At all three ploidy levels that are most common in H. pilosella, both apomictic and 
sexual plants are known. Nevertheless, most of the data on chromosome number and 
reproductive system are based on plants from its native distribution area in Europe. 
The plants invading New Zealand are mostly pentaploid and apomictic, although 
tetraploids and hexaploids have been found there rarely (Houliston and Chapman 
2001; Jenkins and Jong 1996). Apomictic reproduction is evidently advantageous es-
pecially for the colonisation of new areas. However, apomixis in Hieracium subgen. 
Pilosella is facultative because some degree of sexuality is still present in otherwise 
apomictic plants (Fehrer et al. 2007). This characteristic allows the production of some 
sexual progeny, provided that either another clone or another related cross-compatible 
species occurs together with an apomictic maternal parent. In New Zealand, sexual 
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plants have already been found, which supposedly originated from crosses between 
facultative apomicts (Chapman and Bicknell 2000; Houliston and Chapman 2001). 
In light of this finding, the low genetic variation and low degree of residual sexual-
ity detected in H. pilosella in Tierra del Fuego decrease the chances for an analogous 
process in this part of its secondary distribution area. Importantly, the introduction of 
another Hieracium pilosella clone into Tierra del Fuego would be dangerous because 
occasional hybridisation between the different clones could result in the production 
of new genotypes. Also worrisome is the fact that several other Hieracium species with 
the potential to hybridise with H. pilosella have been introduced into this area: H. 
aurantiacum, H. piloselloides (syn. H. praealtum), and H. flagellare (a hybridogenous 
species originated from H. caespitosum and H. pilosella) – for references see Fehrer et 
al. (2007). In addition, among the herbarium specimens we received from Tierra del 
Fuego, H. floribundum (a hybridogenous species originated from H. caespitosum and 
H. lactucella) was also present. All of these species are known to hybridise with H. pilo-
sella in Europe (Sell and West 1976), and at least some of them do so in New Zealand 
(Morgan Richards et al. 2004).

Species of Hieracium subgen. Pilosella are known as easily hybridising, forming 
both stabilised hybrids (hybridogenous species) and hybrid swarms, even between dif-
ferent ploidy levels (e.g., Fehrer et al. 2007; Sell and West 1976). Efficient hybridisa-
tion results in the formation of new forms (either sexual or facultatively apomictic) 
and increases the evolutionary potential of these species (e.g., Houliston and Chapman 
2001; Morgan-Richards et al. 2004).

The following measures are recommended to prevent the rapid evolution of new 
biotypes of Hieracium pilosella (and its hybrids) in Patagonia: (i) prevent the introduc-
tion of both new clones and new cytotypes of H. pilosella, as well as of new species of 
the Pilosella subgenus (ii) look for possible hybrids among introduced Hieracium spe-
cies and (iii) eradicate these hybrids from sites where they currently occur.
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Abstract
The development of conservation strategies to mitigate the impact of invasive species requires knowledge 
of the species ecology and distribution. This is, however, often lacking as collecting biological data may 
be both time-consuming and resource intensive. Species distribution models can offer a solution to this 
dilemma by analysing the species-environment relationship with help of Geographic information systems 
(GIS). In this study, we model the distribution of the non-native bush-cricket Metrioptera roeselii in the 
agricultural landscape in mid-Sweden where the species has been rapidly expanding in its range since 
the 1990s. We extract ecologically relevant landscape variables from Swedish CORINE land-cover maps 
and use species presence-absence data from large-scale surveys to construct a species distribution model 
(SDM). The aim of the study is to increase the knowledge of the species range expansion pattern by ex-
amining how its distribution is affected by landscape composition and structure, and to evaluate SDM 
performance at two different spatial scales. We found that models including data on a scale of 1 × 1 km 
were able to explain more of the variation in species distribution than those on the local scale (10 m buffer 
on each side of surveyed road). The amount of grassland in the landscape, estimated from the area of ar-
able land, pasture and rural settlements, was a good predictor of the presence of the species on both scales. 
The measurements of landscape structure – linear elements and fragmentation - gave ambivalent results 
which differed from previous small scaled studies on species dispersal behaviour and occupancy patterns. 
The models had good predictive ability and showed that areas dominated by agricultural fields and their 
associated grassland edges have a high probability being colonised by the species. Our study identified 
important landscape variables that explain the distribution of M. roeselii in Mid-Sweden that may also be 
important to other range expanding orthopteran species. This work will serve as a foundation for future 
analyses of species spread and ecological processes during range expansion.
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Introduction

The development of effective strategies to manage the spread of invasive organisms re-
quires data on species habitat preferences and knowledge of how landscape character-
istics influence species dispersal and establishment (Cote and Reynolds 2002; Rosin et 
al. 2011). However, the collection of fine-detailed distribution data over large scales is 
time consuming and logistically challenging, hence data is missing for many species 
(Jimenez-Valverde et al. 2008). Management decisions have often to be taken swift-
ly (Morueta-Holme et al. 2010) and species distribution modelling becomes a handy 
tool when dealing with limited observation data and large spatial and temporal extents 
(Guisan and Thuiller 2005). By modelling species distribution as a function of ecologi-
cally relevant data on climate conditions and/ or landscape characteristics, it is possible 
to describe occupancy patterns and predict species range expansions (Hein et al. 2007; 
Early et al. 2008; De Groot et al. 2009; Bonter et al. 2010). Estimates of current and 
future species distributions rely on: (1) the strength of the relationship between environ-
mental variables and the organism in question (Cote and Reynolds 2002), and (2) the 
availability of ecological relevant environmental data that can be applied at a range of 
geographic scales (Scott et al. 2002). It is also important to consider the impact of scale 
on the performance of the models (Scott et al. 2002), i.e. we need to know which envi-
ronmental predictors give the best estimates for species presence at a given spatial scale.

Some species of orthopterans (grasshoppers and bush-crickets) have recently 
shown a rapid response to changed environmental conditions and are invading new 
areas outside their common range (Sword et al. 2008; Bazazi et al. 2011). Orthopter-
ans are well suited for studying distribution patterns across a range of spatial and tem-
poral scales, because they are relatively easy to survey and their ecology is well studied 
(Ingrisch and Köhler 1998; Gwynne 2001; Hein et al. 2003; Holzhauer et al. 2006). 
Metrioptera roeselii is an example of a range expanding species in northern Europe 
(Simmons and Thomas 2004; Gardiner 2009; Hochkirch and Damerau 2009; Species 
Gateway 2010). Detailed studies on the species’ ecology (e.g. Ingrisch 1984; Berggren 
et al. 2001; Poniatowski and Fartmann 2005; Holzhauer et al. 2006) and movement 
behaviour (Berggren et al. 2002; Berggren 2004, 2005) have increased the understand-
ing of how M. roeselii responds to local biotic and abiotic factors. However it is cur-
rently unknown which of the factors are shaping the regional occupancy pattern of M. 
roeselii, and to what extent readily-available landscape data can be used to predict the 
regional distribution of the species

The aim of this study is to model the distribution of M. roeselii at a large scale 
(>2000 km2) using species presence-absence data from field surveys and digital land-
scape data available from the national cartographic agency. Since the predictive ability 
of occupancy models is known to be scale sensitive (Scott et al. 2002) we model the 
distribution of M. roeselii at two different spatial scales (‘landscape’ and ‘local’ scale) 
and compare model performance. At the ‘landscape’ scale, we measure the landscape 
composition and structure, factors that affect colonisation and establishment of popu-
lations (Werling and Gratton 2008). At the local scale we use land cover type as a 
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predictor for species occurrence as it is thought to reflect closely species habitat require-
ments (Hirzel and Le Lay 2008).

The questions we sought to answer in this study were: (1) is there any difference 
in predictive ability of models which use landscape composition and structure versus 
those that only include local land cover type to explain the distribution pattern of M. 
roeselii and (2) which landscape variables explain best the occurrence of M. roeselii and 
are these variables consistent between the landscape and local scale?

Material and methods

Study species

Metrioptera roeselii (Orthoptera: Tettigoniidae) (Hagenbach 1822) is a small (12–18 
mm) predominantly short-winged and flightless bush-cricket commonly found in 
grasslands of central and northern Europe (Bellmann 2006). In Sweden M. roeselii 
occurs mainly in the Lake Mälaren region and the position of the population core 
area suggests that the species has been introduced via sea cargo (de Jong and Kindvall 
1991). There are indications that the expansion of M. roeselii may cause the displace-
ment of a native orthopteran species (Berggren and Low 2004), but its impact on the 
insect community as whole is largely unknown. Metrioptera roeselii is an omnivorous 
generalist that prefers tall grassland habitats. In the agricultural landscape the species 
is found in extensively grazed pastures, leys, grassy field margins, ditches, and road 
verges (Marshall and Haes 1988; Berggren et al. 2001). Forests, arable crop fields and 
intensively grazed pastures are considered to be unsuitable habitat for the species and 
urban areas are usually avoided (Ingrisch and Köhler 1998; de Jong and Kindvall 1991; 
Wissmann et al. 2009).

The reproductive season of M. roeselii in Scandinavia is between July and Septem-
ber. Males stridulate to attract females and the species-specific call makes the species 
easy to census (Marshall and Haes 1988). Metrioptera roeselii is a wing polymorphic 
species; extremely favourable weather conditions (mild springs and hot summers) and 
high population densities trigger the development of long winged morphs (macrop-
ters) (Poinatowski and Fartmann 2010). However, in normal years and at range mar-
gins the proportion of macropters in M. roeselii populations rarely exceeds two percent 
and the vast majority of individuals disperse by walking and jumping (Vickery 1965; 
Wissmann et al. 2009; pers. obs.).

Data collection

During 2008 and 2009 we surveyed an area of 2554 km2 in the Lake Mälaren region 
(mid-point 59°44'N, 16°52'E) for the presence of M. roeselii (Fig. 1). The landscape in 
this region consists of a mosaic of agricultural land (46%), forest (43%), scattered settle-
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ments and small towns (5%), lakes and waterways (3%) and a small proportion of other 
land use types (3%). In our surveys we sampled the land cover types proportionally to 
their occurrence in the landscape. We used known locations of M. roeselii (de Jong and 
Kindvall 1991; Berggren et al. 2001; Species Gateway 2010) as starting points for our sur-
veys and surveyed the wider surroundings to map the current distribution of the species. 
We conducted auditory surveys by car (de Jong and Kindvall 1991; Berggren et al. 2001) 
on sunny days, between 10 am – 5 pm, from mid July until the end of August. Since the 
species’ call is strong and can be heard over distances of approximately 10 m (Fischer et al. 
1997; Bellman 2006), it is possible to listen for stridulating males from the car window 
while driving slowly (~30 km/ h) along countryside roads (Berggren et al. 2001). We 
recorded our survey routes and observations of M. roeselii using a GPS (Garmin 60XL).

Variable selection

We used ArcGIS 9.2 (ESRI 2006) to plot and analyse the survey and landscape data. 
Information on landscape structure and landscape composition was extracted from 
a topographic map (Geographic Sweden Data (GSD) 1:50 000) and a Swedish CO-
RINE (Coordination of Information on the Environment) land cover map (resolution 
30 × 30 m) both available from the Swedish mapping, cadastral and land registration 
authority. We analysed the effect of landscape variables on the species’ distribution at 
two spatial scales: the landscape and the local scale. We placed a 1 × 1 km grid across 
the study area to create presence-absence squares from the species survey data and to 
design units in which we measured the predictor variables for the landscape scale analy-
sis (Fig.1). For the analysis at the local scale we use the same 1 × 1 km grid for the spe-

Figure 1. Survey area (mid-point 59°44'N, 16°52'E) in south-central Sweden covering 2554 km2. The 1 
× 1 km grid squares (n = 874) show presence (black) and absence (grey) of Metrioptera roeselii.



Modelling the distribution of the invasive Roesel’s bush-cricket (Metrioptera roeselii)... 37

cies data but extracted the land use data from a 10 m wide buffer strip running parallel 
to each side of the surveyed roads (i.e. the search area). We compared the models from 
the search area with the models at the landscape scale to test if we find similar effects 
of land use on species occurrence at a larger spatial scale.

The distribution of M. roeselii was treated as presence-absence data within the  
1 × 1 km squares for both spatial scales of the analysis (n total = 874 with 318 absence 
and 556 presence squares). Squares where M. roeselii was absent were only included 
in the analysis if they were adjacent to a presence square. Based on our knowledge of 
the species dispersal behaviour (Berggren et al. 2001, 2002) we excluded distant and 
isolated absence squares from the analysis because we considered those squares to lie 
outside the species immediate colonisable area. We chose this conservative approach in 
order to minimise the number of false absences in the data which otherwise inflates the 
omission error, lowering the accuracy of the models (Guisan and Thuiller 2005). Be-
cause we were primarily interested in modelling the distribution of populations rather 
than dispersing in individuals, we only included squares in the analysis that contained 
at least two observations of male M. roeselii. Previous studies have shown that the 
species has a good colonising ability and propagules consisting of two males and two 
females can found sustainable populations (Berggren 2001). Because survey length 
affects detection probability of the species, we used survey length as a covariate in all 
models, and only included squares in the analyses in which more than 100 m of road 
was surveyed.

We used GIS to extract landscape variables that are of ecological relevance for 
M. roeselii (Berggren et al. 2001; Berggren et al. 2002; Berggren 2004) and which 
represent predefined categories in the maps that we used. The land cover categories 
were generic and consisted of sub-categories of land-use types that resembled each 
other in terms of vegetation- and management type: (1) arable land (under crop rota-
tion; includes cultivation of cereals, fodder - and root crops, fallow land), (2) forest 
(includes broadleaved, coniferous and mixed forest, clear-cuts and young plantations), 
(3) pasture (includes dense herbaceous vegetation dominated by grasses under different 
grazing regimes), (4) urban areas (includes land with buildings and other man-made 
structures, small towns and villages), (5) rural settlements (includes solitary houses and 
farm buildings surrounded by grasslands and gardens), (6) linear elements (combined 
lengths of streams and roads), and (7) number of fragments of arable land (see Table 1).

We used Pearson’s product-moment correlations to test for the relationships be-
tween landscape variables using JMP version 8.0.1 (SAS Institute Inc. 2009). Arable 
land and forest were highly negatively correlated (r = - 0.86, p < 0.0001), suggesting 
they are mutually exclusive in the landscape. Thus, we choose to exclude forest and 
include arable land in the analyses as previous studies have shown that M. roeselii does 
not occur in forest areas and arable land under intensive cultivation but occurs and 
spreads along grassy field margins (Ingrisch and Köhler 1998; Berggren et al. 2001). 
Linear elements were positively correlated with urban areas (r = 0.56, p < 0.0001) as 
road length increases with urban development. We excluded urban areas from the anal-
yses since we know from personal observations and records in the national species base 
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(Species Gateway 2010) that M. roeselii is rarely found in urban areas due to the lack 
of suitable habitat. All other landscape variables showed low to moderate r-values (r ≤ 
0.3) and were included in analyses. Moran’s I values indicated that the response vari-
able was spatially structured which would cause our estimates of variable significance 
in the models to be exaggerated (Legendre 1993). However, our primary aim was not 
to elicit precise species-habitat relationships but rather to produce a general applicable 
model to predict the species distribution over a large spatial extent. We therefore chose 
a non-spatial modeling approach over explicitly accounting for spatial dependency in 
the species distribution model.

Statistical analyses

We used logistic regression models to investigate the relationship between the landscape 
variables and M. roeselii occurrence at two scales: the landscape scale (1 × 1 km units) 
and the local scale (10 m area either side of surveyed roads). For both analyses a balanced 
set of candidate models were considered (i.e. all possible combinations of the variables 
of interest) and these were ranked according to the relative strength of support for each 
model using Akaike’s information criterion (AIC). We used AIC weights (ωi) to generate 
weighted model-averaged parameter estimates when there was no clear best model by in-
cluding all models within 5 AIC (Σ ωi = 0.95) from the highest-ranked model (Burnham 

table 1. Descriptive statistics for the major landscape features and predictor variables used in the regres-
sion analyses to explain the distribution of Metrioptera roeselii in south-central Sweden.

Presence squares (1 × 1 km) Absence squares (1 × 1 km)
Variable Min Mean Max SE Min Mean Max SE
Survey length [km] 0.06 1.02 2.62 0.02 0.01 0.69 2.06 0.02
eLandscape scal
Arable land [ha] 0.00 53.09 100.00 1.10 0.00 39.96 100.00 1.68
Forest [ha] 0.00 36.91 99.12 1.10 0.00 45.94 100.00 1.75
Pasture [ha] 0.00 4.37 45.12 0.23 0.00 5.19 34.94 0.37
Urban [ha] 0.00 1.67 62.38 0.20 0.00 2.93 59.82 0.45
Rural settlements [ha] 0.00 1.65 17.06 0.10 0.00 0.58 8.88 0.08
Fragments† [count] 0.00 1.43 5.00 0.03 0.00 1.42 6.00 0.05
Linear Elements‡ [km] 0.31 3.45 13.59 0.06 0.20 3.37 10.21 0.09
Stream length [km] 0.00 0.95 3.94 0.04 0.00 0.98 3.36 0.05
Road Length [km] 0.11 2.50 11.91 0.05 0.14 2.39 10.21 0.08
eLocal scal
Arable land [ha] 0.00 1.21 4.11 0.03 0.00 0.56 3.89 0.04
Forest [ha] 0.00 0.46 3.46 0.03 0.00 0.54 3.76 0.04
Pasture [ha] 0.00 0.14 2.28 0.01 0.00 0.10 1.26 0.01
Rural settlements [m2] 0.00 0.20 3.15 0.02 0.00 0.12 2.20 0.02

Min = Minimum, Max = Maximum, SE is the standard error of the mean.
† = Number of fragments of arable land, ‡ = the sum of the length of streams and roads.
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and Anderson 2002). We also estimated the relative importance of the predictor variables 
by summing the AIC weights over all the models in which the variable was contained 
(Burnham and Anderson 2002). Parameter estimates and AIC for all models were calcu-
lated using the ‘glm’ function in the R 2.8.1 software (R Core Development Team 2008).

We used v-fold cross-validation (Witten and Frank 2000), to evaluate the predic-
tion accuracy of the highest-ranked models from our analyses (i.e. survey scale and 
landscape scale). Of the 874 survey squares, 80% were randomly sub-sampled as the 
training set and used to parameterise the model. The coefficients of this model were 
then used to derive probabilities of occurrence for the remaining 20% of the survey 
squares. Among the number of data partitioning methods in model evaluation (Field-
ing and Bell 1997) this ratio of 80% training and 20% test data has been previously 
found useful (Dormann et al. 2008). The square-specific probabilities were used to 
calculate a random draw from a Bernoulli probability distribution for each square to 
produce a prediction (0 or 1) and these were compared to the observed data in the 
validation set (0 or 1) for each square. Differences in observation versus prediction 
were then recorded as a proportion of mismatches for the training data set. This was re-
peated 1000 times, with the proportion of mismatches being modeled as a distribution 
of errors; i.e. the proportional deviation of the predicted versus the observed – similar 
to a probability density curve. The median and 95% confidence intervals of these er-
rors were then calculated using the cumulative distribution function (ecdf ) in R 2.13.1 
(R Development Core Team 2009).

Results

Models at the landscape scale had lower AIC values when compared to equivalent 
models at the local scale (Table 2), suggesting that variables measured at the landscape 
scale were better predictors of M. roeselii presence than those measured in the immedi-
ate survey area (local scale). There was strong support for arable land as an important 
positive predictor for this species, as it was the only variable present in all models with 
AIC support (Table 2). By comparing different scales in the analyses (landscape versus 
local) we show that the habitat variables were differently associated with the species 
presence depending on the spatial scale at which they were measured (Tables 2 and 3).

At the landscape scale, M. roeselii presence was best explained by the full model, 
containing arable land, rural settlements, pasture, number of arable land fragments 
and linear elements (Table 2). The second- and third-ranked models differed in either 
number of fragments or linear elements, suggesting that structural landscape variables 
had weaker support in explaining M. roeselii occurrence. Contrary to expectation, oc-
currence of M. roeselii was negatively correlated with the amount of pasture and linear 
elements, and positively correlated with the number of fragments of arable land (Ta-
ble 3). The three land-use variables (arable land, rural settlements and pasture) had 
the highest relative-importance weights (1.0), followed by linear elements (0.927) and 
number of fragments (0.778).
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At the local scale, the two highest-ranked models contained arable land and ru-
ral settlements. This, in combination with their relative-importance weights (1.0 and 
0.905 respectively), demonstrates the strong support for them as positive predictors 
(Tables 2 & 3). Although pasture was included in the second-highest-ranked model, 

table 2. Model selection results for the effect of landscape variables on the occurrence of Metrioptera 
roeselii. The model selection statistics are number of parameters (K), Akaike’s information criterion (AIC), 
difference between model and minimum AIC values (∆AIC), and AIC weights (ωi). Only models with 
∆AIC < 10 are shown.

Rank Model       K AIC ∆AIC ωi
eLandscape scal
1 Sur + Ara + Rural + Pas + Lin + Frag 7 969.08 0 0.662
2 Sur + Ara + Rural + Pas + Lin 6 971.39 2.31 0.209
3 Sur + Ara + Rural + Pas + Frag 6 973.62 4.54 0.068
4 Sur + Ara + Rural + Pas 5 974.65 5.57 0.041
5 Sur + Ara + Rural + Lin + Frag 6 977.51 8.43 0.010
6 Sur + Ara + Rural + Lin 5 977.86 8.78 0.008
eLocal scal
1 Sur + Ara + Rural 4 983.48 0 0.581
2 Sur + Ara + Rural + Pas 5 984.65 1.17 0.324
3 Sur + Ara 3 987.82 4.34 0.066
4 Sur + Ara + Pas     4 989.49 6.01 0.029

Abbreviations used for the explanatory variables in the models: Sur = Survey length, Ara = Arable land, Ru-
ral = Rural settlements, Pas = Pasture, Lin = Linear Elements, Frag = Number of fragments of arable land.

table 3. AIC-weighted model-averaged parameter estimates generated from the top three models (Σ ωi 
= 0.95) presented in Table 2.

Averaged Model Variable Coeff SE
eLandscape Scal
(1 × 1 km) (Intercept) -1.478 0.282

Survey length 1.791 0.199
Arable land 0.014 0.003
Rural settlements 0.259 0.051
Pasture -0.042 0.013
Linear Elements‡ -0.124 0.050
Fragments† 0.159 0.078

eLocal Scal
(10 m buffer) (Intercept) -0.996 0.169

Survey length 0.643 0.228
Arable land 1.071 0.142

  Rural settlements 0.559 0.228
Pasture 0.100 0.111

† = Number of fragments of arable land, ‡ = the sum of the length of streams and roads.
Coeff = coefficient; SE = Standard error of coefficient.
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an examination of Table 2 shows that its inclusion in models generally results in a lower 
ranking than models without it – suggesting very weak support for it as a predictor of 
M. roeselii presence (relative-importance of pasture = 0.353).

Cross-validation showed that the models were generally accurate in their predic-
tions of species occurrence across the spatial scales for the environmental gradients 
examined in the study. The landscape-level model prediction for the probability of  
M. roeselii being detected in a square had an error which ranged from -0.091 to +0.080 
(95% CI; Fig. 2a). At the survey scale, model prediction error for the probability of 
detection ranged between -0.075 to +0.097 (95% CI; Fig. 2b).

Figure 2. Cross-validation accuracy of 1000 models using randomly selected training and validation sets 
(80% and 20% respectively). The curves show the relative deviation of prediction accuracy when compar-
ing estimated to observed occurrence of Metrioptera roeselii being detected in a square at a the survey scale 
(vertical bars show the 95% CI for model prediction error: -0.075 to +0.097), and b the landscape scale 
(-0.091 to +0.080).

b)

a)
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Discussion

In our study, the distribution of M. roeselii was best explained by models at the land-
scape scale. This indicates that measuring the landscape characteristics within 1 × 1 km 
units captures both the availability of habitat for the species and incorporates ecological 
functions of the landscape features (Crawford and Hoagland 2010). The weaker rela-
tionship between land use and species occurrence at the local scale could be attributable 
to the coarse grain size of the land-cover data failing to capture local aspects of habitat 
quality, i.e. vegetation heterogeneity, microclimate (Gardiner and Dover 2008) and its 
temporal variability (Gardiner et al. 2008; Poniatowski and Fartmann 2008) as well as 
important biotic interactions (Huston 2002) that are influencing the distribution of the 
species. Our study shows that landscape data extracted from digital map sources can be 
used to explain the regional distribution pattern of this expanding species. Determining 
biologically important variables and the optimal spatial scale is a prerequisite to predict 
the likelihood of occurrence of a species in non-surveyed sites with a resolution of 1 km 
2 and form the base for monitoring species spread, serving conservation planning and 
future research on spatial processes shaping species distributions. The models can also 
be further developed and used for region-wide predictions in areas similar to the study 
area, assisting in devising management actions and possible control of undesired species 
expansion (Hutto and Young 2002; Scott et al. 2002). However, extrapolation of model 
results should be treated with caution. Abiotic factors such as land cover can generally be 
applied only within a limited spatial extent and time frame because the same variables 
can differ in habitat suitability moreover the same species may respond to different sets 
of variables in different parts of its distributional range (Guisan and Zimmerman 2000).

When modelling species distributions in fragmented landscapes it is important to 
incorporate the landscape structure into the analyses (Umetsu et al. 2008). The number 
of fragments of arable land was a positive predictor for the occurrence of M. roeselii, in-
dicating that the field margins offer important edge habitat and serve as dispersal paths 
in the agricultural landscape (Berggren et al. 2001). Similar dispersal behaviour has 
been observed in the wood cricket Nemobius sylvestris that moves along habitat edges 
(Brouwers et al. 2011). Contrary to expectations, linear landscape elements (roads and 
streams) had a negative effect on species occurrence at the landscape scale. One pos-
sible explanation is that although linear elements have been associated with increased 
dispersal opportunities in small-scaled studies, at larger scales linear landscape features 
such as major roads and streams act as a barrier for the species dispersal if they separate 
suitable habitat areas (de Jong and Kindvall 1991). Due to the large spatial extent of 
our study it was not possible for us to explicitly incorporate spatial configuration and 
orientation of linear landscape features in the model.

At both spatial scales that we analysed, arable land and rural settlements turned out 
to be strong predictors for the presence of M. roeselii suggesting that these land use types 
can be used as surrogate measure for grassland habitat in the region. The positive effect of 
arable land on the occurrence of M. roeselii might be surprising at first since it is known 
that M. roeselii avoids crop fields because of the lack of shelter, food and egg laying places 
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(Ingrisch and Köhler 1998). However, arable land is a generic land use description and 
vegetation cover varies with the type of crop cultivated. In Sweden, crop rotation is com-
monly practised (Söderberg 2006) and arable land becomes temporally a suitable habitat 
for orthopterans and other grassland living insects when crop fields are shifted into fallows 
or leys (Duelli et al. 1999). The ability to track resources is particularly important for 
species in dynamic landscapes. In areas with intensive agricultural production the grassy 
field margins and hedgerows often have high species richness and function as dispersal 
corridors and source habitats for colonisers of crop fields (Marshall and Moonen 2002; 
Meek et al. 2002). The present findings support our assumption that grassland insects like 
M. roeselii benefit from habitat heterogeneity in arable landscapes. Braschler et al. (2009) 
found that cricket (Ensifera) density was higher in fragmented plots, as uncut patches of 
grassy vegetation play an important role in maintaining insect diversity in the agricultural 
landscape by offering shelter from predators and serving as mating and egg laying sites. A 
previous study by Bieringer and Zulka (2003) showed that orthopteran species richness 
increases with distance to forest edge. We believe that the positive effect of arable land in 
our study was not simply because the bush-crickets avoided forest, but rather that agricul-
tural areas contain a larger amount of suitable grassland vegetation than forests.

In cultivated landscapes, generalist species that are able to occupy a broad range of 
habitat types are less sensitive to local habitat loss (Marini et al. 2008, 2009a). Metriop-
tera roeselii is an example of a grassland generalist (Ingrisch and Köhler 1998) colonising 
a range of grassland types (Gardiner et al. 2008; Poniatowski and Fartmann 2005). Like 
its close relative M. bicolor (Kindvall 1996) it is able to sustain populations in small 
patches of habitat. Rural settlements, despite covering only a small area of the landscape, 
have been shown to provide important habitat for a range of species (Belfrage et al. 
2005; Rosin et al. 2011) and may function as source patches for M. roeselii enabling the 
species to colonise surrounding areas. Extensive farming practices and small field sizes 
are positively correlated with habitat heterogeneity, which in turn has a positive effect on 
the local diversity of species with limited movement ability like pollinators and grassland 
living insects (Benton et al. 2003; Marini et al. 2009b; Steck et al. 2007).

We expected that the amount of pasture and the presence of M. roeselii would be 
positively correlated on both scales since M. roeselii has been found to colonise exten-
sively grazed pastures (Poniatowski and Fartmann 2005). The negative correlation of 
pasture on M. roeselii occurrence at the landscape scale is difficult to interpret. A possi-
ble explanation could be that the overall proportion of pastures in the landscape is small 
and its distribution scattered which makes it more difficult for the species to colonize.

Species ecology, range size and rarity have an influence on model performance 
(Franklin et al. 2009; Syphard and Franklin 2009). Results from other studies (Heik-
kinen et al. 2006; Segurado and Araújo 2004) have shown that specialist species and 
species with a limited range are generally more accurately modeled than generalist spe-
cies and species with a wide geographic range, M .roeselii is an example of the latter. 
The natural dynamics of the study species makes it more difficult to model its distribu-
tion because the assumption of the species being in equilibrium with the environment 
is violated and dispersal contributes to spatial autocorrelation in the data (Franklin et 
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al. 2009). With these limitations in mind we thoroughly surveyed the range of envi-
ronmental conditions present in the distribution area from the core of the study area 
to the margin aiming to obtain a large sample size as possible. Despite our surveys were 
conducted by car, we sampled all important habitat types (arable land, forests, pastures 
and human settlements) proportionally to their occurrence in the landscape. Aware 
of the trade-off between model generality, reality and precision (Guisan and Zimmer-
man 2000), we prioritized the former as our primary aim in this study was to develop 
predictive model for M. roeselii within the study region. The model can be further 
developed and applied to other grassland insects with similar traits.

Conclusions

Type of land use and structural landscape elements describing the amount of available 
habitat are important predictors for species occurrences (Hein et al. 2007; Kemp et al. 
1990; Crawford and Hoagland 2010). The possibility to model M. roeselii distribution us-
ing survey data and available land-cover data on a scale that is easy to extract and utilise for 
managers is promising in that it will enable us to predict the direction and possible extent 
of future range expansion of the species. As many Orthopterans disperse and interact with 
the environment in a similar way (Hjermann and Ims 1996; Diekötter et al. 2007; Brouw-
ers et al. 2011), the results from this study may also be valid for other related species that 
are now expanding their distribution areas. This is very useful, as many studies on grassland 
living insects face a similar dilemma: a limited availability of distribution data for species 
that are living in highly dynamic landscapes (Marini et al. 2009b). The possibility to utilise 
available distribution data in combination with land-cover data enables us to improve our 
understanding of the species ecology, to highlight areas of conservation concern and to 
predict species occurrences in a time of environmental change (Bonter et al. 2010).
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Abstract
The small Indian mongoose (Herpestes auropunctatus) is one of the world’s 100 worst invasive species 
(IUCN 2000). It has negative impacts on several small mammals on islands where it was introduced. We 
assess the abundance of small mammal populations and the activity time of introduced ship rats (Rattus 
rattus) on three mongoose-infested and three mongoose-free islands in the Adriatic Sea, Croatia. We set 
up three transects on each island with a trapping system consisting of 30 small live traps to capture small 
mammals under 30 grams and 30 larger traps to capture ship rats and mongooses, on each transect. Our 
results support an already large but mostly speculative literature that suggests inability of the small Indian 
mongoose to reduce high abundances of introduced R. rattus. Further, we suggest that the low abundance 
of native small mammals is probably not solely caused by the mongoose but also by high R. rattus popu-
lations on all six islands. In addition, we provide evidence that R. rattus has changed its activity time to 
become more nocturnal on mongoose-infested islands, possibly to avoid predation by the mongoose. As 
R. rattus became more nocturnal, the diurnal mongoose may have become the main predator on amphib-
ians, reptiles, and poultry.
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Introduction

The small Indian mongoose (Herpestes auropunctatus) has been listed by the IUCN 
(2000) as one of the world’s 100 worst invasive species. Native to southern Asia, it was 
introduced to many islands in the Pacific, the Indian Ocean and the Caribbean Sea 
(Simberloff et al. 2000, Thulin et al. 2006).

Most mongoose introductions were in the late 19th and early 20th century to con-
trol introduced rats in sugar cane fields, but evidence of its success as a ratter is con-
flicting and mostly negative (Espeut 1882, Urich 1914, Pemberton 1925, Barnum 
1930, Doty 1945, Seaman 1952, Hinton and Dunn 1967, Stone et al. 1994, Hays 
and Conant 2007). Statements on this matter are mostly anecdotal, and there are no 
controlled studies looking at the mongoose’s ability to control rats. 

No comprehensive study has been devoted to the impact of the mongoose on the 
abundance of native small mammal populations, although several studies have pro-
posed the mongoose as a major cause for the decline of species. For example, Woods 
and Ottenwalder (1992) suggested that introduction of the mongoose has contributed 
to extinction of four species of Haitian island shrews (Nesophontes spp.). Borroto-Paéz 
(2011) believed that the mongoose has been largely responsible for the endangered 
status of the Cuban solenodon (Solenodon cubanus) and is suspected in the likely ex-
tinction of the dwarf hutia (Mesocapromys nanus). Yamada and Sugimura (2004) linked 
the decline in the abundance of the threatened native rabbit (Pentalagus furnessi) on 
the Japanese island of Amami-Oshima to the spread of the mongoose across the island.

On Adriatic Islands, the mongoose was introduced in 1910 to Mljet Island to 
control a poisonous viper (Vipera ammodytes) and subsequently to several other islands 
(Korčula in 1921 , Hvar (early 1950’s), Čiovo (ca. 1950’s), Škrda (ca. 1950’s), Kobrava 
(unknown) (Tvrtković and Kryštufek 1990, Barun et al. 2008). It was introduced to 
the Pelješac Peninsula repeatedly from 1921 to 1927, and it is spreading along the 
southernmost part of the Dalmatian coast and has reached the Neretva River in the 
north (Barun et al. 2008) and Albania in the south (Ćirović et al. 2011). Nearly all 
Croatian large islands host a native carnivore, the stone marten (Martes foina), plus 
feral domestic cats (Felis sylvestris) and the ship rat (Rattus rattus). The latter was intro-
duced to the western Mediterranean region over 2000 years ago (Audouin-Rouzeau 
and Vigne 1994, 1997, Martin et al. 2000). The impact of the mongoose on rat and 
native small mammal abundance is unknown, but assessing the impact of one par-
ticular species among a predator community is not easy. Fortunately, the mongoose 
has been introduced to some but not all islands of Dalmatia. Although we do not 
have censuses of small mammals before and after the introduction, we attempted to 
compensate for this shortcoming by comparing mongoose-infested and mongoose-free 
islands to try to determine the impact of the mongoose on the abundance of rats and 
native small mammals.

If introduced predators are capable of changing the abundance of their prey, con-
versely, prey may be able to assess predation risk and may behave accordingly, shifting 
their feeding, social, or escape behavior (Lima and Dill 1990, Kronfeld and Dayan 
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2003). For example, R. rattus, generally nocturnal, will be active and forage during the 
day if benefits outweigh risks. Berdoy and Macdonald (1991) have shown that socially 
subordinate individuals were forced to be diurnal to escape competition from domi-
nants, and Fenn and Macdonald (1995) have shown that nocturnal visits by preda-
tors made it more dangerous for rats to be active by night than by day, forcing rats to 
be diurnal. Nellis and Everard (1983) found that rats on a Caribbean island became 
primarily nocturnal and arboreal after the introduction of the mongoose. In sum, rats 
can become more active diurnally, but cases of such a shift are scarce and possible 
mechanisms untested. 

The goals of this study are: i) to assess the abundance of introduced rats and native 
small mammals on mongoose-infested and mongoose-free islands; ii) to compare rat 
activity times on mongoose-infested and mongoose-free islands, to test the hypotheses 
that activity times will be primarily diurnal where only the noctural marten is present 
(all the mongoose-free islands), but shifted towards night time when the diurnal mon-
goose is also present.

Methods

Study area and field methods

We conducted this study in 2008 on six islands in the southern part of Adriatic Sea: 
Lastovo (5,300 ha), Brač (39,400 ha), Dugi Otok (11,400 ha), Mljet (10,000 ha), 
Korčula (27,000 ha) and Hvar (29,900 ha). The first three are mongoose-free and the 
others are mongoose-infested. These islands are relatively similar in elevation, karst 
geology, Mediterranean climate and vegetation, but vary in surface area. They have a 
similar history of agricultural practices, human occupation, and timing of introduc-
tion of most exotic species. Their landscape is a fine-grained mosaic of small agricul-
tural fields, scrublands (garrigue), thickets (maquis, mattoral), and forests. Agricultural 
production is mainly for local consumption and consists of olive groves and vineyards, 
with a few small vegetable fields with rich soil. A full description of these habitats is 
provided by Barun et al. (2010). 

To determine small mammal abundance on every island, we set up three transects 
of 30 trapping spots distributed at 30 meter intervals in 900m long transects along 
narrow dirt roads, each running through all four vegetation types described previously 
in a proportion that may vary among transects. On each transect, trapping spots were 
placed alternatively on one side of the road and its opposite, and each trapping spot 
received two live traps: one INRA trap (stainless steel, horizontal bar-sprung trap simi-
lar to Sherman traps) to capture mammals weighing less than 30 g and one ratière trap 
(collapsible, wire and hanging bait-sprung trap, Guédon et al. 1990) to trap heavier 
mammals, particularly ship rats and mongooses. All traps were baited with a mixture 
of oat-flakes, peanut butter, and sardine oil, and bait was changed once during the 
three-day trapping period or just after rain. We ran the trapping system for three days 
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and three nights in April and repeated the procedure in May at the same locations. We 
did not trap during rainy nights. We checked each trap early in the morning to collect 
nocturnal specimens and before sunset to collect the diurnal ones. Trapped animals 
were either euthanized and preserved for museum deposition or released at least one 
kilometer away from the transects.

Local habitat structure and analysis

To describe vegetation structure, four sample locations were evenly spaced along each 
transect, and the following data were collected within a 50-meter radius: % cover of 
bare ground, dead wood, rock, detritus, grasses in three layers (0–0.25 m, 0.25–0.5 m, 
0.5–1 m); % cover of vegetation layers (0–0.25 m, 0.25–0.5 m, 0.5–1 m, 1–2 m, 2–4 
m, 4–8 m, 8–16 m, 16–32 m, >32 m), maximum height of vegetation, canopy height, 
and % cover of each woody plant species. Within each vegetation layer, the relative 
cover was defined as the projection of the foliage volume of the layer on a horizontal 
plane. This was estimated by comparison with a reference percent cover chart (Prodon 
and Lebreton 1981). At each point we also recorded percent cover of each woody plant 
species present and its average height.

We used PRIMER (Plymouth Marine Laboratory, UK) to conduct an analysis of 
similarity (ANOSIM) followed by pairwise comparisons to examine if two habitat var-
iables (habitat characteristics and percent cover of each woody plant species) differed 
between islands with and without the mongoose. In the analysis, we nested six islands 
into two main grouping factors: mongoose present and mongoose absent. For each 
habitat variable, habitat characteristic, and percent cover of each woody plant species, 
we constructed a nonmetric multidimensional scaling (NMDS) plot, a nonparamet-
ric approach, using Bray–Curtis similarity coefficients from a triangular matrix (Bray 
and Curtis 1957) of Euclidean distances of islands with the mongoose versus islands 
without it. The NMDS plot can also illustrate similarity and/or dissimilarity in habitat 
characteristics between the two island groups.

Abundance analysis

To compare abundances of single species between islands with and without the mon-
goose, we calculated a Minimum Number Alive index (MNA) (Krebs 1966, Hilborn 
et al. 1976). This index is a ratio of the number of trapped animals belonging to one 
species to the number of trap-nights. However, several traps may be inoperative for 
one or all target species during parts of trapping sessions. Traps were inoperative for 
all species when they were found closed and empty (NTO). Traps were inoperative for 
a species when they contained an individual of any other species (Sum AllSpp). The 
number of trap-nights used to compute the MNA index was the number of functional 
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trap-nights for each target species (Pascal et al. 2009). The species one (Sp1) MNA 
index was computed as follows: 

Sp1MNA = Sp1C/(NT-NTO – Sum AllSpp)
Sp1C is the number of captures for species one, NT is the total number of 

trap-nights, and NTO is the number of trap-nights the trap was inoperative for all 
species, whereas SumAllSpp is the total number of individuals of all other species 
captured.

To compare R. rattus and wood mouse (Apodemus sylvaticus) abundances between 
islands with and without mongooses, we calculated mean MNA indexes for each spe-
cies for the three transects for each island and compared those values for the three is-
lands with mongooses vs. the three mongoose-free islands with a t-test. To compare R. 
rattus activity times on mongoose-infested and mongoose-free islands, we performed 
Fisher’s exact test on the total number of captured rats for all three transects for each 
island, but we kept daytime captures separate from night captures. We performed all 
analyses in JMP, Version 8. (SAS Institute Inc., Cary, NC).

Results

ANOSIM indicated that composition of habitat characteristics did not differ be-
tween islands with the mongoose and islands without it (global R = 0.359, P = 
0.136), nor did the percent cover of woody plant species differ (global R = -0.457, 
P = 0.115).

In Table 1 we list the mammal species found on each island according to Kryštufek 
and Kletečki (2007) and the number of specimens trapped during our field operations. 
Apart from 23 reptiles (Pseudopus apodus and Dalmatolacerta oxycephala) and one am-
phibian (one Bufo viridis), the 699 other captures belonged to eight mammal species 
among the 14 species recorded as present on the studied islands. The largest samples 
came from three species, two aliens, R. rattus (499) and H. auropunctatus (57), and one 
native, A. sylvaticus (122). Specimen numbers of these three species together constitute 
97 % of all mammalian captures.

Mongooses were most abundant on Mljet and Korčula and much scarcer on Hvar 
(Fig. 1), where local hunters have conducted intensive, island-wide predator-control 
operations for several years (Barun et al. 2010). Edible dormice (Myoxus glis) were not 
caught, likely because of the largely arboreal habits of this species and its long hiberna-
tion time during trapping months. MNA of rats did not differ between islands with 
the mongoose and those without it (F = 0.291, df = 5, p = 0.619). Similarly, MNA of 
A. sylvaticus did not differ between mongoose-infested and mongoose-free islands (F = 
3.523, df = 5, p = 0.134).

The frequency of rats trapped during the day on mongoose-free islands exceeded 
that on mongoose-infested islands, (P < 0.001, Fisher’s exact test, Fig. 1); in fact no rats 
were trapped on mongoose-infested islands during the day. 
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table 1. Mammalian species distributions on the islands under study, after Kryštufek and Kletečki 
(2007). X : present; - : absent; numbers are numbers of trapped individuals during our study.

Mongoose PRESENT Mongoose ABSENT

Mljet Korčula Hvar Brač Lastovo
Dugi 

Otok
Herpestes auropunctatus 31 21 5 - - -
Martes foina X X X X X X
Canis aureus - X - - - -
Felis sylvestris (feral) X X X X 1 X
Rattus rattus 158 83 62 55 44 97
Mus musculus 1 X X X X X
Apodemus sylvaticus - 22 4 54 29 13
Apodemus epimelas 1 X - - - -
Suncus etruscus - - X - - -
Crocidura suaveolens 2 1 1 6 1 4
Eliomys quercinus - 3 X X X -
Myoxusglis X X X X - -
Erinaceus concolor X X X X X -
Lepus europaeus X X X X X X

Figure 1. Total number (April and May) of trapped rats during the night and day on three islands with 
the mongoose and three islands without the mongoose. Mongoose abundance is illustrated with the pic-
ture of a mongoose for each island.
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Discussion

Our data are too scant to allow a precise sense of the impact of the mongoose on small 
mammals on these islands. However, combined with previous work on the mongoose 
diet on these islands (Barun et al. 2010), our results are suggestive. We have previ-
ously reported the following results from stomachs of 57 trapped mongooses: 19 were 
empty, 39 contained vegetation and/or animal remains, and only five produced hairs, 
one identified to A. sylvaticus (Barun et al. 2010). The dietary results accord with those 
of several studies devoted to mongoose diet in insular ecosystems, which concluded 
that the spectrum of items is very large and encompasses many plants and animals 
(i.e., Nellis and Everard 1983). It is likely that few of the small mammals we targeted 
were potential prey for the mongoose. Among the 14 mammalian species recorded on 
these islands, three are large and carnivorous, and two are semiarboricolous Myoxidae, 
all out of reach of the mongoose, which cannot confront the carnivorous species and is 
a poor climber. Among the nine remaining species, the hedgehog (Erinaceus concolor) 
and the hare (Lepus europaeus) both have natural defenses against mongoose predation 
(spines for the hedgehog and speed for the hare). Among the remaining species that 
may constitute prey for the mongoose are two shrews, Suncus etruscus and Crocidura 
suaveolens, and four rodents, of which two (Apodemus epimelas and A. sylvaticus) are 
cryptogenic (Carlton 1996) but probably native, and two are alien and invasive (Mus 
musculus and R. rattus).

Although the INRA traps and the bait we used are effective for capturing C. sua-
veolens (Pascal et al. 2009), and despite a significant trapping effort, the number of 
trapped C. suaveolens was small (n=15). Nevertheless, even though the species has been 
captured on the six islands under study, and even though the total number of captures 
on mongoose-free islands is higher (11) than on islands with mongooses (4), the sam-
ple sizes are insufficient to allow strong conclusions. Moreover, several R. norvegicus 
eradications on islands of the English Channel and French Atlantic coast have shown a 
strong detrimental effect of that rat on two shrew species, C. suaveolens and C. russula 
(Pascal et al. 2005). One cannot yet exclude a similar effect of R. rattus on C. suaveolens 
for Croatian populations, and perhaps also on S. etruscus, recorded previously only on 
Hvar, where we did not record it.

As stated previously, the small Indian mongoose has frequently been cited as a spe-
cies that could send already low island populations to the brink of extinction. In addi-
tion to the examples cited above, on Amami-Oshima Island, the shrew Crocidura orii is 
considered endangered because of the mongoose introduction (Yamada and Sugimura 
2004). On Adriatic islands, the lesser white-toothed shrew C. suaveolens is already 
considered rare (Dulić 1969), but whether an introduced predator is to blame cannot 
be determined.

As with C. suaveolens, INRA traps and the bait used are efficient for capturing 
house mice on islands (Pascal et al. 2009). Despite this efficiency and the trapping 
effort, we captured only one mouse, the species having been recorded previously on 
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these six islands. This result suggests that this mostly synanthropic species is scarce in 
natural habitats. However, several rodent eradication attempts have shown that mouse 
outbreaks occur when rats are successfully eradicated (references in Caut et al. 2007), 
suggesting mouse suppression by rats. Thus, our result does not by itself strongly im-
plicate an impact by the mongoose. Moreover, interaction among several Muridae 
species in insular ecosystems has been suspected elsewhere. For example, an inventory 
of the micro-mammalian fauna of the insular system located at the Atlantic mouth of 
the English Channel and composed of the large island of Ushant (1560 ha) and the 16 
islands of the Molène Archipelago (all less than 100 ha) was performed between 1992 
and 2000. Four murid species were recorded, three introduced (R. rattus, R. norvegicus 
and M. musculus) and one native (A. sylvaticus). These four species are present on Ush-
ant, but only one or none of the four on each island in the Molène Archipelago (Pascal 
2002). Preliminary results of archaeological research suggest that A. sylvaticus had been 
present on all these islands before invasion by the three other murids. These results 
suggest that strong interactions occur between these species, leading to replacement if 
island area is small.

Experimental conditions and our protocol do not allow us to address rigorously 
the question of the specific consequences of the introduction of the two major al-
ien species, H. auropunctatus and R. rattus, on the native mammals. Nevertheless, the 
number of individuals captured of native species was more than three times greater 
on islands without the mongoose (107) than on islands with the mongoose (33); the 
number of R. rattus captures was one-third higher in the first situation (303) than in 
the second (196). This general trend suggests that at least one of the alien species has a 
detrimental effect on the native mammalian fauna, and probably both do.

In either case, our analyses show no statistical difference in R. rattus abundance 
on islands with and without the mongoose, and this result is in accordance with an 
already large but mostly speculative literature suggesting that, in spite of its reputation 
as a good ratter, the small Indian mongoose does not substantially control introduced 
R. rattus. 

Our analyses show that the number of rats trapped during the day on mongoose-
free islands exceeded those on mongoose-infested islands. This result accords with the 
proposed mechanism explaining the poor performance of the mongoose in reducing 
rat populations (Nellis and Everard 1983) and the shift of rat activity under predation 
pressure (Fenn and Macdonald 1995). Additionally, as rats become less vulnerable 
to mongoose predation through modification of their activity time, the mongoose 
may increase predation pressure on amphibians, reptiles, and poultry (Barun et al. 
2010). Our results expand on previous work and show that the mongoose may not 
only have detrimental effects on native species of conservation concern but may also 
affect behavior of another introduced species, R. rattus, that is a major target species 
of insular eradication attempts (Howald et al. 2007). Consequences of such interspe-
cific interactions must be taken into consideration in planning eradication operations 
(Courchamp et al. 2003).
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