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Abstract

One of the negative impacts of non-native invasive species on trophic interactions in an invaded
ecosystem occurs via increased interspecific competition for food resources between the invader and
local species of the same food niche. In freshwaters, there are usually several fish species that feed
on similar food resources. Ponto-Caspian gobies are amongst the most successful and widespread
invaders colonising European waterways. They have a wide food niche and an opportunistic feeding
strategy, with a focus on benthic invertebrates and piscivory occurring occasionally mainly in the
case of large individuals. Competition with native percids for food resources is predicted on the basis
of high dietary overlap. However, studies published so far provide no unequivocal answer. In order
to resolve this question, we conducted a comparative taxonomic analysis of gut content, with an
emphasis on chironomids and amphipods, of the invasive monkey goby (Neogobius fluviatilis), racer
goby (Babka gymnotrachelus) and the native Eurasian perch (Perca fluviatilis) occurring sympatrically
in a large lowland European river, the Bug River in Poland. We found that each species forages in
slightly different habitats, as indicated by the different composition of prey species in the gut content.
This suggests feeding niche partitioning between the studied species facilitating their co-existence
and reduction or avoidance of competition for food resources. Resource partitioning regarding prey
types and foraging habitats is a mechanism for permitting the co-existence of closely-related alien
gobies with similar food preferences in the invaded waters and co-occurrence with local species.
‘This mechanism can contribute to their invasion success, as observed in European waters during the
recent decades. We also demonstrate that precise prey identification to the lowest possible taxon is
crucial to reveal the dietary overlap between co-occurring fish species and to predict the impact of
alien invaders on native species through interspecific competition, as well as to recommend such an

approach in studies upon fish foraging strategies.
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Introduction

Freshwater ecosystems, together with their biodiversity, are amongst the most
threatened and altered environments on the planet, due to the intensive human ex-
ploitation of water resources. Widespread invasions of introduced non-native spe-
cies are amongst the five main threats for such ecosystems (Dudgeon et al. 20006).
Successful biological invasion depends on several factors, including interactions of
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the newcomer with the local biota that can be particularly critical for the further
fate of an alien species. The arrival and establishment of non-native fish species
leads to a number of changes in the ecosystem, particularly in the pre-existing
food web. The ecological consequences of such interference depend on the tro-
phic position of the invader and the abundance of species that belong to the same
ecological guild in the recipient ecosystem, as well as the availability of resources
they share. Piscivorous invaders have a high potential for harmful effects on the
ecosystem, especially if native predators are rare or absent (Howeth et al. 2016).
The other frequent assumption in fish invasion ecology is that negative impacts of
invasions on trophic interactions occur via increased inter-specific competition for
food resources (see, for example, Gozlan at al. (2010); Cucherousset and Olden
(2011)). In freshwaters, there are usually several fish species that feed on similar
food resources. Their co-existence is made possible by resource partitioning, such
as different activity patterns or different use of space and food resources. Resource
partition is an effective way of reducing competition and it applies also in the case
of alien species introductions to recipient fish assemblages (Britton et al. 2010;
Tran et al. 2015). Comparative studies on diet of functionally similar fish species
in sympatry require detailed prey identification to conclude about resource parti-
tioning or diet overlap (Dukowska et al. 2013; Lik et al. 2017). The identification
of prey to the lowest possible taxon has potential value for determining the habitat
preferences of both a prey and, based on that, its predator, as for fish, feeding hab-
its and habitat preferences are often interconnected.

As fish species change their trophic status over the course of their lives, display-
ing ontogenetic niche shifts, many European freshwater fish do not fall into dis-
crete trophic categories (Noble et al. 2007; Speczidr and Rezsu 2009), but should
rather be classified into collective groups, for example, insectivore/piscivore (Noble
et al. 2007) or, according to other classifications, zoobenthivorous/piscivorous or
zooplanktivorous/zoobenthivorous/piscivorous (Aarts and Nienhuis 2003). Mac-
rozoobenthos is an important food for many species. The classification of fish that
occur in the Rhine and Meuse rivers into ecological guilds showed that 49 out of
56 species included in the study had a zoobenthivorous phase in their life and they
comprised ca. 40% of all species of fish there. A similar pattern can be found in
other rivers belonging to the Central European biogeographical region (sensu Rey-
joletal. (2007)). The region was distinguished by the composition of ichthyofauna
and encompasses watersheds from the River Elbe in the west, through the Rivers
Oder, Vistula, Neman to Narva in the east, as well as the Swedish and Finnish
Baltic river systems. In recent decades, the rivers in this region have faced rapid
invasion by five Ponto-Caspian goby species (Grabowska et al. 2008; Rakauskas
et al. 2018; Kvach et al. 2021). The contribution of invasive gobies to local fish
assemblages varies between watersheds and changes over time (Polacik et al. 2009;
Borcherding et al. 2011; Jandc et al. 2018; Gaye-Siessegger et al. 2022). They are
considered to have a wide food niche and an opportunistic feeding strategy. The
diet differs between goby species, but benthic invertebrates, in particular amphi-
pods and chironomid larvae, are their main prey, while piscivory occurs only in the
case of larger individuals of some species (see review by Grabowska et al. (2023)).
Their strong competition with native fish species was expected on the basis of high
diet overlap, especially with native percids (Copp et al. 2008; Addmek et al. 2010;
Kocovsky et al. 2011; Borcherding et al. 2019).
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The racer goby Babka gymnotrachelus (Kessler, 1857) and monkey goby Neogo-
bius fluviatilis (Pallas, 1814) are the first two invasive gobies that arrived in the Vis-
tula River system, almost at the same time, in the mid-1990s and soon spread there
rapidly (Grabowska et al. 2008). They were recorded for the first time in the Baltic
Sea Basin in the Bug River, right tributary of the Vistula, being part of the central
invasion corridor for the Ponto-Caspian aquatic fauna from the Black Sea Basin
(Semenchenko et al. 2011). Until 2008, they were the only goby species present
in the Vistula River system (Grabowska et al. 2008). The frequency of occurrence
of racer and monkey goby in the Bug River (main right tributary of the Vistula) in
2007-2009 was 32% and 68%, respectively (Penczak et al. 2010), reaching even as
much as 85% and 100%, if we consider only the lower section of that river, where
their first expansion occurred. At all sites, alien gobies co-occurred with Eurasian
(European) perch Perca fluviatilis Linnaeus, 1758, which was recorded in 96% of
the 56 sites surveyed along 587 km of the river (Penczak et al. 2010).

The diet of racer and monkey gobies is similar and mainly comprises benthic
macroinvertebrates, though chironomid larvae, other insects larvae, amphipods,
molluscs and occasionally also small fish fry, predominate in their diet (Grabows-
ka and Grabowski 2005; Kakareko et al. 2005; Grabowska et al. 2009; Didenko
etal. 2017, 2021a, b, 2022a). It can be expected that these two alien gobies share
food resources with native perch that feed on similar prey, at least during some
stages of their ontogeny (Kornijéw 1997; Rezsu and Speczidr 2006; Kornijéw
et al. 2016). Considering that, at the time of sampling for our study, racer goby
and monkey goby had already established abundant populations in the Bug River
and had co-occurred there with European perch for around 10-15 years since
their first arrival, we aimed to determine whether such co-existence is based on
resource partitioning.

We hypothesised that the three fish species, although potentially feeding on
the same type of prey, slightly vary the composition of their diet, for example, by
exploring different foraging habitats to minimise interspecific competition when
co-occurring in the same section of a river. We verified this prediction by compara-
tive analysis of fish diet, based on the detailed taxonomic identification of selected
prey taxa, focusing on chironomids and amphipods, which can differ in terms of
the occupied microhabitats. We achieved this by analysing the gut content of racer
goby, monkey goby and European perch occurring sympatrically in a large lowland
river flowing through the East European Plain, which constitutes a crucial part of
the Central Invasion Corridor for westward expansion of the Ponto-Caspian fau-
na, as defined by Bij de Vaate et al. (2002).

Materials and methods
Fish sampling and site description

All the three studied species, monkey goby, racer goby and perch, were sampled
from three sites (Fig. 1) located in the Bug River (the Vistula River system’s
largest eastern tributary, Baltic Basin, Poland) in 11-14 August 2007. The Bug
River maintained its natural character of a lowland, meandering river within a
wide valley. It is 772 km long and the watershed covers 39,420 km?. Its sources
are in Ukraine, but after 185 km, a stretch of 363 km comprises the border be-
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Figure 1. Location of sampling sites Z, R, B in the Western Bug River and places of first record of racer goby (red dot) and monkey goby

(green dot) in Poland.

tween Poland, Ukraine and Belarus. Later, it turns to the west until it joins the
Narew River, shortly before its confluence with the Vistula River. Sampling sites
7 (52°23.57333'N, 22°42.25833'E), R (52°42.08667'N, 22°09.73333'E) and
site B (52°37.41000'N, 21°35.03000'E) were situated in the lower Bug River,
which flows entirely through the territory of Poland. The river in this section is
more than 100 m wide and relatively shallow, but with a heterogeneous depth
profile (pools and riffles), mainly with a sandy bottom, though with some contri-
bution of gravel and stones (Table 1) and scattered submerged vegetation, such
as Elodea canadensis, Potamogeton perfoliatus, Myriophyllum sp. The riverbed is
naturally meandering with a sequence of eroded and deposited banks with some
emerging macrophytes (Zjpha sp., Scirpus sp., Juncus sp., Sparganium sp., Glyce-
ria maxima). Only in site B, there was a short section of the bank that had a
limestone embankment and a paved area at a small bay and a platform created
as a recreational area in the village. The racer goby was very abundant there, as it
used such artificial structures as hiding places. The surrounding landscape mainly
comprised pastures and other agricultural lands (Table 1).

Fish were sampled at depths from 0.5 m to 1.7 m, along the riverbank by elec-
trofishing with a battery-powered unit, 350 V, 20-100 Hz, wading ca.100 m up-
stream along the bank and from the boat drifting 500 m downstream.
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Table 1. Morphometry of sampling sites: Z, R, B in the Western Bug River. Explanations: a) — ab-
sent, + very little/few, ++ common, +++ abundant; b) % of bed cover; ¢) % of bank overgrown; d)

pa- pastures, - meadows, cr- cropland, bl- buildings.

Site z R B

1. Distance from the mouth [km] 176.7 108.2 46.0
2. Mean width [m] 120 109 114
3. Mean depth in current [m] 1.8 0.8 1.5

Maximal depth in the current [m] >3.0 1.5 >3.0
4.9 Pools/riffles et + +
5. Mud cover 0-100 [%] 0 5 0

Bottom substrate: sand/gravel/stone [%] 70/20/10 50/30/20 60/20/20
6. Submerged plants 10 20 10
7.9 Emerged plants 30 50 30
8.9 Trees along banks ot Ht +
9.9 Adjacent area pa, 1 cr, pa, bl bl, 1, pa
10. Water temperature [°C] 19.0 19.1 19.2
1.  pH 8.62 8.75 8.89
12. Dissolved oxygen [mg O* dm™] 13.4 5.9 9.26
13 Conductivity [pS cm] 509 502 476

Fish diet analysis

Fish were anaesthetised (MS-222) and preserved in 4% formaldehyde. In the lab-
oratory, the fish were measured for total length (Lt; to the nearest 1 mm) and
weighed (with 0.01 g accuracy). Their alimentary tracts were dissected. The gut
contents (in each fish, the same section of alimentary tract, i.e. stomach and first
half of intestine) were weighed (to 0.0001 g accuracy) and prey items were iden-
tified under a stereomicroscope. Chironomidae larval stages can be identified to
genera or groups of closely-related species, but only rarely to the species level. Their
remains from the fish gut lack many features that are necessary for precise identi-
fication and, thus, following the main key used in this study (Brooks et al. 2007),
they were identified to the morphotype cf. level.

Animal prey remains were identified to the lowest readily recognisable taxon,
counted and the proportional weight was estimated. The percentage contribution
by weight of each food category to the biomass of total stomach content was es-
timated visually (Hyslop 1980) and then recalculated into real weights, based on
the weight of total gut content. The frequency of occurrence (defined as percentage
of fish guts containing given prey category in relation to the total number of fish
with guts containing any food: %F), percentage of biomass (weight of given food
category in relation to total weight of gut content: %B) and relative abundance
(number of given prey category in relation to total number of prey: %N) were
quantified for each food category at each sampling site.

The Amundsen et al. (1996) modification of the Costello (1990) graphical
method was applied to describe feeding strategy and to identify dominant prey
items for the fish species, as well as feeding phenotypic plasticity.

Dietary overlap between each pair of fish species was calculated using Schoener’s
index (Wallace 1981): a = 1-0.5 [, _, (p,—p,)], where p_ is the proportion of the
ith resource used by species j and p, is the proportion of the ith resources used by
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species 4; overlap values exceeding 0.6 were regarded as high or biologically signif-
icant (Wallace 1981). As the proportion in Schoener’s index calculation, we used
%N proportion: numbers of given prey type to the total number of prey found in
fish gut. To show how the accuracy of prey identification influences the evaluation
of dietary overlap, we estimated it based on protocol 1 — considering main food
categories, i.e. prey pooled into taxonomic groups usually applied in fish diet stud-
ies, for example, Amphipoda, Chironomidae (called later Schoener’s index 1) and
protocol 2 — considering detailed food categories, i.e. prey identified to the lowest
possible taxonomic level (called later Schoener’s index 2).

To compare the taxonomic composition of the diet between fish species over-
all (all sites pooled) and at each sampling site, one-way permutation analysis of
similarity (ANOSIM, Bray-Curtis similarity coeflicient) was used, based on prey.
ANOSIM is analogous to an ANOVA procedure, with non-parametric permuta-
tion applied to rank similarity matrix of samples. The similarity percentage proce-
dure (SIMPER) was used to identify which prey taxa were most likely responsible
for the patterns detected by ANOSIM. SIMPER provided the average dissimi-
larities between the species and identified which prey taxa made the greatest con-
tribution to any dissimilarities between analysed categories (Clarke and Warwick
1994). All multivariate analyses were performed using PAST software (ver. 3.15;
Hammer et al. (2001)).

Dietary niche width was calculated as a Simpson diversity index: 1 - D =1 —Zpi ?
and Shannon diversity index: H = — 2pi log2 pi, where pi is the proportion of differ-
ent prey in the diet (Ghent 1991).

Results

The fish species recorded from the sampling sites were mainly bleak Alburnus al-
burnus and roach Rutilus rutilus. These two species constituted 45%—-64% of all
fish caught at the study sites and dominated in abundance along the whole mid-
dle and lower river course. The other species that occurred at all three sites were
common bream Abramis brama, white bream Blicca bjoerkna, pike Esox lucius,
chub Squalius cephalus, ide Leuciscus idus, common rudd Scardinus erythrophtal-
mus, spined loach Cobitis taenia and bitterling Rhodeus sericeus (Suppl. material 1).
The contribution of studied fish species to the fish assemblages at studied sites Z,
R, B was as follows: racer goby (2.8%, 1.6%, 4.3%), monkey goby (0.7%, 4.0%,
6.0%) and perch (7.3%, 6.4%, 5.2%), respectively. However, for further analysis
we selected perch species of size range similar to gobies, i.e. almost all large perch
(> 150 mm) were excluded in diet analysis and the majority of individuals were
juveniles, i.e. in benthivorous stage of ontogeny.

In total, 63 individuals of racer goby, 77 of monkey goby and 62 of perch were
caught in three sampling sites. In four out of 202 dissected individuals, the alimen-
tary tracts were empty and not considered in further analysis.

In all three fish species, prey belonging to Amphipoda, Chironomidae larvae
and pupae, Gastropoda, Trichoptera larvae, Coleoptera larvae, Oligochaeta and
Hirudinea were found in the diet (Suppl. material 2). Odonata larvae and Pisces
were not recorded from any monkey goby and Bivalvia were not eaten by perch.
Altogether, we distinguished 11 main prey categories and, additionally, four ac-
countable categories of fish gut content for which only biomass was estimated, the
latter being Mollusca not identified, detritus, sand and fish eggs. The contribution
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Table 2. Diet composition of the European perch, racer goby and monkey goby (mean, minimum and maximum total length of fish — TL)

expressed as relative abundance (%N) and relative biomass (%B) of main food categories in gut content at the three studied sites (Z, R, B).

Species Racer goby Monkey goby European perch
Site z R B z R B z R

N of specimens 34 20 27 20 32 24 31 30

Mean TL [mm] 70.24 60.70 74.65 96.90 92.36 85.86 95.24 98.154
(£14.50) (+15.53) (£14.50) (+27.36) (+14.68) (£16.03) (£29.95) (£7.95)

Min-max TL [mm)] 51-101 42-96 52-103 52-124 61-120 54-112 53-150 84-115

Food categories %N | %B | %N | %B | %N | %B | %N = %B | %N | %B %N | %B @ %N | %B %N | %B

Amphipoda 27.5 48 19.6 65 13.8 38 16.7 22 6.1 19 54.9 53 54.2 57

Chironomidae larvae 437 | 12 674 | 29 | 788 17 | 39.7 8 762 | 44 | 76.1 17 | 204 6 23.8 5

Chironomidae pupas 4.8 4 4.3 1 3.8 3 5.4 7 1.0 2 2.6 2 7.0 3

Trichoptera larvae 0.6 >1 12.8 4 2.2 3 18.1 18 0.4 >1 0.5 2

Odonata larvae 0.6 >1 0.5 6 1.0 1.7 >1

Coleoptera larvae 1.8 2 2.5 1 1.0 4 0.9 >1 1.9 2

Bivalvia 14.4 19 2.2 1 11.5 26 7.9 5 1.9 6

Gastropoda 5.4 4 6.5 4 2.5 10 128 27 1.8 2 1.4 2

Mollusca not ident. 6 14

Oligochaeta 1.3 1 1.0 6 0.9 6

Hirudinea 0.6 >1 2.6 10

Pisces 0.6 >1 1.3 21 19.1 34 10.3 23

Detritus (plant) 12 23 2

Sand 12

Fish eggs 12 12

of each food category varied between sites (Table 2), but Chironomidae larvae
were the dominant prey for both goby species, considering both abundance and
frequency of occurrence and of a secondary importance for perch (Fig. 2A-C),
which fed predominantly on amphipods, which dominated in abundance and bio-
mass of their food (Table 2). These crustaceans were also found in more than 50%
of racer goby guts (Fig. 2B), constituted 38—65% of food biomass in that fish spe-
cies (Table 2) and were subdominant prey, considering their contribution to the
total prey abundance (Fig. 2B). Amphipods were less frequently eaten by monkey
goby (Fig. 2C) and their contribution to prey abundance and total biomass de-
pended on the site (Table 2).

The plot of prey specific abundance (%Nps) and frequency of occurrence (%F)
of the main components of the diet showed that chironomid larvae were the prey
of higher importance for gobies, while, for European perch, amphipods were more
important (Fig. 2). The prey of high importance means that it has been eaten by
more than half the individuals and have high contribution in specific abundance.
Considering feeding strategy, both gobiid species and European perch are gener-
alist feeders, relying on several prey taxa with a relatively low prey-specific abun-
dance, being mainly located in the lower part of the diagram.

Diet overlap, as calculated for the 11 main food categories (Schoener’s index 1),
occurred amongst all three species if data for all sites were pooled, which indicated
that their prey spectrum was very similar (Table 3). If analysed separately for each
site, the dietary overlap was very high (ca. 0.8) only between the gobies at all three
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Figure 2. Feeding strategy displayed using the Amundsen et al. (1996) modification of the Costello (1990) graphical method for A Eu-

ropean perch B racer goby C monkey goby, in the Bug River (only main food categories included and data from sites pooled for species)

D explanatory diagram (%Nps — prey specific abundance; %F — frequency of occurrence defined as percentage of fish guts containing

given prey category in relation to the total number of fish with guts containing any food).

sites, moderate (0.5) between racer goby and perch, while there was no dietary
overlap between monkey goby and perch at any site (Table 3).

Up to 56 taxa (including 28 chironomids and 4 amphipods) dominated the
food categories shared by the three studied fish species. For the analysis, we
rejected taxa that were found in only one fish, which reduced the number of
prey taxa to 42 (including 24 chironomids). The values of Schoener’s index 2
indicated that there was no dietary overlap between gobies and perch at any
site, but there was also no dietary overlap between racer goby and monkey goby
at site B or it was moderate (ca. 0.5) at the other two sites, Z and R (Table 3).
ANOSIM similarity analysis showed that the mean abundance of Chironomi-
dae, Amphipoda and other taxa in fish diets varied between fish species, when
data from all individuals of each fish species from all sites were pooled, while
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Table 3. The dietary overlap estimated, based on two protocols: calculated for general (Schoener’s index 1) and detailed food identification

(Schoener’s index 2) categories. Pairwise comparisons (Bonferroni test) of fish diet following one-way ANOSIM and SIMPER analysis

based on detailed identified food categories.

Comparisons

Fish species (site pooled)

perch vs racer goby vs. monkey goby
perch vs. racer goby

perch vs. monkey goby

racer goby vs. monkey goby

Site Z

perch vs. racer goby vs. monkey goby
perch vs. racer goby

perch vs. monkey goby

racer goby vs. monkey goby

Site R

perch vs. racer goby vs. monkey goby
perch vs. racer goby

perch vs. monkey goby

racer goby vs. monkey goby

Site B

racer goby vs. monkey goby

Schoener’s index | Schoener’s index ANOSIM SIMPER
1 2 R p dissimilarity
0.1893 0.0001 91.08
0.826 0.424 0.1333 0.0060 87.82
0.721 0.220 0.3520 0.0030 94.95
0.818 0.480 0.1266 0.0030 91.22
0.2953 0.0001 91.07
0.530 0.346 0.3543 0.0003 88.47
0.400 0.175 0.0353 0.9140 97.26
0.784 0.572 0.2656 0.0470 92.53
0.1883 0.0010 91.47
0.491 0.274 0.1393 0.0003 84.30
0.370 0.175 0.3250 1.0000 94.57
0.816 0.556 -0.0870 1.0000 90.53
0.790 0.389 0.3243 0.0130 88.83

if analysed between fish species within each site, showed some exceptions, for
example, there were no differences between perch and monkey goby at sites Z
and R and between racer goby and monkey goby at site R (Table 4). SIMPER
identified the taxa that contributed the most to the overall dissimilarity between
the diets of the fish species (Table 4).

Ten taxa, i.e. Glhyptotendipes ct. pallens, Dikerogammarus villosus, Chironomus cf.
riparius, Pisces, Pontogammarus robustoides, Polypedilum cf. nubeculosum, Micro-
tendipes pedellus-type, gastropods, caseless larvae (Hydropsyche sp.) of Trichoptera
and Rbeocricotopus cf. chalybeatus, out of 56 analysed, contributed to 80% of the
overall dissimilarity amongst the diets of perch, racer and monkey gobies, though
the mean abundance of particular prey varied between sites (Fig. 3).

The perch mainly fed on amphipods, i.e. P robustoides at site Z, D. villosus at site
R and fish at sites Z and R. Amongst the Chironomidae larvae, the G. cf. pallens
contributed the most to the perch diet at each site. This chironomid was the most
abundant in the diet of racer goby at sites Z and B. D. villosus was also an import-
ant food item of racer goby at site Z. Sphaeridae were not recorded in the diet of
perch, but contributed to the diet of both goby species, especially at site Z, where
monkey goby fed also on gastropods. Contrary to the other two co-occurring fish
species, monkey goby consumed many caseless trichopteran larvae, as well as the
chironomids: C. cf. riparius at all sites and P cf. nubeculosum at site B.

The prey diversity was lower for perch than for gobies. Concerning the latter,
prey diversity tended to be higher for racer goby than for monkey goby at sites Z
and R; however, it was equal at site B (Fig. 4A, B), where the contribution of vari-
ous chironomid species to the diet of both gobies was very high.
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Figure 3. Average relative abundance of prey taxa (%N) in the gut contents of PF — European perch, BG — racer goby, NF — monkey goby, which,
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Table 4. Results of SIMPER analysis identifying prey categories with the highest contribution to the
overall dissimilarity amongst fish species diets and their mean relative abundance (%N) in diets of

perch (PF), racer goby (BG) and monkey goby (NF).

Taxon Contribution % | Cumulative % | Mean PF | Mean BG | Mean NF
Glyprotendipes cf. pallens 15.1 15.1 17.0 28.0 11.9
Dikerogammarus villosus 14.1 29.2 29.1 13.3 0.1
Chironomus cf. riparius 9.6 38.8 0.0 3.8 22.8
Pisces 7.8 46.6 21.0 1.3 0.0
Pontogammarus robustoides 6.4 53.0 14.6 2.3 1.3
Polypedilum cf. nubeculosum 4.8 57.8 2.8 5.1 6.1
Sphaeriidae 4.4 62.3 0.0 7.5 3.8
Microtendipes cf. pedellus 4.3 66.5 0.0 4.8 6.8
Gastropoda not identified 4.2 70.7 0.6 2.4 8.0
Hydropsyche sp. larvae 3.6 74.3 0.5 0.0 8.9
Dikerogammarus not identified 2.4 76.7 0.3 2.7 3.4
Rheocricoropus cf. chalybeatus 2.1 78.8 0.0 3.6 1.6
Gammaridae not identified 1.9 80.7 1.3 2.4 1.5
Dicrotendipes cf. nervosus 1.9 82.6 0.6 3.1 1.2
Glyprotendipes cauliginellus pupae 1.6 84.2 2.4 1.3 0.9
Chaetogammarus ischnus 1.5 85.7 1.8 2.2 0.0
Cryptochironomus sp. 1.4 87.1 0.0 0.0 3.6
Dikerogammarus haemobaphes 1.3 88.4 0.4 1.5 1.4
Rheotanytarsus sp. 1.2 89.6 0.0 1.3 1.8
Coleoptera (Gyrinus sp.) 1.1 90.7 1.7 1.2 0.0
Lipiniella moderata 1.1 91.8 1.2 0.3 1.5
Tanytarsini not identified 1.1 92.9 0.0 0.3 2.4
Zygoptera larvae 1.0 93.8 2.4 0.3 0.0
Trichoptera larvae not identified 0.9 94.7 0.0 0.0 2.3
Coleoptera larvae not identified 0.7 95.5 0.5 0.9 0.4
Polypedilum cf. sordens 0.5 95.9 0.0 1.2 0.0
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Figure 4. Dictary niche width of European perch, racer goby and monkey goby at three study sites
Z, R, B, in the Western Bug River calculated as A — Simpson diversity index: 1 — D and B — Shannon
diversity index: H.
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Discussion

The studied fish species, native European perch as well as non-native racer goby
and monkey goby, fed on similar prey taxa, which suggests a high dietary over-
lap. Nevertheless, more detailed identification of taxa in the most abundant food
categories, i.e. chironomid larvae and amphipods, revealed that they foraged on
different prey at sites where they co-occurred. Thus, although the majority of prey
taxa were recorded in guts of all the three studied fish species, their contribution
to the diet at a given site was different. This supports the hypothesis of resource
partitioning to avoid competition for food between native and non-native species.
Although several experimental studies showed the higher competitive ability of
invader versus native species and the greater potential of the former to utilise resources
(Kakareko et al. 2013; Grabowska et al. 2016; Mofu et al. 2019), there are mecha-
nisms to avoid such antagonistic interactions in natural environments. One of ob-
served functional responses to introduction of non-native species is trophic niche
divergence to minimise the trophic interactions between competing species (Tran et
al. 2015; Britton et al. 2018). It facilitates the integration of introduced species into
food webs (Britton et al. 2018). Contrary to an expected negative impact of gobies on
co-occurring native fish species of similar trophic position, there was no clear evidence
for that from field surveys (Piria et al. 2016; Ramler and Keckeis 2019). Instead, spa-
tial segregation between species of the same feeding guild was suggested, which was
assumed to arise from different prey dominating the diet, for example, racer goby and
native ruff and perch in the Vistula River (Grabowska and Grabowski 2005).
Moreover, our findings proved that accuracy in taxonomic identification of prey
taxa is essential to provide reliable data for dietary overlap or resource partitioning
assessment. It is especially crucial in the case of fish species, for example, racer goby
and monkey goby, feeding on the same type of prey that is very diverse considering
its body size and occupied microhabitats. Identification of prey to the lowest possi-
ble taxon also allows us to determine the habitat preferences of fish species based on
the knowledge of their prey microhabitat preferences. Our results showed that, in
the case of gobies, resource partitioning is realised by utilisation of different habitats.

Native perch vs. alien gobies

Both goby species and European perch fed on the macrozoobenthos. The perch
is known to shift toward piscivory with its ontogenetic development (Hjelm et
al. 2000; Rezsu and Speczidr 2006). In our study, only a few individuals of perch,
i.e. > 120 mm predate on juveniles of fish. Bleak Alburnus alburnus, bitterling
Rhodeus amarus and unidentified fry of other cyprinids were recorded in its diet
in the Bug River. In the case of the studied gobies, we recorded piscivory only in
the racer goby, but identification of the prey species was impossible due to the ad-
vanced stage of the digestion process. Piscivory was already reported, both for racer
goby and monkey goby, but such a food category was not considered important
and generally occurred only in the largest individuals (Grabowska and Grabowski
2005; Grabowska et al. 2009; Grabowska et al. 2023).

In general, the diets were more similar between the goby species than between
either of the gobies and perch. However, the diet of perch was more similar to
that of the racer goby than to that of the monkey goby. Both the Eurasian perch
and the racer goby fed on prey that indicated their association with macrophytes.
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Macrophyte patches are refuges for small fish, as well as hiding places or substrate
for several macrozoobenthic groups, such as amphipods, insect larvae, for exam-
ple, Diptera and Zygoptera larvae or gastropods, that are attractive food for many
fish species (Gulati et al. 1990; Van den Berg et al. 1997; Dukowska et al. 2012;
Dukowska and Grzybkowska 2014; Grzybkowska et al. 2020). In fact, they were
common prey for perch and racer goby in our study.

Amphipods were especially important food items for perch and racer goby in
the Bug River. Depending on the site, these fish mainly ate Pontogammarus robus-
toides or Dikerogammarus villosus and less D. haemobaphes. Field observations have
shown that all three species are rather eurytopic (Bacela and Konopacka 2005;
Grabowski et al. 2007; Zytkowicz and Kobak 2008). Nevertheless, they show some
species-specific habitat preferences. For example, D. villosus and D. haemobaphes
were reported to prefer stony substrates (Boets et al. 2010; Clinton et al. 2018).
On the other hand, in comparison to adult individuals, juveniles of 2 robustoides
are known to prefer various macrophytes as their main habitat (Czarnecka et al.
2010). The high contribution of P robustoides to the diet of the racer goby and the
co-occurring European perch has also been reported in our earlier studies in the
Whoctawski Reservoir (Grabowska and Grabowski 2005). Amphipoda are known
to be eaten by racer goby in the main channel of the Vistula River and in the large
dam-reservoir built on it (Kakareko et al. 2005), as well as in its native range,
i.e. in the middle Dnieper River (Pinchuk et al. 2003). Considering chironomid
larvae, both perch and racer goby predated relatively large species, such as Glypro-
tendipens cf. pallens. This morphotype of Glyprotendipes spp. is common in various
freshwater habitats (Moller Pillot 2009). Often, it is associated with macrophytes
and coarse organic matter (Kornijéw 1997; Moller Pillot 2009; Cerba et al. 2022).
Glyptotendipes pallens is a plant tissues miner and scraper (Koperski 1998; Beiger
2004), but it also inhabits other types of substrates, for example, plant detritus,
wood debris and mud (Moller Pillot 2009; Cerba et al. 2022). Macrophytes are
traps for organic matter in running waters and create ideal microhabitats for bot-
tom dwelling chironomids, thus, many Glyptodendipes spp. are common on mac-
rophytes, as well as in mud gathered around them (Grzybkowska et al. 2020).
Glyptotendipes sp. were also one of the most important Chironomidae taxa in the
diet of racer goby in lowland rivers in the Dnieper River system (Didenko et al.
2021a) where, in line with our findings, the diet of racer goby also indicated its
association with plants, as has been reported from the Vistula River (Kakareko
et al. 2005). Epiphytic chironomids were found to be the main prey of perch in
pondweed (Potamogeton spp.) patches, while typically benthic species were pre-
terred by ruft (Gymnocephalus cernuus) in the lowland Warta River (Dukowska and
Grzybkowska 2014). We did not record Chironomus riparius in the diet of perch at
any site, while it was quite common in gut content of both goby species, however,
with different contributions to the overall species diet. This sediment burrowing
chironomid is probably more difficult to obtain by perch, contrary to both goby
species, as they have a habit of hiding in sediments (Kakareko 2011), which may
give them more opportunities to find C. cf. riparius larvae in mud. However, the
European perch, considered to be an epi-benthic predator, was found to penetrate
bottom sediments to some depth searching for food in lake littoral, where it fed
on large individuals of Chironomus plumosus larvae (Kornijéow 1997). Despite that,
amongst the same lentic sedimentary benthos communities associated with litto-
ral macrophytes, predation by perch was most intensive on motile invertebrates,
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such as isopods and amphipods, while chironomids contributed less to perch diet
(Kornijéw et al. 2016). This is consistent with our results, suggesting that amphi-
pods may be the most important prey for the European perch.

Both goby species and European perch feed on small gastropods, such as Bithynia
sp., Valvata sp. and Potammopyrgus antipodarum, which are also associated with sub-
merged macrophytes (Van den Berg et al. 1997). These gastropods were frequently
recorded in the diet of the racer goby in the Wloctawski Reservoir (Kakareko et
al. 2005). Locally, they were even the dominant food category for that fish species
(Kostrzewa and Grabowski 2003). In our study, in comparison with racer and mon-
key gobies, European perch rarely ate gastropods. Such prey was scarcely reported
in previous studies on the diet of perch, even if they were abundant in the macroin-
vertebrate assemblages (Rezsu and Speczidr 2006; Kornijéw et al. 2016). Macroin-
vertebrates of such low mobility are not attractive prey for sight-dependent diurnal
predators like perch (Craig 2008; Kornijéw et al. 2016). Another food item that
differentiated gobies and perch in terms of diet were the Sphaeridae bivalves. That
typical benthic group of molluscs was found quite frequently in the diet of both
racer and monkey gobies, while none was recorded from perch. Sphaeridae were also
an important prey of both goby species in the Vistula River and in the Wioctawski
Reservoir (Kakareko et al. 2005). Coleopteran larvae were occasional prey of gobies
and perch in the Bug River. In the gut content of racer goby, we even found an adult
of Gyrinidae. The presence of pleuston organisms, such as whirligig beetles, suggests
that racer goby utilised a wider range of microhabitats when searching for food,
from the surface of the water to the riverbed. In fact, the diversity of the gobies
diets, especially in the case of racer gobies, was higher than in the case of perch.

In summary, alien gobies, in particular the racer goby, and European perch pos-
sibly used similar habitats for foraging, i.e. macrophyte patches in areas of more
stagnant water and muddy bottom. However, perch with a body length similar
to that of co-occurring gobies, was more piscivorous. The dietary overlap between
perch and gobies usually comprised prey items that are very common in the riverine
environment, such as amphipods and large chironomid larvae (Dukowska et al.
2012; Dukowska and Grzybkowska 2014). The two fish display different foraging
strategies. Perch searches actively for prey, is a sight-dependent diurnal predator
(Craig 2008) and prefers rather motile prey that are easier to detect (Kornijow et al.
2016). Activity of the prey seems to be less important for a nocturnal predator, such
as the racer goby (Grabowska and Grabowski 2005; Kakareko et al. 2013). In exper-
imental conditions, the racer goby fed equally effectively on immobilised and mo-
bile amphipods, choosing prey species rather according to their quality than their
mobility (Blorska et al. 2015), which suggests that, to detect food, the racer goby
uses not only sight, but also other senses. Furthermore, perch is morphologically
and anatomically better adjusted for active hunting and pursuing escaping prey than
gobies that do not possess a swim bladder and have a less streamlined body shape.

Racer goby vs. monkey goby

Racer goby and monkey goby had similar diets. They fed mainly on Chironomidae
larvae, on the basis of the relative abundance and frequency of this prey in the fish
gut content. The detailed identification of taxa within this food category showed
that, in fact, the gobies foraged in different microhabitats, even at the same sites
and their mode of foraging was also slightly different. Our study shows that several
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taxa of chironomids contributed to 60% dissimilarity between the diet of the stud-
ied goby species. Chironomids are a prevalent group in the freshwater macrozoo-
benthos, often standing out in their abundance and species and functional diversi-
ty, which makes them key elements of freshwater food webs (Armitage et al. 2012).
Their ecological characteristics allow them to fill many niches and serve as a varied
functional groups in aquatic ecosystems. Different groups of chironomid larvae
are associated with different types of substrate: mud, sand, gravel, stones, plants
(Moller Pillot 2009). They inhabit periphytic communities that develop on various
hard surfaces or exploit the substrate by drilling into plant or animal tissue, mining
wood, burrowing into the sediment surface or attaching to the bodies of other in-
vertebrates (Moller Pillot 2009; Grzybkowska et al. 2016; Antczak-Orlewska et al.
2021). Chironomid larvae, being such a diverse group of macroinvertebrates and
important food for many aquatic organisms, can be used as an additional indicator
of habitat preferences, based on their contribution to the predator’s diet.
Glyptotendipes cf. pallens dominated amongst chironomid larvae in the diet of
racer goby. In summer, this taxon can be found in silty tubes built on macrophytes,
mining in their decaying parts, but also on other firm surfaces, such as decaying
wood or stones. In large rivers, in particular, the larvae of this species are more nu-
merous on stones than on plants. This taxon avoids fast running waters and prefers
more stagnant parts of the river channel (Moller Pillot 2009). Similarly, racer goby
is more abundant in lentic areas, where it prefers habitats with a muddy bottom
and moderate macrophyte cover, but also stones, for example, rip-raps along the
river banks (Kakareko 2011; Plachocki et al. 2020) or single stones scattered on
the bottom (Kakareko et al. 2016). Thus, the high abundance of G. cf. pallens in
the racer goby diet derives from similarity in habitats occupied by the prey and its
predator. In addition to Ghprotendipes cf. pallens, the other chironomids associated
with macrophytes (Dicrotendipes nervosus and Polypedilum sordens) were found in
the gut content of the racer goby more frequently and in higher abundance than in
the gut of the monkey goby. Similar chironomid taxa also dominated the racer goby
diet in the Dnieper River system (Didenko et al. 2021a, b). Another indicator of
racer goby habitat preferences are chironomids that use stones as one of the possible
substrates, such as Rheocricotopus chalybeatus, which also frequently settles on plants
and uses stones if plants are unavailable (Moller Pillot 2013). The R. cf. chalybeatus
was recorded in the gut of racer goby more often than in monkey goby at two out
of the three sites. Compared to racer goby and perch, the monkey goby ate many
large larvae of the Chironomus cf. riparius. This pelophilous species is very com-
mon in chironomid communities associated with mud and sand, but sometimes
also with submerged aquatic plants, burrowing in soft sediment trapped by the
roots (Dukowska and Grzybkowska 2014; Grzybkowska et al. 2020; Leszczyriska
et al. 2021). The species can be very numerous also on stones or concrete bottoms
covered by a thin layer of mud (Moller Pillot 2009). Chironomus riparius is often
considered to be a characteristic inhabitant of flowing waters, also fast-flowing sec-
tions of brooks and streams and even rapids, providing that the organic silt is on
the bottom, as it feeds on organic particles. It was also recorded as the dominant
chironomid taxon in the diet of monkey goby in the Vistula River and less numer-
ous in the gut content of the co-occurring racer goby, which eats mainly epiphytic
species (Kakareko et al. 2005). The monkey goby is usually associated with sandy or
gravelly bottoms in lotic parts of rivers, while it is less abundant at sites with mod-
erate vegetation cover (Kakareko 2011; Plachocki et al. 2020). It also prefers higher
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water velocity in comparison to the racer goby, as has been shown experimentally
(Kakareko 2011) and can be found more often in the main flow of the river, where
there are spots with slower water velocity caused by varied obstacles, such as macro-
phytes or stones. The latter form refuges for several organisms that are prey for fish,
for example, for monkey goby. Such patches of macrophytes and stones covered by
periphyton and accumulating sediment rich in organic matter, are very productive
(Grzybkowska et al. 2020). Besides C. cf. 7iparius, other chironomid bottom-dwell-
ers are more frequent in monkey goby gut content than in racer goby, for example,
Cladopelma gr. viridulum, Cryptochironomus, Lipiniella moderata, Microtendipes cf.
pedellus, Stictochironomus cf. rosenschoeldi (Brooks et al. 2007; Moller Pillot 2009).
Some chironomid taxa recorded in the diet of monkey goby are typically associated
with a fast water current and stony gravel substrate (e.g. R. cf. chalybeatus, Rheo-
tanytarsus sp.) or with sand like, for example, Lipiniella moderata (Moller Pillot
2009; Klukowska et al. 2011). Moreover, the considerable contribution of caseless
Trichoptera larvae, for example, Hydropsyche sp., which use water current to catch
suspended organic matter, is another indicator that monkey goby occurs in lotic
habitats (Stuijfzand et al. 1999). This supports the hypothesis of niche separation
between the monkey goby and the racer goby and concurs with previous findings
that monkey goby consumed mainly sand- and mud-dwelling, burrowing chiron-
omids, while the racer goby has a more diverse diet, including both bottom-dwell-
ing burrowing and phytophilous morphotypes of Chironomidae, as well as other
macrophyte-associated macroinvertebrates (Kakareko et al. 2005; Didenko et al.
2022b). Shift in diel feeding activity can be another way to avoid food competition
between co-occurring alien gobies. The racer goby is predominantly a nocturnal
feeder (Grabowska and Grabowski 2005; Kakareko et al. 2013), while the mon-
key goby is more active during the day (Didenko et al. 2017) or shows no differ-
ence between day and night (Grabowska et al. 2009). Similarly, the co-existence of
the other invasive gobies, i.e. round goby (Neogobius melanostomus) and big head
goby (Ponticola kessleri) in the middle Danube River was suggested to be possible
by resource partitioning and slightly different feeding strategy (Stevove and Kova¢
2013). The previously published revisions of ecological interactions of five alien
Ponto-Caspian gobies in their non-native range (Kornis et al. 2012; Grabowska et
al. 2023) emphasised that they are a diverse group considering their ecological de-
mands and functional ecology, including types of prey (e.g. Didenko et al. (2022b))
and diet shift with ontogeny (e.g. Stevove and Kové¢ (2016)); thus, their invasions
in European inland waters impact native biota in diverse ways.

To conclude, we show that detailed prey identification to the lowest possible
taxon is crucial to properly justify the diet overlap between co-occurring fish spe-
cies and to verify the suggested impact of alien invaders on native species through
interspecific competition. Resource partitioning considering prey types and forag-
ing habitats is one of the ways of allowing the co-existence of closely-related alien
gobies with similar food preferences in the invaded waters and their co-occurrence
with local fish species. Together with an opportunistic feeding strategy, it is likely
to be a major factor behind their invasion success observed in European waters
in the last decades. We therefore recommend that, in order to gain more detailed
insights into the foraging strategy of fish, in future studies, researchers should not
limit their dietary analysis only to the identification of higher taxa, but should
identify prey down to the lowest possible level, especially in taxonomic groups
consisting of species that differ in the microhabitats they occupy.
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Travelling through parts of South Africa or Iberia, such as north-western Portugal, it
would be easy to imagine that one is in the heart of the Australian bush, such is the
abundance, prominence and diversity of species of Australian acacias that are now
found in these areas. Acacia, a genus of more than 1,000 species of shrubs and small
to medium-sized trees — known generically in Australia as “wattles — now domi-
nate significant areas in parts of the world where they are introduced. In Portugal,
alongside the wattles, are large-scale plantations of eucalypts, further accentuating
just how ‘Australian’ some of these distant habitats have become. It is this process
of the globalisation via introductions and invasions of wattles that is the focus of
a new book: “Wattles. Australian Acacia Species Around the World”, published by
CABI in 2023, and edited by David Richardson, Johannes Le Roux and Elizabete
Marchante, who appropriately work respectively in South Africa and Portugal.
While it is well-known that the large, mainly Australian, legume genus Acacia is
now one of the planet’s most widely spread plant genera, the sheer scale and extent
of its anthropogenic translocation are quite staggering. As documented in this new
book, 41% of the 1082 species of Acacia, i.e. 417 species, are known to occur as
non-natives; introduced Acacia species have been recorded from 172 countries; 75
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species have established self-sustaining populations following introductions; 28 spe-
cies are classified as invasive and causing substantial ecological and socio-economic
impacts. This global tallying up of the history of introductions and their current
status is an impressive achievement of this book, establishing a global database and
baseline for future comparisons and analyses. It is also notable that the sheer scale
of translocation of so many species of wattles to different regions across the world
opens opportunities for understanding the drivers and trajectories of plant invasions
via large scale comparative studies of species and regions. For example, what are the
relative contributions of variation in intrinsic species biology versus extrinsic factors
in dictating the outcomes of introductions? Similarly, why have the impacts of in-
troduced species been apparently much more benign in some regions than others?
This scope to address general questions make wattles a flagship group for under-
standing invasion biology. Quite simply, Australia’s wattles are among the plants
that are central to the unfolding story of neobiotic species in the Anthropocene.

This book explores in great depth and breadth the insights that can be gained
from understanding these plants. With 122 authors from 17 countries, spanning
a wide range of disciplines, this book represents a goldmine of knowledge about
the ecology, evolutionary biology, biogeography and macroecology, utility and in-
vasiveness of the genus Acacia, the second largest genus of legumes (Fig. 1), and its
spectacular conquest of the world.

The book starts with a series of chapters that presents a synthesis of the taxon-
omy, environmental amplitudes and functional trait and genetic attributes of the
vast natural species pool encompassed by the genus Acacia, linking that knowledge
to the invasion status and invasiveness potential of species. This is followed by a set
of chapters documenting the history of introduction, spread and invasion of aca-
cias, dubbed the Anthropocene conquest of the globe by the wattles. This synthe-
sis is based around detailed regional studies in Europe, California, Africa, Brazil/
Chile, and New Zealand, including data on the utility and perceptions of wattles
by people around the world. Next, follow chapters on the biology of interactions
between Acacia and other groups of organisms — symbionts, seed dispersers, pol-
linators, and pests and diseases — biology that underpins our understanding of
why wattles are such successful invaders. It is this biological knowledge that also
provides the basis for developing potential biological control and management
options in areas where wattles have invaded. There are then chapters devoted to
assessments of the impacts — social, economic and ecological — of Acacia introduc-
tions and invasions. The final section of the book is devoted to discussing ways to
control, monitor, manage and model wattle invasions. The concluding chapter,
entitled the “Wattles’ Invasion Syndrome, attempts to encapsulate the key elements
of why acacias are such prominent travellers and invaders. This is neatly summed
up in the book as Woody Australian Trees that Transform landscapes: Legumi-
nous, Enemy-free, with persistent Seedbanks, i.e., WATTLES!, a syndrome that
may be applicable to other groups of woody plant invaders.

In common with many invasive tree species and genera that have been moved
around the globe, wattles stand out as conflict trees. This is because they were
usually introduced deliberately for forestry, agroforestry, soil stabilisation and as
ornamental garden plants and can confer important economic, environmental or
aesthetic benefits, but at the same time bring with them environmentally transfor-
mative impacts in the form of species invasions. These impacts include even the
establishment of novel ecosystems, so-called “wattle jungles” or thickets, following
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Figure 1. A selection of the 28 species of Australian Acacia that are invasive where introduced, showing growth forms, leaves, flowers

and fruits A tree of Acacia mearnsii, Bridgetown, Western Australia B tree of A. dealbata subsp. dealbata in full flower C phyllodes (mod-

ified leaves) and spicate inflorescences of A. longifolia subsp. saphorae D bipinnate leaves and capitate inflorescences of A. dealbata subsp.
dealbata E fruits and seeds with fleshy arils of A. auriculiformis. Photos courtesy of Bruce Maslin (A), Alan Gibb (deceased) (B), Lachlan
Copeland (C), Alan Gibb (D), Kym Brennan (E).

invasion or abandonment of Acacia plantations. This book achieves a well-balanced
perspective on what can often be polarised views of such conflict trees, giving at-
tention to both the positive benefits and negative impacts of introductions. In that
context, the book includes chapters devoted to sociological, not just biological and
ecological aspects. This is important in revealing, for example, that planting inten-
sity and scale, especially for forestry, is one of the principal determinants of whether
species become invasive or not, and that changing perceptions about the value and
utility of species are likely key determinants of future invasive trajectories. Above
all, what comes across is that the social-ecological dynamics of wattle introductions
and perceptions of their utility and value, are indeed dynamic, are far from stable
through time, and are likely to continue to change in a rapidly changing world.
This importance of history and shifting perceptions through time is also amply
revealed by the contributions in this book. The successive waves of interest in ex-
porting and importing species of wattles at different times in history in different
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parts of the world are documented. The most recent wave of spread has resulted
in by far the largest wattle production areas on the planet spanning millions of
hectares of wattle plantations in south-east Asia over the last few decades (e.g.
6% of Vietnam’s land area in the last 20 years). Given this recent Acacia boom
in south-east Asia it is perhaps a pity that no chapter focused specifically on the
history and status of introductions in that region was included alongside the other
regional syntheses. Nonetheless, this minor criticism does not detract from the
overall global panorama that stands out in this book. This panorama demonstrates
that, in addition to comparative biological and biogeographical data, wattle in-
troductions and invasions also present a valuable comparative time series that can
provide further potent insights into invasions more generally.

This book presents an outstanding global synthesis of the biology, ecology, bio-
geography and management of one of the most important groups of tree invaders
globally. It is essential reading not just for those with a specific interest in wattles, but
to everyone working on the biology and ecology of species invasions more generally.
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Abstract

Plant invasion science has made a substantial progress in documenting the impacts of aliens, but
comparisons with the impacts of native dominants are still rare. Further, the impacts on larger spatial
scales remain poorly understood. We recorded the impacts of 10 native and nine invasive dominant
plants in the Czech Republic on species richness and Shannon diversity by comparing communities
with high vs. low cover of the dominant species. To estimate the impacts at the (i) population level
and (ii) between-population level, we compared the Jaccard dissimilarity, nestedness and turnover
of high- and low-dominance plots. Further, we calculated the Jaccard dissimilarity, nestedness and
turnover between the high- and low-dominance plots within each population to express the impacts
on species composition. We tested whether (i) native and invasive dominants affect the population-
and between population levels of diversity by making the vegetation more homogenous; (ii) whether
these effects differ between the native and alien dominants; and (iii) whether the impacts at different
spatial levels are related. At the population level, high-dominance plots (with both native and alien
dominants) showed higher nestedness and lower turnover compared to the low-dominance plots.
Further, all plots with native dominants, both with high- and low dominance, showed higher simi-
larity but lower nestedness than plots with alien dominants. Most importantly, high-dominance plots
with native dominants were more similar to each other but showed marginally significantly lower
nestedness compared to high-dominance plots with alien dominants. At the between-population
level, high-dominance plots with native dominants showed a marginally significantly lower turnover
compared to high-dominance plots with alien dominants. The differences in Jaccard dissimilarity,
nestedness and turnover between the low- and high-dominance plots at the population level showed
strong positive relations to low- and high-dominance differences at the between-populations lev-
el. Further, compositional impacts, expressed as the dissimilarity between high- vs. low-dominance
plots, positively related to the plot-level impacts on Shannon diversity. Our results show that (i) both
native and invasive dominants tend to reduce the diversity over larger areas and that the effect of
native dominants may be even stronger, and (ii) the effects on plot-level richness and diversity cannot
be easily extrapolated to larger scales but the impacts at the population- and between-populations

levels are positively related.

Key words: Alien dominants, beta diversity, impacts, native dominants, spatial scale

29



Alessandra Kortz et al.: Impacts of native and alien dominants at different spatial scales

Introduction

In the last decades, progress has been made toward documenting the communi-
ty-level impacts of invasive plants (e.g. Hejda et al. 2009; Vil4 et al. 2011; Pysek
et al. 2020), which includes comparisons between the impacts of native vs. alien
dominants (Paolucci et al. 2013; Buckley and Catford 2016; Hejda et al. 2017,
2019; Pergl et al. 2023). However, the impacts of native dominants on the species
richness and diversity are still rarely studied (but see Pivello et al. 2018; Hejda et al.
2021), even though it can be presumed that their impacts are comparable to that
of invasive dominants, given their aggressive spread and high-levels of dominance
(e.g. Hejda et al. 2021). In this sense, many natives behave like so-called “super-
dominants” (Pivello et al. 2018), with expected strong impacts on species richness,
diversity and composition. The association between high levels of dominance and
lower species richness has long been established (e.g. Able and Noon 1976) and,
at the same time, shifts in dominance are usually apparent earlier than the reduc-
tion in species richness, which makes dominance an important indicator of the
global change (Chapin et al. 2000). Further, dominant aliens can not only change
species richness but also the proportional representation of individual species in
the community (Hillebrand et al. 2008). However, how these community-level
impacts scale up to larger areas remains mostly unexplored, with the few results
so far being rather contradictory (see, e.g. Martin and Wilsey 2015; Dyderski and
Jagodzinski 2021). Similarly, previous studies comparing the effects of alien and
native dominants have focused on changes in species richness (alpha diversity, e.g.
Czarniecka-Wiera et al. 2019), whereas changes in species composition (beta di-
versity) remain less explored.

There are several ways to define diversity at different spatial scales. A plot-level
diversity generally refers to alpha diversity, as it usually represents species richness
or diversity measured at scales ranging from 1 m?* to a few hundred m?*. The scale
of alpha diversity also represents an important issue, as the number of species
sampled increases non-linearly with increasing spatial scale (Gotelli and Colwell
2001), which can lead to different shapes of species-accumulation curves. The scale
of measuring alpha diversity also represents a challenging issue, as different types
of vegetation can have very different shapes of species-accumulation curves (Go-
telli and Colwell 2001; Roswell et al. 2021). Further, there is a question on how
to define beta diversity or a large -scale diversity in general. A common definition
of beta diversity is the variation in species composition amongst distinct sites in a
particular geographical location (Whittaker 1960). One approach is to partition
the regional gamma diversity into within-alpha diversity and between-beta diver-
sity components.

It is evident that when measuring the effects on alpha diversity, the small-scale
(plot-level) effects cannot be easily extrapolated to larger scales (Chase et al. 2018).
Further, the changes in plot-level richness (or alpha diversity) provide only a lim-
ited view of the changes in diversity, and it is necessary to include information on
the spatial changes in species composition (Chase et al. 2018, 2019). For example,
changes in composition can happen even without changes in the number of species
(e.g. species replacement whilst the total number of species remains equal).

A theoretical paper by Socolar et al. (2016) suggests four basic mechanisms for
how beta-diversity may be enlarged or reduced: (i) additive heterogenization, when
locally specific species are added; (ii) additive homogenization, when common
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and spatially unspecific species are added; (iii) subtractive heterogenization, when
common species disappear, become rare or locally specific; and (iv) subtractive
homogenization, when rare or locally specific species disappear. It is most likely
the interplay of all these effects that drive changes in large-scale diversity patterns.
However, it can be presumed that the mechanism of “subtractive homogenization”
plays a major role, as the dominant plants are documented to reduce local species
richness and diversity (e.g. Hejda et al. 2021).

The case studies focused on the role of dominant species provide contradictory
results and show that native dominant species can result in stronger biotic ho-
mogenization than aliens (Dyderski and Jagodziriski 2021). Schlegel and Riesen
(2021) reported that the native dominant Preridium aquilinum suppressed the al-
pha diversity and eliminated the Red-Listed species of Orthoptera but, at the same
time, increased beta diversity over large scales. On the contrary, Fukami et al.
(2013) documented that alien dominants prevented the vegetation from diverg-
ing during succession, reducing riparian vegetation’s beta diversity. Martin and
Wilsey (2015) showed that the diversity of native- vs. alien-dominated grasslands
differed along a north-south gradient (from Minnesota to Texas, USA) with regard
to the spatial scale. The local diversity was consistently higher in native-dominated
grasslands, and regional diversity was higher in the native-dominated grasslands
in the north of the area studied, while alien-dominated grasslands had higher di-
versity in the south, and the diversity of the alien-dominated grassland was gen-
erally greater across the whole area. The authors suggested several mechanisms to
interpret this somewhat surprising pattern, including present and past patchiness
and inter-patch connectivity, disturbance history, or present and past management
(Martin and Wilsey 2015).

This paper aims to address these issues by analysing plant community data sam-
pled across the Czech Republic, central Europe. In particular, we aim to test the
following questions: (i) Do the local, plot-level impacts of native and alien domi-
nants on species richness and diversity scale up to the within- and across-popula-
tion levels (ii) Do these effects differ between the native and invasive alien domi-
nants? (iii) Are the effects of dominants recorded at different spatial scales related
or independent?

Methods
Sampling design

We sampled populations of 10 native (Calamagrostis epigejos, Cirsium arvense,
Cirsium heterophyllum, Cirsium oleraceum, Filipendula ulmaria, Petasites hybridus,
Phalaris arundinacea, Rubus idaeus, Tanacetum vulgare, and Urtica dioica) and nine
invasive dominant plants (Aster novi-belgii agg., Heracleum mantegazzianum, Im-
patiens glandulifera, Lupinus polyphyllus, Reynoutria japonica, Reynoutria xbohem-
ica, Rumex alpinus, Solidago canadensis, and Telekia speciosa; Suppl. material 1).
We sampled plots of 4 x 4 m in size located within populations of studied species
across the Czech Republic (Suppl. material 2) that ranged from hundreds to thou-
sands of m? in size (see Hejda et al. 2021 for details on the sampling scheme); the
populations were selected so as to include stands with high and low dominance
of the target dominant species. Low dominance referred to 0-25% cover of the
target species, and these low-cover plots were used as controls. On the contrary,
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high dominance encompassed >50% of the dominant species cover (see Hejda et
al. 2021 for details). We then estimated the local impacts of these dominant species
on species richness and Shannon diversity index of invaded communities, as well
as on species composition.

Diversity measure

To detect the changes in species composition associated with the dominant species,
we calculated the Jaccard dissimilarity index, which is based on incidence data
(Jaccard 1900) and regarded as robust to taxonomic error as well as both numerical
and geographical undersampling (Schroeder and Jenkins 2018).

We calculated the Jaccard dissimilarity index (8, ) at the (i) population-level
(= dissimilarity of plots within populations); and (ii) between-population level
(= dissimilarity of plots between populations), using the beta.pair function (index.
family="jaccard”) of the betapart package (Baselga 2013; R Core Team 2022). The
values of the index range from 0 (maximum similarity or lowest dissimilarity) to
1 (minimum similarity or highest dissimilarity). The following formula was used:

b+c

Pac= G¥b+o

where 4 is the number of species in common between two sites, & is the number of
species unique to the site with the lowest number of species, and ¢ the number of
species unique to the site with the largest number of species.

Total Jaccard can be partitioned into turnover (3, ) and nestedness component

(8,0

jne

s s _2b+(c—b)(a)
B = B + Pne = (2b+a) \a+b+c/\2b+a

Nestedness refers to changes in species richness, in which the site with the lowest
richness represents a subset of species of the richest site, and turnover, which refers
to species replacement from site to site (Baselga and Orme 2012) (see Fig. 1 for a
schematic representation of turnover and nestedness).

We estimated the population- and between-population level impacts as differ-
ences in similarity between the plots with low vs. high dominance of the selected
dominants, assuming that this represents the homogenizing effect of the dominant
species (see Fig. 2 for a schematic representation of our sampling design and how
the diversity metrics were calculated at distinct spatial scales).

At the population level, we calculated Jaccard, turnover and nestedness amongst
all high-dominance plots and amongst all low-dominance plots to each popula-
tion of each species. We then recorded the median value in each population with
high-dominance plots and compared them with the corresponding median values
of the low-dominance plots.

Further, we compared the total Jaccard, nestedness and turnover of high-domi-
nance plots with native vs. alien dominants to compare their homogenizing effect.
In the case of the population-level impacts, we also calculated the Jaccard dissimilari-
ty, nestedness and turnover between the high- and low-dominance plots within each
population to express the population-level impact on species composition, assuming
that the lower similarity between the low and high dominance plots (within popula-
tions) shows a larger impact on species composition. Here, to tackle the challenge of
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Figure 1. Schematic representation of the partitioning of the Jaccard dissimilarity index into turnover and nestedness components (see

text for the formula and more information). Turnover refers to the gain and loss of species (species replacement) between the areas (e.g.
high dominance plots of a particular dominant species), whereas nestedness refers to the cases where the plot with the lowest number of
species represents a subgroup of species of the richest plot/site. In the scheme, the species in blue are unique to plots A and C, the species

in black are shared between both plots and the species in orange are unique to plot B.
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Figure 2. Scheme of our sampling design and how the impacts were estimated. The plot level is marked with blue arrows, the population
level is marked with dashed green arrows, and the between-population level with the dashed orange arrows. In each population, the me-
dian value across all high-dominance plots and the median value across all low-dominance plots were computed; these median values of

high and low-dominance plots were then compared in the analyses.
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comparing different numbers of high and low dominance plots, given that the high
vs low combination itself is substantially higher than high vs. high and low vs. low, we
combined all high-dominance plots of a population as a single “high dominance plot”,
and similarly for a single “low dominance plot”. Thus, in each population of each spe-
cies, we recorded a single direct dissimilarity distance of high vs. low-dominance plots.

To express the plot-level impacts, we used LMM regression models to relate the
plot-level species richness and Shannon diversity to the cover of selected domi-
nants, accounting for the identity of dominant species and their populations (nest-
ed in “dominants”) by setting these as random effects. We quantified the plot-level
impacts as the slope/intercept ratios of the corresponding LMM regression models,
accounting for the a priori different species richness and diversity of different types
of vegetation (see Hejda et al. 2021 for details on data processing and analyses).

Further, we used LMM models to compare the similarity, nestedness and turn-
over of low- vs. high-dominance plots at the population- and between-population
levels and the effects of native vs. alien invasive dominants. Further, we used para-
metric and non-parametric correlations to test the relationships between the effects
at different spatial levels.

Results
Impacts at the population level

At the population level, high-dominance plots with both native and alien domi-
nants taken together showed higher nestedness and lower turnover compared to all
low-dominance plots (p = 0.018 and p = 0.002, resp.). In other words, sites with high
dominance were linked to a higher degree of nestedness (which in turn is related to
species losses), consistently for both alien and native dominants (see Table 1).

Considering all plots with native dominants (high and low dominance plots
taken together) vs. all plots with alien dominants, we found that the former were
more similar to each other but also had a lower nestedness than plots with alien
dominants (p = 0.039 and p = 0.043, respectively, Table 2, see also Suppl. material
3 for the details on statistical tests).

Comparing high-dominance plots with native and alien dominants, we found
that the former showed lower Jaccard dissimilarity (i.e., were more similar), whereas
the latter had marginally significantly higher nestedness (p = 0.045 and p = 0.072,
resp). In other words, plots with a high native dominance had more species in com-
mon than plots with a high dominance of aliens, where the species loss was stronger.

Considering the low-dominance plots, no significant differences in Jaccard,
nestedness or turnover were detected between native and alien dominants. At the
population level, no significant differences between the effects of native vs. alien
dominants (defined as differences in dissimilarity, nestedness and turnover be-
tween the low- and high-dominance plots) were found (Table 1).

Impacts at the between-population level

High-dominance plots with alien dominants showed higher species turnover com-
pared to high-dominance plots with native dominants, but this difference is only
marginally significant (p = 0.051, Table 2). Comparing high and low-dominance
plots within the same origin of dominants, native dominants show lower levels
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Table 1. Jaccard dissimilarity, nestedness and turnover values as recorded at the population level. Each consecutive line represents the com-
parison being made (e.g. high and low plot dominance of all dominants taken together). Values differing significantly are in bold (p<0.05),

values differing marginally significantly are in izlics (p<0.1). Please see the Suppl. material 3 for more details on statistical models.

Origin of the dominant species = plot dominance | Jaccard dissimilarity S.D. nestedness S.D. turnover S.D.
native and alien high 0.306 0.233 0.048 0.07 0.213 0.205
native and alien low 0.347 0.261 0.029 0.04 0.302 0.241
native high and low 0.284 0.233 0.034 0.05 0.227 0.214
alien high and low 0.374 0.255 0.045 0.065 0.291 0.238
native high 0.267 0.216 0.04 0.06 0.19 0.192
alien high 0.35 0.244 0.058 0.079 0.238 0.217
native low 0.299 0.25 0.027 0.035 0.261 0.229
alien low 0.399 0.266 0.031 0.044 0.344 0.248
native low v high 0.033 0.34 -0.013 0.072 0.073 0.316
alien low v high 0.049 0.386 -0.027 0.081 0.106 0.344

Table 2. Jaccard dissimilarity, nestedness and turnover values as recorded at the between-population-level. Values differing marginally

significantly are in ##alics. Please see the Suppl. material 3 for more details on statistical models.

Origin of the dominant species = plot dominance = Jaccard dissimilarity S.D. nestedness S.D. turnover S.D.
native and alien high 0.296 0.126 0.032 0.035 0.194 0.114
native and alien low 0.357 0.146 0.015 0.011 0.311 0.153
native high and low 0.287 0.083 0.022 0.033 0.21 0.123
alien high and low 0.371 0.172 0.025 0.02 0.299 0.159
native high 0.263 0.035 0.03 0.045 0.146 0.082
alien high 0.333 0.177 0.034 0.024 0.247 0.125
native low 0.311 0.11 0.015 0.012 0.275 0.126
alien low 0.408 0.169 0.016 0.01 0.35 0.178
native low v high -0.049 0.111 0.014 0.047 -0.129 0.186
alien low v high -0.074 0.334 0.019 0.024 -0.103 0.286

of turnover in high-dominance plots compared to low-dominance plots, whereas
alien dominants show higher levels of nestedness in high-dominance plots com-
pared to low-dominance plots (Fig. 3). Similarly to the population level, no dif-
ferences in the effects of native vs. invasive dominants, defined as the dissimilarity
differences between the low- and high-dominance plots, were detected at the be-
tween-population level (Table 2).

Relations between the impacts at different spatial scales

No significant relationships between the impacts recorded at the plot- and either
population- or between-population levels were detected (Table 3). On the con-
trary, strong positive relationships between the population- and between-popu-
lation level impacts were found for Jaccard dissimilarity, nestedness and turnover
(Table 3). These strongly significant positive relationships were identified using
both parametric (Pearson) and non-parametric correlations (Spearman, Kendall;
see Suppl. material 3 for the results of non-parametric correlations).
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Table 3. Relations between the impacts at different spatial levels for alien and native dominants taken together. The impacts at the
plot-level are defined as the slope/intercept ratios of regression models relating the plot-level richness or Shannon diversity to the cover of
the target dominant. The impacts at the population and between-population levels are defined as differences in dissimilarity between the

high- and low-dominance plots. Significant relations are in bold. Please see the Suppl. material 3 for more details on statistical models.

spatial level I spatial level IT measure I measure IT Pearson correlation p-value
plot population species richness Jaccard dissimilarity 0.283 0.24
plot population Shannon diversity Jaccard dissimilarity 0.123 0.616
plot population species richness nestedness 0.03 0.904
plot population Shannon diversity nestedness -0.052 0.833
plot population species richness turnover -0.259 0.285
plot population Shannon diversity turnover -0.093 0.704
plot between-population species richness Jaccard dissimilarity -0.172 0.483
plot between-population Shannon diversity Jaccard dissimilarity -0.085 0.73
plot between-population species richness nestedness 0.074 0.763
plot between-population Shannon diversity nestedness 0.092 0.707
plot between-population species richness turnover -0.171 0.483
plot between-population Shannon diversity turnover -0.075 0.761
population between-population Jaccard dissimilarity Jaccard dissimilarity 0.963 p<0.001
population between-population nestedness nestedness 0.777 p<0.001
population between-population turnover turnover 0.911 p<0.001
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Figure 3. Between-population level results for all species. Each dot represents the median value across all sites of the same species at a cer-
tain dominance category (high or low); each line connects the dominance category of a species. Alien dominants (a-c) show higher levels
of nestedness in high-dominance plots compared to low-dominance plots, whereas native dominants (d-f) show lower levels of turnover
in high-dominance plots compared to low-dominance plots. Alien species: An: Aster novi-belgii agg., Hm: Heraclewm mantegazzianum,
Ig: Impatiens glandulifera, Lp: Lupinus polyphyllus, Rj: Reynoutria japonica, Rb: Reynoutria xbohemica, Ra: Rumex alpinus, Sc: Solidago
canadensis, Ts: Telekia speciosa; native species: Ce: Calamagrostis epigejos, Ca: Cirsium arvense, Ch: Cirsium heterophyllum, Co: Cirsium oler-

aceum, ¥u: Filipendula ulmaria, Ph: Petasites hybridus, Pa: Phalaris arundinacea, Ri: Rubus idaeus, Tv: Tanacetum vulgare, Ud: Urtica dioica.
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We found strong positive relationships between the plot-level impacts on Shannon
diversity and population-level impacts on species composition, expressed as the simi-
larity between the low- and high-dominance plots within each population (Table 4).
We also detected a strong negative relation between the turnover at the population level
(the turnover component of the population-level compositional impacts) and the im-
pacts on the turnover of species at the between-population level (expressed as the differ-
ences in turnover between the low- and high-dominance plots). Similarly to the previ-
ous finding, the relationship between the turnover component of the population-level
compositional impacts and the turnover component of the between-population-level
impacts was significant when both parametric (Pearson correlation) and non-paramet-
ric methods (Spearman and Kendal correlation; see Suppl. material 3) were used.

Discussion

Impacts at the population level

At the population level, high-dominance plots show higher nestedness and low-
er turnover than low-dominance plots. In other words, taking alien and native
species together, the high-dominance plots lose more species in a nested pattern,
and the species replacement is lower than in the low-dominance plots. However,

Table 4. Relations between impacts at the plot-, population- and between-population-levels and compositional impacts at the popula-
tion-level. These refer to the direct low v. high dominance comparison. The impacts at the plot-level are defined as the slope/intercept ratios
of regression models relating the plot-level richness or Shannon diversity to the cover of the target dominant. The impacts at the popula-
tion and between-population levels are defined as differences in dissimilarity between the high- and low-dominance plots. Compositional
impacts at the population level are defined as the dissimilarity between the low- and high-dominance plots within each population. Please

see the Suppl. material 3 for more details on statistical models.

Comparison level I level IT impact I impact IT Correlation
group
A population-level | plot-level (species richness) low-high dissimilarity (Jaccard slope/intercept ratios 0.45 (p = 0.053)
dissimilarity)
A population-level | plot-level (species richness) low-high dissimilarity slope/intercept ratios
(nestedness)
A population-level | plot-level (species richness) low-high dissimilarity slope/intercept ratios
(turnover)
A population-level | plot-level (Shannon diversity) | low-high dissimilarity (Jaccard slope/intercept ratios 0.586 (p = 0.008)
dissimilarity)
A population-level | plot-level (Shannon diversity) low-high dissimilarity slope/intercept ratios
(nestedness)
A population-level | plot-level (Shannon diversity) low-high dissimilarity slope/intercept ratios
(turnover)
B population-level population-level low-high dissimilarity (Jaccard | low-high differences (Jaccard
dissimilarity) dissimilarity)
B population-level population-level low-high dissimilarity low-high differences
(nestedness) (nestedness)
B population-level population-level low-high dissimilarity low-high differences
(turnover) (turnover)
C population-level between-population-level low-high dissimilarity (Jaccard | low-high differences (Jaccard
dissimilarity) dissimilarity)
C population-level between-population-level low-high dissimilarity low-high differences
(nestedness) (nestedness)
C population-level between-population-level low-high dissimilarity low-high differences -0.530 (p = 0.02)
(turnover) (turnover)
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no significant difference in Jaccard dissimilarity between the low- and high-dom-
inance plots was recorded at the population level, suggesting that the high-dom-
inance plots are not necessarily less diverse and more homogenous than the adja-
cent low-dominance plots. Apparently, distinctive dominants can lower the local,
plot-level (alpha) diversity without affecting the large-scale diversity expressed by
the beta diversity indices. However, Kortz and Magurran (2019) found a con-
trasting pattern: the presence of aliens was associated with an increase in the local
diversity, as areas with more aliens tend to have more species, but decreased the
large-scale (beta) diversity, by making the vegetation more homogenous due to
adding commonly shared aliens amongst the areas. A similar pattern was detected
by Nobis et al. (2016): the local richness of native and alien species was positively
related. However, the richness of alien species was negatively related to native beta
and gamma diversity, which especially concerned red-listed species. Importantly,
the fact that aliens contribute to plot-level diversity precludes the competitive ex-
clusion of native species by dominant aliens.

The homogenizing effect of alien dominants was described for some aliens, such
as the amphibious Althernanthera philoxeroides (Wu et al. 2022). The large-scale
impacts of this species were context-dependent, being stronger in invaded terres-
trial rather than aquatic habitats and in the northern part of the invaded range in
China. In other cases, the effects of invasive aliens on native diversity were detect-
ed to be consistently negative across different spatial scales. For example, Stotz et
al. (2019) detected a consistently negative effect of the invasive Bromus inermis
both within and across individual grasslands in Alberta, Canada, and Boscutti et
al. (2020) detected a spatially consistent negative effect of the invasive Amorpha
fruticosa in northern Italy. Interestingly, Bando et al. (2022) detected a negative
effect of the invasive Urochloa arrecta on both spatial and temporal beta-diversity
in Brazil.

We did not find studies comparing the large-scale effects of multiple invasive
and native dominants, even though there are studies comparing the large-scale
impacts of invasive aliens in their native and invaded ranges — see for example Lolis
etal. (2019), who detected a negative effect of the invasive Eichhornia crassipes on
both alpha and beta diversity in the invaded range, China, but not in its native
range, Brazil.

When comparing plots with high dominance of native species with those of
aliens, the former were more similar (i.e., showed lower dissimilarity), pointing
to their stronger homogenizing effect. At the same time, high-dominance plots
with native dominants also showed marginally lower nestedness than their alien
counterparts. The same pattern was detected for all plots merged regardless of the
degree of dominance: those with native dominants are more similar but show low-
er nestedness than plots with alien dominants.

Impacts at the between-population level

It needs to be stressed that the tests on the differences between high- and low-dom-
inance plots, as well as between the native vs. alien dominants at the between-pop-
ulation level, are weak due to the high residual variability. This is because the
data include samples with different dominants, both native and alien, and with
different types of vegetation, both within- and across dominants. Inevitably, this
introduces a lot of residual variability that remains unexplained by our models.
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No significant differences between the low- and high-dominance plots and be-
tween the native and alien dominants were recorded at the between-population
level, except that high-dominance plots with native dominants showed a margin-
ally significantly lower species turnover. This again suggests a slightly stronger ho-
mogenizing effect of native dominants, similar to that recorded at the population
level. This is also in line with recent evidence that areas across the globe with alien
plants have higher levels of species replacement than areas with native species only
(Kortz et al. 2023).

Relationship between the impacts of dominant species recorded at
different spatial scales

When the population and between-population-level impacts were defined as
differences in Jaccard similarity, nestedness, and turnover between the low- and
high-dominance plots, no significant relationships between the impacts recorded
at the plot level and those measured at either the population or between-pop-
ulation levels were revealed. However, we recorded strong positive relationships
between the impacts at the population- and between-population levels, and this
holds for all three indices used, i.e., Jaccard dissimilarity, nestedness and turnover.
This clearly shows that the impacts at the population- and between-population
levels are strongly related; however, it also confirms that plot-level impacts cannot
be easily extrapolated to higher spatial scales.

On the contrary, we recorded strong positive relations between the plot-level
impacts on Shannon diversity and the population-level impacts on species compo-
sition. This indicates that changes in the plot-level alpha diversity are strongly asso-
ciated with compositional changes. Further, the turnover component of the popu-
lation-level compositional impacts was strongly negatively related to the turnover
component of the between-population-level impacts, defined as the differences
between the low- and high-dominance plots.

Conclusions

Our results suggest that the homogenizing effects of native dominants are equal
to or even stronger than those of the invasive alien dominants, which concerns
the impacts recorded at the population- and partially also at the between-popula-
tion levels.

Our results also support the assertion that the plot-level impacts on neither
species richness nor Shannon diversity can be easily extrapolated to higher spatial
levels. However, the plot-level impacts on Shannon diversity relate to the compo-
sitional impacts recorded at the population level, and the impacts recorded at the
population- and between-population levels are also positively associated.

These results suggest that conservation efforts aiming at the maintenance of the
diversity of communities and landscapes should target not only invasive aliens but
also native expansive species with dominant tendencies. This is especially true in
Eurasia or the Old World in general, with an array of native synanthropic domi-
nants with expansive tendencies. However, the situation may be completely differ-
ent in areas without a long tradition of a strong human impact (New World, dis-
tant islands, and archipelagos), which may be, therefore, presumed to lack native
dominants with synanthropic tendencies.
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Abstract

Understanding intraspecific trait variations, particularly for invasive species that occupy large geo-
graphic areas with different resource conditions, can enhance our understanding of plant responses
to changes in environmental resources. However, most related studies have focused on aboveground
traits, while variations in root traits and responses to changes in resources during biological invasion
have not been clarified. To fill this knowledge gap, we compared the root traits of Chromolaena
odorata from 10 introduced populations in Southeast Asia and 12 native populations in North and
Central America under different soil nutrients. The introduced populations of the invader exhibited
greater resource-acquisitive root traits, characterized by reduced fine root diameter but increased pro-
portions of absorbing root length and specific root length, compared to the native populations. Al-
though nutrient addition significantly affected root traits, the introduced populations showed greater
phenotypic plasticity in four traits (root / shoot ratio, specific root length, absorbing root length
proportion, and branching intensity) than the native populations. Different root trait syndromes
were observed between the introduced and native populations. These results indicate that after in-
troduction, C. odorata may shift towards a more soil resource-acquisitive strategy and thus respond
more positively to increased soils nutrients, thereby showing better performance in high-resource
environments. This study provides a better understanding of how species respond to environment

changes and reveals the factors underlying exotic plant invasion success.

Key words: Chromolaena odorata, covariation, invasive species, phenotypic plasticity, root traits,

soil nutrients

Introduction

Invasive species encounter diverse abiotic and biotic environmental conditions
across their native and introduced ranges (Richardson and Pysek 2006). The vari-
ation of traits within invasive species is constrained by both genetic differentiation
and phenotypic plasticity, which reflects the evolutionary history and adaptation of
these species to environmental conditions (Diaz and Cabido 2001). Understand-
ing the extent of intraspecific trait variations along ecological gradients is essential
for unraveling species’ responses to environment conditions within the current
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global change context (e.g., nitrogen deposition) (Weemstra et al. 2022; Gao et
al. 2023). Various studies have explored intraspecific variations in aboveground
functional traits (Feng et al. 2011; Zhao et al. 2020). However, few studies have
investigated intraspecific variations in root traits despite their importance for the
absorption of water and nutrients (Bardgett et al. 2014).

Fine roots (< 2 mm in diameter) represent the interface between plants and soil
and thus have received increasing attention (Bergmann et al. 2020; Wang et al.
2021; Gao et al. 2023). Similar to the leaf economic spectrum, the suite of asso-
ciated fine root traits may also reflect the resource acquisition strategy of a plant
(Reich 2014; Weemstra et al. 2016). For example, root diameter, specific root
length (root length per unit root dry mass), and specific root area (root area per
unit root dry mass) are key traits for measuring plant resource investment in nutri-
ent uptake (Makita et al. 2009). High specific root length, low root diameter, and
low dry matter content are considered resource acquisitive traits that are generally
associated with fast plant growth and reduced dependence on mycorrhizal fungi
for nutrient uptake (Kong et al. 2014; Chen et al. 2016; Ma et al. 2018; Kong
et al. 2019). In contrast, thick root diameter, low specific root length, and high
root tissue density (root dry mass per unit root volume, reflecting root longevity)
are considered resource-conservative root traits that are often associated with slow
growth and increased dependence on mycorrhizal fungi for nutrient uptake (Eis-
senstat et al. 2015; McCormack and Iversen 2019; Bergmann et al. 2020). Soil
environmental conditions (e.g., water content and soil nutrients) can affect root
trait variation. For instance, in unfavorable environments (e.g., infertile and dry
conditions), plants often show high root tissue density to increase root longevity
(Ryser 1996; Eissenstat 2000). Intraspecific variations in root traits along an ele-
vational gradient have been observed for 11 species; however, these patterns were
species-specific (Weemstra et al. 2020).

Invasive species may encounter distinct selection pressures in their introduced
habitats compared to those in their native ranges, potentially leading to variations
in fitness-related traits (Keane and Crawley 2002; Joshi and Vrieling 2005; Schrie-
ber et al. 2017). Some studies have found that invasive species shift toward a fast
growth strategy (higher photosynthetic rate, specific leaf area, and leaf nitrogen)
compared to their conspecifics from their native ranges (Mozdzer and Zieman
2010; Feng et al. 2011; Leishman et al. 2014; Heberling et al. 2016). Additionally,
the introduction of invasive plants may also lead to changes in multiple co-vary-
ing traits known as “syndromes” (Kueffer et al. 2013; Tewes and Miiller 2018;
Liu et al. 2021). For example, Tewes and Miiller (2018) discovered that Bunias
orientalis from introduced populations with high silicle counts displayed increased
leaf numbers and higher values in reproduction-related growth traits, whereas this
syndrome was not particularly evident for conspecifics from native populations. In
terms of belowground trait, Dawson (2015) hypothesized that a suite of root traits
related to soil resource uptake ability may exhibit similar dynamics as leaf traits in
invasive plants, potentially shifting toward roots with higher resource uptake strat-
egy such as higher specific root length and lower diameter than those of their na-
tive conspecifics due to novel selection pressures encountered in introduced ranges.
However, limited attention has been given to the variation and covariation of root
traits among introduced and native populations of invasive species.

Phenotypic plasticity is often cited as a mechanism that facilitates invasion
(Richardson and Pysek 2006; Davidson et al. 2011). Alien plant species frequently
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exhibit limited genetic variation due to their small population sizes upon introduc-
tion, and plasticity for important functional trait can facilitate the success of inva-
sive plants across heterogeneous environmental gradients after introduction (Gha-
lambor et al. 2007; Liao et al. 2016). Bossdorf et al. (2008) found that invasive
populations of Senecio inaequidens exhibited greater plasticity in root / shoot ra-
tios compared to native populations when responding to nutrient addition, which
may enhance their ability to efficiently utilize increased resource availability. Chun
(2011) indicated that the invasive plant Lythrum salicaria showed significantly
higher phenotypic plasticity for aboveground biomass in response to changing nu-
trient levels compared to the native conspecifics. Cano et al. (2008) also found that
invasive plants Senecio pterophorus from introduced ranges demonstrated higher
survival in disturbed environment than their conspecifics from native ranges, at-
tributed to lower specific leaf area and better water content regulation of invasive
populations under drought conditions. As a vital organ responsible for nutrient
and water uptake from the soil, plastic responses of root traits can optimize nutri-
ent acquisition and enhance plant performance (Larson and Funk 2016; Chen et
al. 2023). However, most previous studies mainly focused on aboveground traits.
Understanding the plasticity in root traits among invasive species populations
could provide additional insights into how belowground resource strategies influ-
ence plant invasion under changing environmental conditions.

Chromolaena odorata (L.) R. M. King and H. Robinson (Asteraceae) is native to
Central and South America, but it has become a noxious invasive shrub in Asia,
Oceania, and Africa (Muniappan et al. 2005). It can invade different habitats across
a wide environmental gradient (Kriticos et al. 2005). Studies have indicated that
introduced C. odorata populations are better competitors than native populations
(Zheng et al. 2015; Li et al. 2020), and exhibit faster growth economic traits such
as higher photosynthetic capacity in introduced ranges compared to the native pop-
ulations (Li et al. 2022). Molecular analysis revealed a low genetic variation among
introduced populations of C. odorata (Yu et al. 2014), which is expected due to
phenotypic plasticity facilitating their invasion across diverse environments. Liao
etal. (2019) compared plasticity in aboveground traits of C. odorata among popu-
lations under different light treatments and found that the introduced populations
had higher phenotypic plasticity for height, biomass, and total leaf area compared
to their native counterparts but not for root / shoot ratio. Other studies showed
that under high-nutrient conditions, invasive populations of C. odorata exhibited
higher biomass (Li et al. 2020) or were more competitive (Qin et al. 2013) than
their native populations, suggesting a more positive response by introduced pop-
ulations to increased nutrient availability. These results provide insights into how
aboveground traits vary among the invader populations and in their response to
nutrient and light conditions. However, it remains unclear how root traits vary
among introduced and native populations of the invader and how they respond to
different nutrient conditions. Thus, we compared nine root traits of C. odorata from
10 introduced populations in Asia and 12 native populations in Central and South
America under two nutrient levels. The following problems were addressed: (1) Do
introduced populations shift towards more resource-acquisitive root traits (i.e., low
diameter, high specific root length, and high branching intensity) when compared
with the native populations? (2) How do root traits respond to soil nutrients? Do
the introduced populations also exhibit greater phenotypic plasticity in response to
high nutrient levels, similar to aboveground traits, compared to native populations?
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Methods
Study site and materials

This study was conducted at the Xishuangbanna Tropical Botanical Garden
(XTBG) (21°560'N, 101°150'E; 570 m elevation) of the Chinese Academy of
Sciences, located in Mengla County, Yunnan Province, Southwest China. The Bo-
tanical Garden is located in the northern part of China’s tropics. The mean an-
nual temperature in this region is 21.7 °C, and the mean annual precipitation is
1557 mm, with a dry period from November to April (Feng et al. 2002).

In this study, 12 native and 10 introduced populations of the invader were
compared (Table 1). Seeds of C. odorata were collected, germinated and grown in
July 2010 at XTBG. For each population, the seeds were collected from 10-12
individuals from December 2019 to February 2020.

Experiment design

Chromolaena can invade habitats with different nutrient conditions, such as low-nu-
trient roadsides with topsoil removed or high-resource wasteland due to disturbance
or fertilization. We collected field soil from roadsides near the invader monoculture
located in the XTBG and then simulated high-resource habitats by adding nutrients.
"The seeds were cleansed with 5% NaClO for surface sterilization for 10 min and sown
in seedling trays with sand- and humus-rich soil (1:1) in March 2020 in a shade house

Table 1. Information about the sampled Chromolaena odorata populations.

Code Country/Region GPS Coordinates Elevation (m)
Invasive populations
BK Thailand 14°25'N, 101°23'E 739
JD Yunnan, China 24°17'N, 100°50'E 1263
ML Yunnan, China 21°56'N, 101°15'E 544
MY Melaka, Malaysia 2°22'N, 102°21'E 50
PH Iligan, Philippines 8°10'N, 124°10'E 107
SL Kegalle, Sri Lanka 7°11'N, 80°25'E 451
SM Yunnan, China 22°46'N, 100°56'E 1380
SY Hainan, China 18°19'N, 109°12'E 23
WX Vientiane, Laos 17°58'N, 102°37'E 170
YNS Southern Vietnam 11°20'N, 107°24'E 125
Native populations
MCD Tamaulipas, Mexico 23°40'N, 99°11'W 600
MCY Chiapas, Mexico 16°44'N, 93°09"W 640
CUB Pinar del Rio, Cuba 22°45'N, 82°50"W 565
FAK Collier, Florida, USA 25°52'N, 80°29"W 1324
FBRO Broward, Florida, USA 26°08'N, 80°06"W 3
FMAR Martin, Florida, USA 27°06'N, 80°15"W 3
FMD Miami, Florida, USA 25°38'N, 80°20"W 3
MIC Michoacan, Mexico 18°51'N, 103°37'W 950
PM Manati, Puerto Rico 18°12'N, 67°06"W 103
PP Ponce, Puerto Rico 18°12'N, 67°06"W 103
T1 Mamoral, Trinidad 10°27'N, 61°17'W 63
T2 Felicity, Trinidad 10°31'N, 61°25'W 10
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with 30% transmittance. Seedlings were transplanted into 2 L pots (one seedling per
pot) when they were ~10 cm in height. The pots contained 40% sand and 60% field
soil (total nitrogen (N): 2090 mg Kg™'; available N: 7.79 mg Kg''; available phosphorus
(P): 8.17 mg Kg'; available potassium (K): 281.48 mg Kg™). The seedlings were divid-
ed into two groups. One group was treated with compound fertilizer (Shanxi Shima
Fertilizer Co., Ltd, Shanxi, China) at a rate of 100 mg available N + 100 mg available
P + 100 mg available K Kg' dry soil. The required amount of fertilizer was weighed,
dissolved in 20 mL tap water, and poured carefully into each pot in April and May. The
other group of the seedlings was treated with 20 mL tap water as the control. Five rep-
licates were performed for each treatment. In total, we grew 220 seedlings [(10 invasive
+ 12 native populations) x 2 treatments per population x 5 seedlings per treatment].

The seedlings were randomly placed at an open site with full sunshine, irrigat-
ed daily after transplantation, and weeded when necessary. Two months later, all
plants were harvested. The shoots of each plant were collected from the soil surface,
dried in an oven at 60 °C for 48 h, and weighed. The roots of each plant were care-
fully washed using tap water in a 1 mm sieve and then further washed in a tray to
remove the remaining soil particles.

Root trait measurement

The fine roots (< 2 mm in diameter) of each individual were clipped, disentangled
to prevent overlap, and hierarchically dissected into branch orders according to the
protocol described by Pregitzer et al. (2002). Absorptive roots (first- and second-or-
der roots) and other fine roots were scanned using a V700 scanner (EPSON Co.,
Ltd. Japan) at 1200 DPI as 16-bit grayscale images. The RhizoVision Explorer soft-
ware was used to analyze root images (Seethepalli et al. 2021). The following mor-
phological traits were assessed for absorptive and other fine roots: total length, sur-
face area, diameter, branching intensity (number of branches per root length), and
volume. The proportion of absorbing root length (ratio of absorbing root length to
total fine root length) was also calculated. The fine root fresh weight was recorded;
then, the fine roots were dried in an oven at 60 °C for 48 h and weighed to deter-
mine fine root dry matter content, specific root length, specific root area, and root
tissue density. Thick roots were also dried in an oven at 60 °C for 48 h and weighed
to determine the root / shoot ratio (ratio of total root dry mass to shoot dry mass).

Statistical analyses

Principal component analysis (PCA) of the population mean trait values was per-
formed to explore the associations among traits in the sampled populations. Mixed
linear models were used to evaluate the effects of nutrients, ranges (introduced vs.
native range), and their interactions on each variable, with nutrient treatments
and ranges as fixed factors and populations nested within the range and g-scores
as random factors. The population mean STRUCTURE g-scores were added as
a random effect to account for the demographic history of the patterns of trait
divergence in the mixed models (Li et al. 2022). The least significant difference
(LSD) test was used to analyze the differences among groups. Furthermore, we
calculated the root trait plasticity index using the following formula:

(T =T)/T) x 100 (Fort et al. 2015),
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where T and T _ are the mean response values of each population after the nutrition
addition and control treatments, respectively. One-way ANOVA was used to test
the effect of range on plasticity index.

Pearson’s correlation analysis was conducted for the data from each nutrient level
and range to test the pairwise correlations among fine root traits. Before the analyses,
we tested the normality and homogeneity of variance of each variable and trans-

formed each variable if the assumption was not met. All analyses were performed us-
ing IBM SPSS Statistics for Windows 25.0 (IBM Corp. Armonk, New York, USA).

Results
Trait variation between ranges

PCA results showed distinct clustering patterns among populations of C. odorata
according to their geographical origins and nutrient treatments, with significant
overlap observed between the introduced and native populations across both nutri-
ent levels along the first two principal components (Fig. 1). Notably, a substantial
proportion of the variation was explained by the first and second axes (PC1 =
49.7%; PC2 = 21.5%). Furthermore, under different nutrient condition, popula-
tions exhibited separation primarily along the first principal component, which was
mainly correlated with the specific root area, specific root length, root tissue den-
sity, fine root diameter, root / shoot ratio, and fine root dry matter content. Addi-
tionally, differentiation between populations from the introduced and native rang-
es was predominantly driven by variations in absorbing root length proportions,
branching intensity, and fine root biomass along the second principal component.

El AN- |
® AN-N

NN- |

O NN-N

RTD

ARLP

-2 0 2
PC1 (49.7%)

Figure 1. Biplot of principal component analysis (PCA) for the nine traits of 10 introduced (I, circles in orange) and 12 native (N, circles

in blue) populations of Chromolaena odorata grown in soil with (AN, filled circles) and without (NN, open circles) nutrient addition. RS,

root / shoot ratio; FRBM, fine root biomass; RDMC, fine root dry matter content; ARLP, absorbing root length proportions; SRL, specific

root length; SRA, specific root area; RTD, root tissue density; BI, branching intensity; D, fine root diameter.

NeoBiota 92: 45-60 (2024), DOI: 10.3897/neobiota.92.110985 50



Yang-Ping Li et al.: Shift in C. odorata root traits post introduction

The range (introduced vs. native range) significantly influenced five out of the
nine root traits (Table 2). The introduced populations showed higher root dry
matter content but lower fine root diameters than the native populations under
both soil nutrient levels (Fig. 2¢, d). However, the biogeographical differences in
the root / shoot ratio, absorbing root length proportions, and specific root length
depended on soil nutrient levels (Table 2, Fig. 2a, d, e).

Effect of soil nutrients on root traits

Soil nutrients significantly affected root traits (Table 2). Nutrient addition resulted
in a decrease in the fine root dry matter content, specific root length, and specific
root area, while it led to an increase in the root / shoot ratio, fine root biomass, root

Table 2. Effects of soil nutrients (7 = 2), ranges (n = 2), and their interaction on nine root traits of Chromolaena odorata.

Variable Nutrient (N) Range (R) N xR
Root / shoot ratio 192.79™ 10.257 10.96™
Biomass of fine root (g) 93.18™ 3.96 1.24
Root dry matter content (%) 113.17" 7.16° 1.88
Branching intensity (mm™) 3.14 0.50 11.517
Absorbing root length proportion (%) 14.78™ 22.26™ 7.70"
Specific root length (m g) 554.73" 8.24" 6.74"
Specific root area (mm* mg™) 285.08"™ 0.50 2.515
Root tissue density (g cm) 112.88™ 0.04 0.41
Diameter (mm) 513.79™ 24.22" 3.41

%, ", and 7 refer to P < 0.05, P < 0.01, and P < 0.001, respectively. Populations nested within ranges and q-values were used as random f actors.
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Figure 2. Root traits of Chromolaena odorata from the introduced and native populations in soil with (black bar) and without (white
bar) nutrient addition a differences in the root / shoot ratio b fine root biomass ¢ fine root dry matter content (RDMC) d absorbing root
length proportions (ARLP) e specific root length (SRL) f specific root area (SRA) g root tissue density (RTD) h branching intensity (BI),

and i fine root diameter.
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tissue density, and fine root diameter of both introduced and native populations
(Fig. 2). There were significant interactions between nutrient addition and range
for plants from different ranges (as shown in Table 2), indicating distinct pheno-
typic plasticities between the introduced and native ranges (refer to Fig. 3). In soil
with nutrient addition, the introduced populations exhibited higher proportions
of absorbing root length and branching intensities compared to those without nu-
trient addition; however, no significant differences were observed for those traits
among the native populations (Fig. 2d, h, Table 2). Furthermore, compared to the
native populations, the introduced populations demonstrated higher plasticity in
terms of root / shoot ratio and specific root length (Fig. 3a, ).

Trait covariation

Trait covariation pattern differed among ranges and soil nutrient treatments. In
the native populations, plants with increased root tissue density exhibited reduced
specific root lengths and specific root areas in both soil nutrient level. Conversely,
in the introduced populations, plants with increased fine root dry matter content
showed reduced specific root areas only in soil without nutrient addition (Fig. 4).
Within the introduced populations, increases in specific root length and specif-
ic root area were associated with enhanced branching intensity in soil without
nutrient addition, while an increase in specific root length was linked to higher
proportions of absorbing root length in soil with nutrient addition. A significant
negative correlation between root diameter and absorbing root length proportion
was observed for the introduced populations under both soil nutrient levels. More-
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Figure 3. Plasticity index for root traits of Chromolaena odorata from the introduced (grey bar) and native (white bar) populations under

two nutrient treatments a differences in the root / shoot ratio b fine root biomass ¢ fine root dry matter content (RDMC) d absorbing

root length proportions (ARLP) e specific root length (SRL) f specific root area (SRA) g root tissue density (RTD) h branching intensity

(BI), and i fine root diameter.
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Figure 4. Pearson’s correlation coefficient matrix for the seven root traits in the 10 introduced (I, open circles in blue and red) and 12 na-
tive (N, full circles in green and orange) populations of Chromolaena odorara grown in soil with (AN, circles in blue and green) and without
(NN, circles in red and orange) nutrient addition. RDMC, fine root dry matter content; ARLDE, absorbing root length proportions; SRL,

specific root length; SRA, specific root area; RTD, root tissue density; BI, branching intensity; D, fine root diameter.

over, for the introduced populations, there was a negative correlation between root
dry matter content and branching intensity in soil without nutrient addition but a
positive correlation for the native populations in soil with nutrient addition.

Discussion

To understand how root traits of invasive plants change in response to variable
soil nutrient conditions during biological invasion, we compared the root traits of
C. odorata from 10 introduced populations in Asia with those of 12 native pop-
ulations from Central and South America under two nutrient levels. Our study
provided the first evidence for divergence in root trait between introduced and
native populations of an invasive species, while further elucidating the differential
patterns of response exhibited by these root traits under varying nutrient levels
between introduced and native populations.
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Variation in root traits between ranges

Our results provide support for Dawson’s (2015) hypothesis that invasive species
exhibit a shift in root traits towards resource-acquisitive roots, characterized by
decreased root diameter and increased specific root length, in their introduced
ranges owing to release from belowground specialist enemies. Specifically, the in-
troduced populations of C. odorata displayed thinner roots and higher proportions
of absorbing root length and specific root lengths (under low nutrient only) than
the native populations across different soil nutrient levels. This indicates that a shift
in root traits towards more resource-acquisitive roots may enhance soil resources’
uptake and confer competitive advantage to the invaders over their new neighbors
in introduced ranges. The study of Guan et al. (2023) on Solidago canadensis also
demonstrated its ability to adjust nitrogen uptake strategy based on the contents
and proportions of different forms of soil nitrogen, thereby promoting growth
through enhanced nitrogen acquisition. Furthermore, many invasive plant species
have been found to exhibit higher nitrogen and nutrient contents compared to
their native counterparts (Huang et al. 2020; Liu et al. 2022).

A shift towards more resource-acquisitive roots may decrease enemy defense due
to increased physical exposure to soil enemies and the trade-off between resource
uptake and defense (Bauerle et al. 2007; Endara and Coley 2011; Rasmann et al.
2011). However, our results did not provide evidence for this prediction. Root
toughness provides a direct physical barrier against herbivores (Johnson etal. 2010).
The increased fine root dry matter content in the introduced populations may lead
to an increase in resistance against soil enemies by enhancing root toughness. In
this study, both nutrient conditions resulted in higher fine root dry matter content
in introduced populations of C. odorata compared to native populations suggest-
ing higher enemy resistance. One possible explanation is that invasive species may
also exhibit defenses against generalist enemies in their introduced ranges, despite
escaping from native specialists. Indeed, the rhizosphere soil of C. odorata from its
introduced range in India showed an accumulation of local soil-borne pathogens,
which are believed to have more negative effects on native species (Mangla and
Callaway 2008). Consistent with these findings, Zheng et al. (2015) demonstrated
that C. odorata plants from the introduced ranges show better resistance to natural
enemies in the soil than those from the native ranges. These results indicate that
the root strategy involving enhanced efficient resource uptake and stronger defense
mechanisms contribute to the successful invasion of C. odorata.

Response to soil nutrients

The introduced populations of C. odorata exhibited a greater diversity and higher
plasticity in root traits in response to nutrient addition compared to the native
populations. Following nutrient addition, the introduced populations exhibited
an increase in both absorption root length proportion and branching intensities,
leading to enhanced exploitation intensity under nutrient enrichment conditions.
Conversely, these changes were not observed in the native populations. Moreover,
the introduced populations also displayed greater plasticity for specific root length,
indicating a more positive response to nutrient addition. These plastic responses
may enhance the adaptability of the introduced population of C. odorata by maxi-
mizing their ability to exploit increased nutrient availability and thereby facilitating
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aboveground growth. These findings provide an explanation for previous studies
conducted by Qin et al. (2013) and Li et al. (2020), which reported that introduc-
tion populations of C. odorata demonstrated higher plastic in aboveground perfor-
mance compared to native populations. The results are consistent with the hypoth-
esis posited by Richards et al. (2006), proposing that successful establishment of
invasive species can be attributed to their ability to enhance fitness through pheno-
typic plasticity in response to increased resource availability. The outcomes high-
light the significance of phenotypic plasticity in root traits as a pivotal mechanism
facilitating invasion of exotic species under changing environmental condition.

Our results also demonstrated that nutrient addition increased fine root biomass
and induced changes in the morphological traits of fine roots. High specific root
length, small diameter, and low root tissue density are often indicative of enhanced
metabolic activity and an increased capacity for nutrient uptake (Eissenstat 2000;
Roumet et al. 2016). However, our results revealed a significant decrease in specific
root length and an increase in both diameter and root tissue density of fine roots
under nutrient addition, suggesting a shift toward higher investment in structural
support and reduced allocation to soil resource acquisition as a response to nutri-
ent availability. This could be attributed to the fact that nutrient addition reduces
the need for plants to allocate resources towards fine root for efficient nutrient
absorption (Taylor et al. 2014). Conversely, the alterations observed in specific
root length and root tissue density can be attributed to the increase in fine root
biomass resulting from nutrient addition. The augmentation of fine root biomass
has the potential to modify plant species’ response regarding their ability to uptake
additional available nutrients through modifications in their root surface area. This
is supported by the functional balance hypothesis which suggests that plants must
maintain a stable ratio between aboveground and belowground biomass resources
for optimal overall plant performance (Thornley 1991). Du et al. (2020) demon-
strated that nitrogen deposition promotes even further accumulation of root bio-
mass within grassland ecosystems with nitrogen limitations. In conclusion, C. odo-
rata responds to increased nutrient availability primarily through an augmentation
of its fine root biomass rather than altering its fine root length.

Changes in trait syndromes between ranges

Our study revealed significant correlations among the root traits; however, the pat-
terns of trait covariation differed across ranges and soil nutrient levels. Principal
Component Analysis (PCA) results indicated that the specific root area, specific root
length, root tissue density, fine root dry matter content, and fine root diameter were
subject to selection pressure by the nutrient conditions, while fine root dry matter
content, branching intensity, and absorbing root length proportion were influenced
by the different ranges. These findings suggest that distinct selection pressures can
lead to diverse trait syndromes. Furthermore, novel environmental conditions in
the introduced ranges may result in altered pattern of trait coordination (Messier et
al. 2018). Trait syndrome reflects the adaptive strategies of plant species to different
environmental conditions (Kueffer et al. 2013; Tewes and Miiller 2018; Liu et al.
2021). In introduced population, plants with high specific root length and specific
root area displayed increased branching intensity in soils without nutrient addition.
This root syndrome indicates that plants from the introduced populations may
enhance resource acquisition under low-resource conditions by increasing invest-
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ments in the length of thinner roots and root networks. However, in native popula-
tions, plants with high root tissue density exhibited lower specific root lengths and
specific root areas in soil with and without nutrition, suggesting a trade-off between
resource-acquisitive and resource-conservative strategies for C. odorata within its
native ranges characterized by high natural enemy pressure. Similar trade-offs were
observed in the introduced populations grown in soil with nutrient addition. The
distinct root trait syndromes between introduced and native populations imply the
involvement of different adaptive strategies across different environments.

Conclusion

The root traits of invasive populations of C. odorata exhibited enhanced capacity for
soil resource uptake ability and superior adaptability to increasing soil resources com-
pared to those of its native conspecifics. These findings suggest that belowground re-
source acquisition strategies play a pivotal role in the invasions’ success of exotic plants,
thereby enhancing our understanding of the mechanisms underlying invasive species.
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Abstract

Terminology for the invasion status of alien species has typically relied either on ecological- or poli-
cy-based criteria, with the former emphasising species’ ability to overcome ecological barriers and the
latter on species” impacts. There remains no universal consensus about definitions of invasion. With-
out an agreement on definitions, it is difficult to combine data that comes from a range of sources.
In Australia, information on plant invasions is provided by a collection of independent jurisdictions.
This has led to inconsistencies in terminology used to describe species invasion status at the national
level, impeding efficient management. In this paper, we review and discuss the steps taken to harmo-
nise the different terminologies used across Australia’s states and territories. We identified mismatches
in definitions and records of invasion status for vascular plant taxa across different jurisdictions and
propose prioritisation procedures to tackle these mismatches and to integrate information into a
harmonised workflow at the national scale. This integration has made possible the creation of a stan-
dardised dataset at the Australian national scale (the Alien Flora of Australia). In Australia, having
an integrated workflow for referring to and monitoring alien flora will aid early warning and prevent

species introduction, facilitate decision-making and aid biosecurity measures.

Key words: Alien flora, biological invasions, biosecurity, invasion status, plant census, standardised

dataset, terminology

Introduction

The importance of having high quality, easy-to-access, standardised and unified
data sources is widely recognised among researchers and practitioners working
with species invasions (Latombe et al. 2017). Having standardised datasets at large
spatial scales allows tracking biological invasions, making future predictions and
prioritising invasion-based management actions (Hulme et al. 2009; Le Roux et
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al. 2020). Ongoing debates include discussions about the taxonomy of biological
invasions (Pysek et al. 2013), the terminology and definitions related to invasion
(Colautti and Richardson 2009; Young and Larson 2011; Catford et al. 2016),
the determinants of invasion success (Fristoe et al. 2021; Daly et al. 2023) and the
significance of impacts (Simberloff et al. 2013), as well as how to delimit and de-
fine native range (Guiasu 2016). Hence, inconsistencies have arisen, subsequently
impacting the accuracy of classifying plant species into native and alien and the
derived implications of these classifications (Guiasu 2016).

There are many terms to refer to ‘species occurring in ecosystems to which they
are not indigenous’, including non-indigenous, non-native, exotic, and alien. The
term ‘alien’ was introduced by the Convention on Biological Diversity (CBD) in
Nairobi in 1992 without providing any specific definition (United Nations 1992).
To alleviate the confusion around plant invasion terminology, Richardson et al.
(2000) proposed the concept of the introduction-naturalisation-invasion continu-
um, by which a species introduced into a new area received different names accord-
ing to the barriers it overcame. As such, casual aliens are those that have been trans-
ported beyond the limits of their native range but do not establish populations;
only a fraction of casual aliens become naturalised, that is, forming self-sustaining
populations in the invaded range; and only a fraction of those naturalised become
invasive, overcoming local dispersal barriers and spreading in the new region. Ac-
cording to Richardson et al. (2000), the subset of invasive species able to impact
the nature of the environment were called ‘transformers’, whereas ‘weed’ was a
common term for undesired species (classically used for plants interfering with
crop production) regardless of their native or alien origin (Fig. 1a).

The same year, the International Union for Conservation of Nature (IUCN)
incorporated the concept of negative impact into the definition of invasive species
as “alien species which becomes established in natural or semi-natural ecosystems or
habitats, and are an agent of change, threatening native biological diversity” IUCN,
2000). Two years later, in 2002, the CBD recognised invasive alien species (IAS)
as “species introduced outside their native range that have become successfully es-
tablished and cause substantial impacts on the environment” (Fig. 1b). In 2006,
the IUCN Invasive Species Specialist Group (ISSG) developed the Global Regis-
ter for Introduced and Invasive Species (GRIIS) as a concept and prototype to be
subsequently reviewed before implementation across several countries globally. The
methods underpinning GRIIS, and associated guidelines for the checklists of alien
species to be implemented by individual countries, were not published until 2018
(Pagad et al. 2018) and only implemented in subsequent years. In 2022, a collation
of GRIIS data across 196 countries was published into the country compendium
of GRIIS (Pagad et al. 2022). GRIIS follows the impact-based notion of invasive
species, to refer to those having a harmful impact on native biodiversity (Fig. 1b).

In 2011, a decade after the definitions for invasive species were proposed by
Richardson et al. (2000) and the CBD (2002), Blackburn et al. (2011) published
a unified framework on biological invasions to address terminological inconsis-
tencies. The framework is very comprehensive and integrative, and successfully
reconciles different synonyms to refer to similar invasion stages along the intro-
duction-naturalisation-invasion continuum (Fig. 1¢). It also reconciles terminolo-
gy, concepts and definitions across different taxonomic groups (e.g., animals and
plants), which had largely been addressed separately hitherto in the scientific lit-
erature. According to Blackburn et al. (2011), invasive species are alien species
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that have been introduced in a new area, have naturalised and have successfully
undergone dispersal and spread. The question of invasion impacts falls outside this
framework as Blackburn et al. (2011) recognised that certain introduced species
can have impacts in a novel environment even if their populations are not natu-
ralised. Other prominent invasion status frameworks also exist, such as Darwin
Core (Darwin Core Maintenance Group 2021a). Proposed by the Biodiversity
Information Standards (TDWG), Darwin Core is a vocabulary standard and in-
cludes a glossary of terms intended to facilitate the sharing of information about
biological diversity. Darwin Core published concepts to refer to biological inva-
sions in 2020 based on Blackburn et al. (2011) and classifies species regardless of
their impact but adds a dimension of complexity. According to Darwin Core, the
vocabulary standard is split into two terms: establishment means (Darwin Core
Maintenance Group 2021b), which refers to species origin (i.e., native, introduced
or uncertain) and degree of establishment (Darwin Core Maintenance Group,
2021c), which refers to the position along the introduction-naturalisation-inva-
sion continuum. What Blackburn et al. (2011) had simplified and unified, Darwin
Core divided into more specific categories introducing new stages such as ‘repro-
ducing’, ‘colonising’, or ‘widespread invasive’ (Fig. 1d).

Despite several attempts to harmonise different concepts and ideas, the termi-
nology to refer to further invasion stages within the continuum has not become
consistent over time. This is mainly caused by the scientific community and inter-
national regulations proposed by policymakers adhering to two different frame-
works, Blackburn’s and ITUCN’s, respectively (however, note that within the scien-
tific community there are also discrepancies with the use of ‘invasive’). More recent
attempts to clarify definitions, with and without intrinsically including impact,
proposed to refer to invasive species with negative impact as ‘harmful invasive’
(Essl et al. 2020).

In federally managed countries, biosecurity regulations involve a complex in-
terplay between different scales of jurisdiction, including federal, state/territory/

a Richardson et al. 2000 b IUCN (2000) and CBD (2002)
Range Native Introduced Range Native Introduced
Term / Origin  Native Alien Term / Origin  Native Alien
Invasion status  Native Introduced Casual Invasive i Native N/A | Introduced/ alien N/A Invasive

Barriers Barriers

Environmental {local) __
Environmental
Reproductive

C  Blackburetal 2011 d Darwin Core 2020
R: N I
Range Native Introduced e e pitoducsd
Establishment means Native Introduced
Term / Origin  Native Alien (origin)
Invasion status  Native N/A " Casualf Naturalized/Established N/A Degreeofestablishment  Native  Captive/  Casual Reproducing/  Colonising/ N/A

(invasion status) Cultivated/ Established*  Invasive/

Introduced Invasive |

Barriers

Barriers.

Environmental (local)

Geographic
Environmental
Reproductive

Reproductive

Introduction-naturalisation-invasion continuum Introduction-naturalisation-invasion continuum

Figure 1. Frameworks on biological invasions adopted by a Richardson et al. (2000) b CBD and IUCN ¢ Blackburn et al. (2011) and
d Darwin Core. Terminology marked with * in Darwin Core varies according to specific details within the considered barrier; therefore,

the terms are not interchangeable. N/A refers to stages that have not been considered in the respective framework.
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province, and local levels. The distribution of powers and responsibilities is influ-
enced by the country’s federal structure, which allocates certain authorities to the
national government and others to the provinces. This division of responsibilities is
often based on the principles of subsidiarity, where decisions are made at the most
local level possible. Although this idiosyncrasy can lead to a complex and some-
times confusing regulatory landscape, it is intended to allow for tailored responses
to local conditions while maintaining a coordinated national approach to tackle bi-
ological invasions. The rationale behind having both federal and state-level scoring
of species introduction status often stems from the need to address invasive species
management comprehensively while acknowledging the diversity of ecosystems
and environmental conditions within a large country.

Australia is a clear example of inconsistencies among plant censuses data sourc-
es, making the integration of the recorded information on plant invasion an ardu-
ous task. Australia is the sixth largest country in the world, with an overall surface
comparable to the European continent. It is a biodiversity hotspot and has one of
the highest levels of endemism (Gallagher et al. 2021). Despite having one of the
strongest biosecurity systems in the world, it does not have unified nation-wide
data on alien species, and the number of taxa introduced in Australia increases
steadily over time (CSIRO 2020).

Australia’s jurisdictions comprise six independent states (New South Wales —
NSW; Queensland — QLD; South Australia — SA; Tasmania — TAS; Victoria —
VIC; and Western Australia — WA) and two main territories (the Australian Cap-
ital Territory — ACT; and the Northern Territory — NT), hereafter referred to as
‘states’ for simplicity. Australia’s plant censuses, including information on whether
a species is native or introduced, have been developed at a jurisdictional level by
government environment departments, therefore there are currently eight inde-
pendent plant censuses at the state level. In addition, there are plant censuses for
the external territories, which are offshore islands under Australian sovereignty. At
the national level, there is one existing plant census for vascular plants that pro-
vides information for the whole of Australia, the Australian Plant Census (APC)
(Australian Plant Census 2022), endorsed by the Council of Heads of Australasian
Herbaria (CHAH). The APC provides authoritative data for names and published
taxon concepts for native and naturalised taxa in Australia. Despite being federally
managed, the APC provides information on a state-by-state basis, without com-
bining the information into a national status.

In addition, the Global Register of Introduced and Invasive Species (GRIIS)
v1.9 was recently published for Australia (Randall et al. 2022), classifying, among
taxa from other kingdoms, the alien flora of Australia into introduced and invasive.
However, the criteria for species’” inclusion and status are based on impact (Pagad
et al. 2018).

In summary, different data sources (ten in total) following different criteria re-
sulted in inconsistencies at the Australian national level (Martin-Forés et al. 2023a,
b). Similarly, weed lists and management strategies developed at the state level
might become inefficient and ineffective if not shared with adjacent states. For
example, certain species of brome grass (Bromus sp.) are naturalised in most of
Australia, and identified as posing harmful impacts; despite this, adjacent states
adopting different classification schemes may follow different control strategies,
constituting a clear example of ineffective management at the national scale. To
overcome mismatches caused by jurisdictional boundaries and enable efficient
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management and biosecurity of biological invasions by the Australian federal gov-
ernment, a consensus on clearer definitions, concepts and classifications across
Australia is much needed.

To harmonise the different criteria followed by independent jurisdictions, here
we: i) propose an adapted workflow to refer to plant invasions in Australia, result-
ing from the combination of all different frameworks used in the data sources; ii)
cross-reference the information between different data sources at the state level and
combine it at the national level to identify mismatches at both scales, iii) propose
a prioritisation procedure to address mismatches at the state and national level in
order to harmonise contrasting invasion statuses, iv) provide up-to-date informa-
tion on the alien flora in Australia.

We developed harmonisation steps as an integration exercise to develop a
much-needed automated system able to cross-reference and integrate all the exist-
ing datasets across Australia. We only combined information and did not coin any
new terms, nor did we reclassify any taxon from its status as recorded in Australian
plant censuses. As a result, we recently published the Alien Flora of Australia (AFA)
(Martin-Forés et al. 2023a, b), a unified and standardised dataset including inva-
sion status for the Australian flora at the national scale. We hope that both the har-
monised workflow proposed here, and the standardised dataset we have created in
parallel, will provide a strong evidence-base for planning and informing actions for
prevention and to mitigate risks at the Australian national scale. Similarly, this in-
tegration exercise can be adapted and extrapolated to any other federally managed
country to help bridge the gap between federal and state biosecurity initiatives.

Methodology
The terminology used in Australian plant censuses

Regarding taxonomic differences across Australian plant censuses, we followed
the taxonomy and nomenclature adopted by the APC (Australian Plant Census
2022) when taxonomic resolution was needed (see Martin-Forés et al. 2023a, b
for details). The APC provides authoritative data for names and published taxon
concepts for native and naturalised vascular flora in Australia and is the most rec-
ognised authority for the Australian vascular flora at the national level. The APC
is one of the taxonomic resources of the Australian National Species List (auNSL;
https://biodiversity.org.au/nsl/) and is endorsed by the Council of Heads of Aus-
tralasian Herbaria (CHAH).

The APC displays information on taxon distribution and invasion status for
vascular flora contributed by different jurisdictions. It is mostly based on the ter-
minology used by Blackburn et al. (2011) (Fig. 1c) and it classifies taxa as native,
naturalised, or with uncertain origin. It follows a system of Boolean flags displayed
in a consecutive way for each state and main territory. Therefore, in some instances,
more than one status is displayed for a taxon in each territory. For example, a taxon
recorded in one state as ‘native and naturalised and uncertain origin’ is a taxon na-
tive to that state, naturalised in other areas within the same state where it was not
originally considered native, and appearing in other areas where there is no con-
sensus on its ‘nativeness’. Deliberately introduced alien species for gardening and
ornamental purposes that have not established outside of cultivation are not listed
on the APC and therefore not considered in our workflow and not reported here.
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The Australian GRIIS (Randall et al. 2022) follows the impact-based definition
of ‘invasive’ (Fig. 1b), therefore classifying alien species as introduced or inva-
sive to Australia, without providing specific information for states and territories.
This definition of ‘invasive’ is based on expert consultation regarding evidence of
negative impacts caused by species that are known to be an agent of change and
threaten biodiversity (Pagad et al. 2015, 2018). Thus, ‘invasive’ on GRIIS should
not include native species within the country (although see native-alien category
in Pagad et al. (2018)).

Regarding plant censuses at the state level, we obtained them from the Aus-
tralian Capital Territory (Lepschi et al. 2019), the Northern Territory (Northern
Territory Herbarium 2015), New South Wales (PlantNET 2022), Queensland
(Laidlaw 2022), South Australia (Department for Environment and Water 2022),
Tasmania (de Salas and Baker 2022), Victoria (VicFlora 2023) and Western Aus-
tralia (Western Australian Herbarium 2022). Plant censuses from different states
use different terms to refer to alien species and differ in the extent to which they
categorise species according to impact or barriers overcome (Suppl. material 1:

table S1).

Terminology integration

We use the concept of the introduction-naturalisation-invasion continuum
in the harmonised workflow presented here. Therefore, we kept and selected
terms based on an adaptation from the Blackburn et al. (2011) framework. We
made this decision because we wanted to follow a standard terminology that
was not impact-based, and Blackburn et al.’s (2011) framework is the most
recognised internationally, and the most directly comparable with the termi-
nology employed in the APC. Impact of alien taxa should be assessed following
specific guidelines (Hawkins et al. 2015; Bacher et al. 2018); thus, to acknowl-
edge that the GRIIS’ definition of ‘invasive’ explicitly incorporates negative
impacts, we replaced the ‘invasive’ records on the Australian GRIIS (Randall
et al. 2022) with ‘harmful invasive’, according to the definitions presented by
Essl et al. (2020).

Hence, we proposed an adapted workflow (Fig. 2), by which information
about presence (present/extinct), origin (native/introduced/uncertain) and inva-
sion status along the continuum (casual/naturalised/invasive) are provided in a
combined manner for all data sources. Accordingly, we use ‘introduced’ where
information on an alien taxon status along the continuum had not been provided
in a given Australian data source (therefore it can refer to casual aliens or in cases
where no information on naturalisation is available, e.g., in the case of binary
censuses like the South Australian one). In the harmonised workflow presented
here, we did not include ‘casual’ or ‘invasive’, because most of the censuses lacked
detailed information on the spread and dispersal within the introduced range.
In addition, for native taxa that are also recorded as naturalised or doubtfully
naturalised within the same jurisdiction, we used ‘native colonising’ and ‘native
potentially colonising’ acknowledging a mere reflection of dispersal but not im-
pact. Finally, for taxa no longer present in a given state we used ‘presumed extinct’
for native taxa and ‘formerly introduced’ for alien taxa (Fig. 2). Our proposed
workflow therefore includes the following terms: native (also native potential-
ly colonising and native colonising), introduced (also doubtfully or formerly),
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Harmonised terminology proposed for Australia

Range Native Introduced
Term [ Origin Native Alien
Invasion status  Native Casual Introducedt Naturalised Invasive Harmful

invasive
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Figure 2. Harmonised workflow to unify terminology on biological invasions across Australian data sources. The unified terminology is
based on Blackburn et al. (2011) but incorporating the notion of impact to account for the species recorded as invasive in the Australian
Global Register for Introduced and Invasive Species (GRIIS) following the [IUCN’s guidelines. The term ‘introduced’ marked with t in
our proposed workflow does not refer strictly to ‘casual’ alien species but has been used instead when information on naturalisation was
not available in a specific census. The terms ‘casual’ and ‘invasive’ appear in grey as there is currently not available information across the

Australian data sources to categorise species within these categories.

naturalised (also doubtfully or formerly), harmful invasive, presumed extinct,
and uncertain origin. Certain categories (e.g. doubtfully naturalised, formerly
naturalised) specified on the APC, and therefore appearing in this workflow and
the Alien Flora of Australia (AFA), do not have a direct translation into other
frameworks (e.g., impact-based ones and Darwin Core). For this reason, and to
accommodate Australian states like Victoria, where its census follows the Dar-
win Core standard, we provide equivalences to Darwin Core for the harmonised
terminologies used here. We have provided a glossary with specific meanings for
each term at both scales and according to different sources of vocabulary for in-
vasion ecology (Table 1).

Identification of mismatches on invasion status

We used the workflow, and developed an associated script, to create a unified and
standardised dataset of alien flora in Australia, the Alien Flora of Australia (AFA)
(Martin-Forés et al. 2023a, b). The script is available on github (https://github.
com/MartinFores/AFA) and Figshare (doi: 10.6084/m9.figshare.23513478). The
script curates all the data sources and converts the terms used in each of them to
the ones we proposed in the harmonised workflow explained above. Subsequently,
the script detects mismatches at the jurisdictional level by comparing the informa-
tion on invasion status recorded for each taxon on each of the plant censuses and
the taxonomic distribution and invasion status provided on the APC for each of
the states. The result of the comparison between the state plant censuses and the
distribution information recorded on the APC is displayed in the state-by-state
datasets comprising the AFA.
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In a subsequent step, the script combines the information provided at the
state level into a national invasion status and compares it with that provided in
GRIIS. The script then detects mismatches at the national level and subsequently
address them by combining contrasting statuses into a unified national status (see
next sections for details); see Martin-Forés et al. 2023a,b for details on the script
designed to detect mismatches in invasion status at the state and territory levels
in Australia.

Prioritisation procedure to unify invasion status at the Australian state
level

We developed a prioritisation procedure to address mismatches on invasion sta-
tus at the state level in Australia. When a species was not listed on the APC or was
recorded on the APC as not present in a given state, we kept the invasion status
recorded in the state plant census. For species that appeared in both state and
APC sources but these sources displayed a mismatch in the invasion status, we
developed a prioritisation procedure following the precautionary principle. Our
system prioritises, for each taxon in each state, the recorded invasion status that
has advanced the furthest along the invasion continuum. Naturalised, followed
by doubtfully naturalised, are prioritised over introduced, formerly naturalised,
doubtfully introduced and formerly introduced. Any invasion status recorded
within an alien category for a taxon is prioritised over uncertain origin, and
those over native statuses, which include, in order of priority, native colonising,
native potentially colonising, native, and finally presumed extinct (Fig. 3). In
all component datasets developed at the state level as part of the AFA, we incor-
porated a new column with the unified status for each taxon in each state (See
Martin-Forés et al. 2023a, b to access all the standardised regional datasets for all
Australian states).

Is this species recorded as introduced in the state census or the APC?

4

Is it still present according to one of the sources? Is it still present?
ORIGIN

1 1
Darwin core
establishment
means: uncertain

Is it naturalised according to one of the FORMERLY Is it also naturalised within the PRESUMED

NATURALISED

L

DOUBTFULLY NATIVE NATIVE
NATURALISED COLONISING | POTENTIALLY COLONISING

a L ]
E Darwin core establishment means: native

sources? INTRODUCED same State ? EXTINCT

NATIVE

Darwin core establishment means: introduced

HIGHER PRIORITY

Figure 3. Prioritisation procedure to assign the most conservative invasion status for a given species in a given Australian state after com-

aring the records in the corresponding state census and in the Australian Plant Census (APC). The status ‘naturalised’ refers to introduced
paring P g

species that form unassisted self-sustaining populations. *Indicates that in some cases there is not enough information in the state censuses

to respond to these questions; therefore, we have assumed that the answer would be no. Darwin Core equivalences with regards to estab-

lishment means (native, introduced and uncertain) are also included.
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Prioritisation procedure to combine invasion statuses at the Australian
national level

The prioritisation procedure used to assign national status differed from the one used at
state level (above) as follows: if a taxon was native to at least one state, it was considered
native to Australia (Fig. 4). If it was not ‘native’ to any state, but native colonising (or
native potentially colonising), it was considered native colonising at the national scale;
and if it was not native in any possible form to any state but recorded with uncertain
origin in at least one state, we kept ‘uncertain origin’. If the taxon had not been record-
ed as native or having uncertain origin in any of the states, then the recorded invasion
status that had advanced the furthest along the continuum was prioritised as a precau-
tionary measure for addressing potential invasion. Only if the species was not present
in any state was it then recorded as presumed extinct at the national scale (Fig. 4).

For the species that were alien (in any form) to Australia at the national scale accord-
ing to our workflow and that appeared recorded as ‘invasive’ according to GRIIS, we
changed their invasion status to ‘harmful invasive’ at the national scale, because GRIIS
classification is impact-based. When other mismatches were identified (e.g., species that
are native to at least one Australian state but appeared recorded as introduced or inva-
sive (i.e. harmful invasive) in GRIIS), we kept the information obtained via our script.

Results

The Australian native and alien flora in numbers

According to the AFA, at the national level, there are 30,527 vascular flora species
in Australia, including native species and alien species that are established out-
side of cultivation. However, because some of these species are only present in

Is the species present in any state in Australia?

Is the species native to any state in Australia? Was it native?

FORMERLY
INTRODUCED

1
Darwin core

establishment
means: uncertain

NATIVE NATIVE DOUBTFULLY
rorenmiALLYCoLoNsiNG. | COLONISING NATURALISED

¢ &8 3¢

NATURALISED

Is it also naturalised within all the states to — PRESUMED
which is native? ORIGIN EXTINGT
e | — |
z

NATIVE

Darwin core establishment means: native

HARMFUL
INVASIVE

Darwin core establishment means: introduced

HIGHER PRIORITY

Figure 4. Prioritisation procedure to assign the national status for a given species after merging the most conservative statuses across all the
Australian states. The status ‘naturalised” refers to introduced species that form unassisted self-sustaining populations. The status ‘harmful
invasive’ was only assigned for the species that, being introduced at the national level, appeared recorded as invasive in the Australian
GRIIS. *Indicates that in some cases there is not enough information in the state censuses to respond to these questions, therefore we have

assumed that the answer would be no. Darwin Core equivalences with regards to establishment means (native, introduced and uncertain)

are also included.
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external territories and nine species did not have any distribution information,
there are currently a total of 30,287 species listed, from which 3,487 records cor-
respond to alien species that have not been deliberately introduced for gardening
and ornamental purposes (11.4% of the total number of species). From these alien
species, 58 species are recorded as introduced (not known to have formed self-sus-
taining populations to date), 3,352 species are recorded as naturalised (able to form
self-sustaining populations) and 77 as harmful invasive (which accounts for 2.2%
of the total of alien plants reported here). As mentioned above, there is not enough
information in the combined data sources to classify Australian taxa as ‘casual’ or
‘invasive’ per se (sensu Blackburn et al. 2011). There are currently 11 species whose
origin is uncertain at the national scale, while 21 species were native and have be-
come extinct (presumed extinct) or were introduced and are presumed to have been
extinct or eradicated (formerly introduced) (Table 2; Suppl. material 1: fig. S1).
The number of alien species across Australian states ranged from 564 in the
Northern Territory to more than 1,900 in each of New South Wales, Queensland
and Victoria. However, the percentage of alien species across Australian states,
ranged from 10% in the Northern Territory and Western Australia to over 38% in
the Australian Capital Territory (Table 2; Suppl. material 1: fig. S1). Within the
alien species in each state, the percentage of harmful invasive species for which
there is evidence of negative impact according to GRIIS, ranged from 2% in Tas-
mania to 4.4% in the Northern Territory (Table 2; Suppl. material 1: fig. SI).
Beyond state and federal use, these data can also be used to report on the global
status of Australian biodiversity and to provide indicators of biological invasions.

Table 2. Summary showing the number of species within each group (i.e. native, alien, uncertain origin and other categories), and per-

centage where indicated, regarding invasion status at national and state scales. Alien species at national scale are those for which origin is

not Australian, whereas at the state level, alien species refer to those that could be native to other Australian territories. For alien species,

the invasion status (e.g. introduced, naturalised and harmful invasive) has also been specified when known. To facilitate understanding,

native (any) includes native, native colonising and native potentially colonising; naturalised (any) includes naturalised and doubtfully

naturalised; introduced (any) includes introduced, doubtfully introduced, and formerly naturalised, assuming that, most likely, there is

still an introduced individual of such species; other categories include species that are presumed extinct and species that were formerly

introduced; harmful invasive refers to alien species known to have a negative impact in the native biota. States and main territories have
been abbreviated (the Australian Capital Territory, ACT; New South Wales, NSW; the Northern Territory, NT; Queensland, QLD; South
Australia, SA; Tasmania, TAS; Victoria, VIC; Western Australia, WA).

Scale Region
National* Australia
Main territory ACT
State NSW
Main territory NT
State QLD
State SA
State TAS
State VIC
State WA

Total

30,557
2,034
9,248
5,600
11,812
5,686
3,167
6,018
15,001

Alien species
Alien total | Uncertain Other

Native total (% of total) origin categories | Introduced = Naturalised Harmful ivaasive
(% of alien)
26,796 3,487 (11.4) 11 22 58 3,352 77 (2.2)
1,245 785 (38.6) 4 0 120 643 22 (2.8)
7,296 1,952 (21.1) 0 0 114 1,777 61 (3.1)
5,032 564 (10.1) 4 0 63 476 25 (4.4)
9,904 1,904 (16.1) 0 4 76 1,769 59 (3.1)
3,940 1,739 (30.6) 3 4 203 1,487 49 (2.8)
2,181 970 (30.6) 2 14 105 847 18 (1.9)
3,932 1,989 (33.1) 80 17 121 1,819 49 (2.5)
13,484 1,505 (10) 0 12 1 1,504 51 (3.3)

*There are 29 species that are included in the database because of appearing on the Australian Plant Census (APC) but they are not recorded in any state or
external territory. There are also 211 species that are included in the database but only appear in external territories.
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Mismatches across Australian alien flora data sources

To report the mismatches here, we grouped invasion status into higher classes.
As such, native (any) includes all native, native potentially colonising and native
colonising taxa; while alien (any) includes all introduced species regardless of their
invasion status; introduced (any) includes all doubtfully introduced, introduced,
and formerly naturalised taxa; and naturalised (any) includes all doubtfully natu-
ralised and naturalised taxa. Subsequently, we grouped the mismatches into several
classes as follow: mismatches within groups, across alien groups (when they differ
in the invasion status or the degree of establishment reported), and across different
groups (native vs. alien).

We also identified mismatches related to either taxa presence or origin uncer-
tainty. Finally, the category ‘other mismatches’ referred to taxa that were either not
listed or were an excluded taxon on the APC, taxa recorded as not present in a giv-
en state or lacking information about invasion status, and taxa that were pro-parte
or pro-parte misapplied and therefore no accurate equivalence of taxonomy and
status could be assigned (Fig. 5).

The degree of mismatches at the national scale between the data obtained by our
script integrating unified statuses across Australian states and GRIIS showed that,
for all alien species, only four had similar statuses recorded in both data sources. This
is due to most of the mismatches found (64%) taking place across alien groups (i.e.,
GRIIS does not include records stating naturalised, therefore over 2,000 species that
are naturalised in the AFA appear recorded as introduced in GRIIS). Also, around
30% of the mismatches were due to certain species not being listed on GRIIS. There
were 66 species (2% of the national mismatches) that were recorded as introduced
according to GRIIS despite being native to at least one Australian state (see Suppl.
material 1: tables S2, S3 for details). The case of Phragmites australis (Cav.) Trin.

B Not listed, not recorded as present or
with misapplied taxonomy

W Uncertain
Presence-related

m Within groups

M Across alien categories

W Across groups (native vs. alien)

B Similar

§—§ NI SEEPE N

Figure 5. Percentage of similarity and mismatch between the national and the state scales. States and main territories have been abbrevi-
ated (the Australian Capital Territory, ACT; New South Wales, NSW; the Northern Territory, NT; Queensland, QLD; South Australia,

SA; Tasmania, TAS; Victoria, VIC; Western Australia, WA). Records were grouped in seven categories of mismatch. Similar: no mismatch

between data sources. Across groups: mismatches across groups (native vs. alien); Across alien categories: mismatches across alien groups

that differ in the invasion status or the degree of establishment reported; Within groups: mismatches within groups (e.g. naturalised vs.

doubtfully naturalised); Presence-related: mismatches because of the taxon not present in one of the data sources; Uncertain-related: mis-

matches because a taxon has uncertain origin in one of the data sources; Not listed, not recorded as present or with misapplied taxonomy

refers to mismatches when that is the case in one of the data sources.
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Ex Steud. was especially curious as it is native to all Australian states except Western
Australia but appeared recorded as invasive (harmful invasive) on GRIIS v1.9.

At the state scale, the mismatches detected ranged from 10% in Queensland to
over 40% for South Australia (Fig. 5; Suppl. material 1: table S2). The fact that
Queensland had less mismatches is most likely due to the Queensland Herbarium
using the same terminology as the APC and therefore species falling within similar
categories. By contrast, the highest percentage was detected in South Australia, a
state that did not provide precise information about the position along the contin-
uum, and therefore most species could only be assigned to ‘introduced’. However,
the highest number of severe mismatches (i.e. those across native and alien groups)
were detected in Victoria and Tasmania, with 281 and 115 mismatches falling in
this category (Fig. 5; Suppl. material 1: table S2).

Discussion

There are currently more than 13,000 vascular plant species naturalised outside
their native range in the world (van Kleunen et al. 2015, 2019). While the number
of high-quality, freely accessible online databases for alien flora at regional scales
have increased in recent decades, their ultimate value for management actions de-
pends on the feasibility of integrating the information they contain at larger spatial
scales (Luo et al. 2011; Latombe et al. 2017). Integration is especially important
when the data sources follow different criteria and has been previously proposed by
merging global databases (Seebens et al. 2020).

We have created the first harmonised workflow and standardised dataset on
alien flora in Australia, to assess the inconsistencies among current data sources,
and to provide an updated state-of-the-art checklist of non-deliberate plant inva-
sions across Australia. Having a free, easy-to-update Alien Flora of Australia (AFA)
standardised dataset at the national scale that combines all up-to-date Australian
state and national vascular plant censuses, offers a valuable research infrastructure.
This national infrastructure creates cost-effective new opportunities to study bio-
logical invasions at the continental scale at a speed and performance appropriate
for a broad range of stakeholders ranging from state and national government
entities in Australia, both the national and international scientific community, to
biosecurity committees, land managers, and society in general.

We would like to clarify that this integration exercise provides a reflection of the
diverse information existing in Australia. We have developed tools to be able to com-
bine contrasting information, but we have not classified taxa differently to those
in the original records on Australian plant censuses. From our point of view, mis-
matches on invasion statuses within alien groups (e.g. naturalised vs. doubtfully nat-
uralised) are unlikely to be very problematic for management purposes. Nevertheless,
mismatches across groups (e.g. introduced vs. naturalised) fail to provide accurate in-
formation along the invasion continuum, thereby hampering development of bios-
ecurity strategies and prioritisation for invasion management or eradication. Finally,
mismatches across different groups (e.g. native vs. naturalised) provide contradictory
information and pose the highest risk to management and conservation because an
alien species could be considered as native and managed as such or vice versa.

Due to the high percentage of mismatches detected regarding terminology and
classification, we encourage Australian herbaria to adopt a unified scheme in the
way they provide information in the state plant censuses. Ideally, the scheme they
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adopt should provide information on the stage of the plant taxon along the intro-
duction-naturalisation-invasion continuum based on overcoming ecological bar-
riers. We recommend herbaria to follow Blackburn et al. (2011) when classifying
plant taxa because it splits the classification along the continuum in easily recognis-
able stages. Schemes with intermediate stages such as Darwin Core can be risky to
implement, due to the time lag existing between a species moving along consecu-
tive phases of the "continuum" and human detection (e.g. a plant could have been
detected as reproducing when it is already naturalised). Too many intermediate
phases in the "continuum" can jeopardise the certainty of a taxon being correctly
classified in one stage but not in the next one (Essl et al. 2011; Rouget et al. 2016).

We also advise limiting the use of the term ‘invasive’ to refer to naturalised
species that spread and reproduce at multiple sites (e.g. Blackburn et al. 2011; Fig.
1c) and use instead ‘harmful invasive’ to refer to invasive taxa with negative im-
pacts (Essl et al. 2020). We understand the terminology proposed here differs from
international regulations such as CBD or IUCN; hence, we invite international
bodies to realign their terminology by replacing the term ‘invasive’ with ‘harmful
invasive’ when harmful impact is implied. In line with this, if impact status was re-
quired to be reported for a given application, complementary steps in future could
include assessing the environmental and socioeconomic impacts of alien taxa fol-
lowing the EICAT (Environmental impact classification for alien taxa; Hawkins et
al. 2015) and SEICAT (Socio-economic impact classification of alien taxa; Bacher
etal. 2018) frameworks, respectively. These frameworks have been adopted by the
IUCN to rank introduced species by the magnitude of their potential impacts
(Wallingford et al. 2020) and could be used to inform and address impact in Aus-
tralia (see Box 1 for further discussion regarding the use of ‘invasive’).

At the end of the present study, we engaged with GRIIS to discuss potential
causes and consequences of mismatches in the respective databases. We shared our
dataset and findings so that the species lists reported in the Suppl. material 1 could
be assessed prior to the release of the new GRIIS version. In the upcoming GRIIS

Box 1. Further discussion on the definition and use of the term ‘invasive’.

Invasion frameworks such as Blackburn’s (Blackburn et al. 2011), where the definition of invasive is proposed from a perspective of the barriers that
a species has overcome, are more of a theoretical concept. However, application of this approach can pose practical difficulties in determining when a
naturalised species has reached ‘a significant distance’” away from the introduction point to be considered invasive.

By contrast, frameworks such as IUCN and CBD, do not illustrate the barriers overcome by alien species and classify them as ‘invasive’ when impact
is evident.

In this sense, we would like to highlight that not all naturalised and invasive species sensu Blackburn et al. (2011) have harmful impacts. There are invasive
species for which there is no evidence to consider them harmful. Indeed, an alternative framework to the EICAT (Environmental impact classification
for alien taxa; Hawkins et al. 2015), namely EICAT+ (Vimercati et al. 2022) has been created in order to assess beneficial impacts of alien taxa.

It is not our intention to discourage the use of ‘invasive’; on the contrary, we use the term here to refer to the spread and dispersal of alien taxa
within the introduced range, as proposed by Blackburn et al. (2011). However, as there is currently no information regarding spread available on the
Australian censuses, we could not classify the species as simply ‘invasive’. Due to this limitation, we changed the terminology to ‘harmful invasive’ as
suggested by Essl et al. (2020), to consider for both frameworks, Blackburn’s and the TUCN’s.

Perhaps ‘harmful alien” would be a more accurate term than ‘harmful invasive’, to avoid any automatic association between species impact and
invasiveness, as it is known that small casual populations can still exert a negative impact. The question of impact (negative or positive) could therefore
be scored on its own axis, independently from population size and spread.

We hope that the mismatches in definitions and records of invasion status for vascular plants highlighted here help in reaching a consensus in the
terminology used both within the scientific community and by policy makers. Towards this end, after the new version of GRIIS is released and after
conducting a workshop with relevant Australian authorities in invasion and biosecurity, we would review our own terminology used in the Alien Flora
of Australia (AFA; Martin-Forés et al. 2023a,b) and provide new details on any consensus reached in the metadata.
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version (to be released soon), a classification category labelled ‘native-alien” will
be included to refer to species native to a certain area but naturalised somewhere
else. Species classified as ‘native-alien” could therefore be simultaneously tagged as
harmful invasive to refer to impact in the areas in which are introduced. Classifica-
tion for certain species appearing on GRIIS v1.9 will therefore be modified in the
new GRIIS version. In this sense, we will keep combining efforts and collaborating
with GRIIS to deliver harmonised information across Australia. As part of this,
once the new GRIIS is publicly available, we will adapt our script and publish an
updated version of the AFA dataset. Hence, we encourage users to check for up-
dates on Figshare (Martin-Forés et al. 2023b; doi: 10.6084/m9.figshare.23513478)
and always use the latest available versions of the script and dataset.

Implications and applications of the AFA

One of the strengths of the AFA, is that the information for each plant species is
easily comparable among all Australian states and at the national scale, with new
opportunities arising from its use. While the division between federal and state
levels makes sense in terms of local adaptability and expertise, effective communi-
cation and collaboration between the two policy levels are crucial. National strate-
gies and policies can help ensure a coordinated and cohesive approach to invasive
species management, addressing both local and broader concerns. At the same
time, a decentralised system allows for adaptability and the opportunity for state
agencies to create additional regulations and trigger rapid responses to emerging
or pressing threats. In this sense, this harmonised dataset at the national scale is
robust, as it allows developing federal strategies whilst simultaneously maintaining
the information relevant for each jurisdiction.

As a result of the division in biosecurity legislation between federal and state
levels, there are complicated cases of species being native to certain areas of Aus-
tralia but introduced in others where they cause known negative impact and are
therefore listed as weeds. For example, Pittosporum undulatum, or sweet pittos-
porum, is native to coastal areas of southern Queensland, New South Wales and
certain regions of Victoria. However, it is a declared weed in South Australia, and
listed as a common environmental weed in Tasmania and Western Australia. Due
to expansion in its area of distribution, P undulatum has been labelled as an envi-
ronmental weed outside its natural range in Victoria and New South Wales, which
gave rise to debate due to potential undesired associated effects (Howell 2003).
Cases like this can benefit from overarching federal legislation and coordinated
efforts among state agencies to ensure successful outcomes in every jurisdiction. A
more notorious example is the case of Bromus diandrus, species original to Mediter-
ranean Europe which is naturalised in all Australian states (doubtfully naturalised
in the Northern Territory). Bromus diandrus poses a serious concern as a widespread
grass weed having a detrimental impact on crop yield in Western Australia, where
it is a declared weed being managed. South Australia, the adjacent state, shares a
Mediterranean-type climate with Western Australia. Despite B. diandyus also being
naturalised in South Australia, the species has not been declared as a weed in this
state. This could potentially contribute to further dispersion into Western Australia,
therefore hindering management efforts currently taking place in Western Austra-
lia. Cases like brome grass (Bromus sp.) that have successfully naturalised in almost
the totality of continental Australia could benefit from a unified national strategy.
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To date, only 32 plant species that are likely to become harmful invaders have
been incorporated into the Weeds of National Significance (WoNS) (Thorp and
Lynch 2000). Once an alien plant species is declared as a WoNS, a national man-
agement plan outlining strategies for controlling and managing its spread is de-
veloped, typically involving federal and state governments and local authorities.
Therefore, to date, National Environmental Biosecurity Response Agreements
(NEBRA 2021) have only been developed for these 32 WoNS. We hope that the
AFA resulting from this integration exercise assists predicting invasions trends and
identifying alien plant species introduced to Australia that are already naturalised
in several states. For example, there are 77 alien species that are recorded as natu-
ralised in all Australian states (see Suppl. material 1: table S4); of which, only Lyci-
um ferocissimum Miers is currently considered a WoNS and is included on GRIIS
as a harmful invasive. Even though distribution across several states can be a result
of multiple introduction events (Koontz et al. 2018), we could expect a species that
is already naturalised across multiple regions in Australia to potentially become
problematic. Species that are already recorded as naturalised in several states and
that are known to have had negative impacts in other areas worldwide should be
rapidly assessed for inclusion in both GRIIS and WoNS.

In a similar manner, alien plant species that are currently doubtfully introduced
or introduced in only one state, could be the target of eradication efforts (Re-
jmének and Pitcairn 2002), with funding allocated to the relevant state, to prevent
further naturalisation and potential expansion into other Australian states.

Native plant species that are naturalised in other areas within the state to which
they are native (i.e., recorded in the AFA at national scale as native colonising or
native potentially colonising), could be associated with effects not only within
their own region of origin but also in other states in which they might appear as
introduced or naturalised. These range-expanding native species require specific
attention (Essl et al. 2019). There are currently 103 species in the category of na-
tive colonising; from these, 41 species are also introduced or naturalised in other
Australian states (see Suppl. material 1: table S5 for details). This information
should be an important consideration for land managers, and when designing
conservation strategies. Monitoring those 41 species could also be implemented
as part of internal biosecurity procedures in Australia to ensure that these species,
despite being native, do not pose any harm to other Australian biodiversity (Wall-
ingford et al. 2020) or international invasion risks if material is exported. It would
be especially useful to monitor and model trends for those species under climate
change (Hulme 2017). For those species expected to shift ranges under increasing
temperatures or rainfall redistribution, this information would be crucial to ap-
ply pre-emptive management procedures. In a similar manner, the AFA can help
identifying potential native species for which their spread into new areas through
climate tracking may not be undesirable if it prevents them from being at risk
of extinction.

In closing, we highlight that the information provided here on plant invasions
in Australia can be easily updated in the future with upcoming releases of the
APC and state censuses. The script we created to develop the AFA (Martin-Forés
et al. 2023a, b; hetps://github.com/MartinFores/AFA) can be used at any time to
automatise this process in the future. Such updates may be especially useful when
combined with occurrence data in order to monitor alien flora across Australia
under global change, as certain alien taxa are predicted to expand (Dullinger et al.
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2017) or contract (Pouteau et al. 2021) their distribution ranges, whereas others
can shift their distribution to track optimal environmental conditions in contigu-
ous states.

Our script and approach can be adapted and applied to similar situations in
other federally managed countries in which idiosyncrasies in the classification of
alien species arise among jurisdictions. To do so, the appropriate data curation
steps would need to be adapted to the way information is displayed in each of the
data sources of a given country. Taxonomy matching could be easily done via the
Global Biodiversity Information Facility (GBIF) taxonomic backbone and World
Flora Online, with both options currently included within our script. Afterwards,
prioritisation procedures can be implemented with the same functions we created.
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Abstract

Biological invasions are one of the main drivers of global biodiversity decline. At the same time, gla-
cial retreat induced by climate warming is occurring at an alarming rate across the globe, threatening
unique taxa and ecosystems. However, we know little about how introduced species contribute to the
dynamics of colonisation in newly-deglaciated forelands. To answer this question, detailed invento-
ries of plant and invertebrate communities were undertaken during two summer field seasons in the
forelands of three tidewater and three inland glaciers that are retreating on the sub-Antarctic Island
of South Georgia. The vascular plant communities present included a large proportion of South
Georgia’s native flora. As expected, plant richness and cover increased with time since deglaciation
along a deglaciation chronosequence. Introduced plants were well represented in the study sites and
two species (Poa annua and Cerastium fontanum) were amongst the earliest and most frequent colo-
nisers of recently-deglaciated areas (occurring on more than 75% of transects surveyed). Introduced
arthropods were also present around tidewater glaciers, including an important predatory species
(Merizodus soledadinus) with known detrimental impacts on native invertebrate communities. Our
study provides a rare and detailed picture of developing novel communities along a deglaciation
chronosequence in the sub-Antarctic. Introduced species are able to track glacial retreat on South
Georgia, indicating that further local colonisation and spread are inevitable as the region’s climate

continues to warm.
Key words: Biological invasion, Cerastium fontanum, chronosequence, climate change, conserva-

tion, glacial foreland, glacier-associated communities, Merizodus soledadinus, non-native species, Poa

annua, sub-polar ecosystems
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Introduction

Species introduced through human activities (commonly referred to as introduced,
alien, non-native, exotic) are considered invasive when they establish and have neg-
ative impacts on native biodiversity and ecosystems (Colautti and Maclsaac 2004).
Biological invasions are a key component of global environmental change and rep-
resent a major threat to biodiversity across the globe (Pysek et al. 2020; Roy et al.
2023), especially on islands (Moser et al. 2018), and this threat is likely to grow unless
effective biosecurity measures are put in place (Seebens et al. 2021). Sub-polar, polar
and mountain biomes are increasingly exposed to the cumulative threat of invasive
species and global warming (Thorarinsdottir et al. 2014; Alexander et al. 2016; Rew
et al. 2020). Although remote sub-Antarctic islands are expected to be particularly
vulnerable, data on introduced species are limited and little is known about future in-
vasion trajectories in the face of climate change (Frenot et al. 2005; Leihy et al. 2023).

In most cold biomes across the globe, glaciers have been rapidly retreating over
recent decades (Zemp et al. 2019) and, even in the least extreme scenarios of global
warming, the majority of the world’s mid- and low latitude glaciers are likely to be
lost by 2100 (Rounce et al. 2023). This alarming phenomenon impacts biodiversi-
ty across multiple spatial and temporal scales, ranging from the loss of specialised
communities in the immediate vicinity of retreating glaciers (Hotaling et al. 2017;
Wilkes et al. 2023) to regional impacts on water regimes and sea level (Barnett et
al. 2005; Zemp et al. 2019). When glaciers melt, new communities are built and
an ecological succession becomes apparent from the filtering gradient of environ-
mental conditions along the deglaciation chronosequence (Ficetola et al. 2021;
Pothula and Adams 2022). Some specialised taxa may lose their habitat, while
others may benefit from colonisation opportunities provided by the newly-deglaci-
ated areas (Cauvy-Fraunié¢ and Dangles 2019; Bosson et al. 2023). To protect these
highly vulnerable ecosystems, it is key to describe and understand the processes of
ecological succession following glacial retreat (Jacobsen et al. 2012).

To date, biological invasions in glacier-associated communities have received
very little research attention. This is surprising, given that invasive species can fun-
damentally alter the speed and trajectory of ecological succession in other ecosys-
tems (Kuebbing et al. 2014; Bellingham et al. 2016; Gallego-Tévar et al. 2020).
In proglacial streams and fjords, it has been suggested that introduced species may
arrive late in the succession process following glacial retreat, but clear evidence for
this is lacking (Cauvy-Fraunié and Dangles 2019).

To start to understand interactive effects between biological invasions and glacial
retreat, we assessed when and to what extent introduced species infiltrate the early
successional sequence of proglacial communities. We surveyed pioneer communi-
ties of plants (with a focus on vascular plants and key lichens and bryophytes) and
invertebrate species (with a focus on macroinvertebrates and Collembola) colonising
glacial forelands around three tidewater and three inland glaciers on the sub-Antarc-
tic Island of South Georgia. South Georgia is an important location to investigate
how introduced species enter the sequence of colonisation in newly-deglaciated ar-
eas, because it harbours multiple introduced plant and invertebrate species (Frenot
et al. 2005; Convey et al. 2010; Black 2022). In parallel, most of South Georgia’s
glaciers have been rapidly receding for decades and are predicted to continue to do
so (Gordon et al. 2008; Cook et al. 2010; Rounce et al. 2023), creating large areas
of habitat suitable for colonisation by both native and introduced species.
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Materials and methods
Study area

The Island of South Georgia is about 170 km long and up to 40 km wide and is
located in the South Atlantic, between 54°S—54°55'S and 35°50"W-38°W, about
1000 km north-east of the Antarctic Peninsula. Despite its geographical isolation
and relatively harsh sub-Antarctic climate, South Georgia currently hosts species
of plants and invertebrates that were introduced by sealing — and later shore-based
whaling — industries between the late 18" and mid-20" centuries (Convey and
Lebouvier 2009; Convey et al. 2011; Black 2022) with new introductions occur-
ring up to the present day (Convey et al. 2010; Tichit et al. 2023). Some intro-
duced species have negative impacts on native communities (Ernsting et al. 1995;
Houghton et al. 2019) and the island’s terrestrial ecosystems may be particularly
vulnerable to introductions due to the presence of vacant niches that are readily
available to new competitive invasive taxa (Convey and Lebouvier 2009; Hough-
ton et al. 2019). To tackle this issue, the Government of South Georgia & the
South Sandwich Islands (GSGSSI) has implemented rigorous biosecurity measures
and invasive mammals have been successfully eradicated from the Island (GSGSSI
2013; Martin and Richardson 2019). However, some plant species such as the dan-
delion Zaraxacum officinale agg. and the meadowgrass Poa annua and invertebrates
such as the carabid beetles Trechisibus antarcticus and Merizodus soledadinus may
now be too widespread for any realistic possibility of eradication (GSGSSI 2021).

To assess the ability of established introduced species to colonise deglaciated
areas, we surveyed six glacial foreland sites during the austral summer on the north
coast of South Georgia (Fig. 1). Three sites, investigated in April 2022, were located
in the vicinity of the following tidewater glaciers at low elevation (46 + 40 m a.s.L.):
the Nordenskjold Glacier between Barff and Greene Peninsulas, the Harker Glacier
between Greene and Thatcher Peninsulas and the Lyell Glacier that defines the
western limit of Thatcher Peninsula. In January and February 2023, the surround-
ings of three extant or recently-extinct inland cirque glaciers at higher elevation
(378 £ 122 m a.s.l.) were surveyed: Hodges and Col Glaciers on Thatcher Penin-
sula and an unnamed icecap west of Husvik on Busen Peninsula (locally known as
Husvik Glacier). Of these three sites, only Col Glacier currently persists as an ice
remnant approximately 30 x 100 m in size. Hodges Glacier rapidly receded after
1970 and was lost in 2008 (Bakke et al. 2021), while Husvik Glacier was lost by the
late 1950s (“Map of Falkland Island Dependencies: South Georgia” 1958).

To assess the dynamics of foreland colonisation by terrestrial communities, loca-
tions with contrasting times since deglaciation (zsd) were sampled at each foreland.
For tidewater glaciers, detailed maps of glacial front changes were available (Cook
et al. 2010; South Georgia GIS, accessed February 2022), enabling us to sample
locations positioned with precision along former glacial fronts with #sd between
five and 30 years. Depending on site accessibility and logistical constraints asso-
ciated with fieldwork, we were able to sample one to three replicates uniformly
distributed and at least 80 m apart on the retreat line for two to four values of #d
at the foreland of each tidewater glacier (Suppl. material 1). As no map or record of
deglaciation dynamics was available for the inland glaciers, an area with recent #sd
was identified closest to the current (Col Glacier) or last known position (Hodg-
es and Husvik Glaciers, “Map of Falkland Island Dependencies: South Georgia”

1958) of the ice remnant (Suppl. material 1). For comparison, a second area with
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1) Nordenskjold

Figure 1. Maps and overview of the six glacier sites on the north coast of South Georgia. Plant and
invertebrate communities at three tidewater glacial forelands (1-3 purple) and three inland degla-
ciated sites (4-6 blue) were surveyed. Centre-right: example of transects (black dots) along former

deglaciation fronts (from 1993 to 2017, light to dark purple) in the vicinity of Nordenskjéld Glacier.

older #sd was determined at a distance of approximately 200 m in the flow direc-
tion of the glacier. The validity of this approach relies on the unverifiable assump-
tion that the retreat rate was similar across the three inland glaciers and over their
deglaciation history. For both recent and older 7, three approximately equidistant
replicate locations were sampled.

Sampling

At each sampled location, plant communities were surveyed along a 30 m transect.
All vascular plants present within six adjacent quadrats (5 x 5 m) either side of
the transect line were recorded (yielding 12 records of plant presence/absence per
transect), while the cumulative number of bryophyte and lichen morpho-species
(photographs provided as Suppl. materials) across two quadrats at opposite ends
of the transect was recorded. For the tidewater glacier sites, the cover of plants and
lichens was measured through a point-contact sampling procedure using a frame
with 10 equidistant pins (length = 50 cm), placed every 2 m along the transect
(vielding 15 records of plant cover per transect). The vegetation at inland glacier
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sites was too sparse to achieve representative point-contact sampling; we therefore
used a Braun-Blanquet scale to estimate the cover of plants and lichens in each 5 m
quadrat (Suppl. material 2; yielding 12 records of plant cover per transect).

Several invertebrate sampling methodologies were applied in order to achieve
the most comprehensive description of the communities present. Ground-dwell-
ing (and secondarily flying) arthropods were sampled using pitfall traps (n = 3)
consisting of 250-ml beakers half-filled with a water/washing detergent solution
and buried to ground-level at the start, middle and end of each transect. Traps
were retrieved after being deployed for approximately 48 h. Macro-invertebrates
were extracted from approximately 200 ml of substrate obtained at the same three
positions along the transect, using Tullgren extractions for 8 h. Micro-invertebrates
were sampled on an opportunistic basis from soaked aliquots of the same substrate.
Invertebrates sampled using this non-quantitative method were not included in
statistical analyses. Finally, ground-dwelling invertebrates under stones and debris
were recorded and sampled during hand searches of 8 min and flying insects were
captured using sweep nets along a span of 5 m either side of the transect. All sam-
pled invertebrates were rapidly transferred to ethanol for preservation.

Sample identification

All vascular plants were readily identifiable to species level in the field, based on
published description and nomenclature (Burton and Croxall 2012b; POWO
2023) with the exception of the native lesser rush, Juncus inconspicuus that was
considered to be a synonym of the native greater rush Juncus scheuchzerioides
Gaudich (Kirschner 2002). Observations of the hybrid between the native greater
and lesser burnet Acaena magellanica x tenera were merged with the data for A.
magellanica. The introduced species aggregate Taraxacum officinale may contain
several micro-species and so was reported as Taraxacum officinale agg.

While some macroinvertebrates could be identified to species level in the field
(Burton and Croxall 2012a), most specimens required detailed assessment of an-
atomical features under stereo- or light microscopy, with reference to the avail-
able literature (Enderlein 1912; Hendel 1937; Gressitt 1970; Convey et al. 1999;
Kits 2011). Identification confidence for each taxon was categorised as ‘possible’,
‘probable’ or ‘certain’. All macro-invertebrates and springtails were identified to
species-level. All Sminthuridae were reported as Sminthurinus jonesi, since there
were no consistent taxonomic features supporting the presence of other species,
contrary to what was suggested by Convey et al. (1999). Mites and other micro-in-
vertebrates were categorised into morphotaxa.

Statistical analyses

All statistical analyses were performed in R (R Core Team 2022). To assess if the
observed presence data reflected the true presence of organisms in the glacial fore-
land communities (Buddle et al. 2005), we plotted species accumulation curves for
each transect with the function specaccum from the package ‘vegan’ (Oksanen et al.
2007). Visual inspection of these curves indicated if the encounter rate of new spe-
cies across samples taken was sufficient to compute representative diversity metrics.

To visualise the taxonomic composition of vascular plant communities across
tsd and glacier site, we performed an ordination on a Jaccard dissimilarity matrix of
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the presence/absence data at the transect level, using non-metric multidimensional
scaling (nMDS) with the function metaMDS in ‘vegan’ (Oksanen et al. 2007). The
score of each species was displayed on the ordination plot.

The presence data were modelled as a function of #s4 and glacier site through an
ordination with the function ccz from the package ‘vegan’ (Oksanen et al. 2007).
ANOVA-like permutation tests (n = 999 permutations) for constrained correspon-
dence analysis with the function anova.cca were used to test whether community
composition was significantly constrained by #54, glacier site and their interaction.

To investigate the effects of deglaciation time on the richness of communities
and the presence or cover of species, we employed multivariate models using Bayes-
ian Inference with the package brms (Biirkner 2017), treating the glacier site and
tsd as the main explanatory variables. Tidewater and inland glaciers were modelled
separately. As the response of communities may depend on glacier sites, we ran a
model with a simple interaction between glacier site and zd. For tidewater glaciers,
we ran a model with a quadratic term for #d to reflect non-linear responses, as well
as a model with both interaction and quadratic terms. We selected the simplest and
most informative model using pairwise comparisons of the expected log pointwise
predictive density (ELPD) with function /oo (Vehtari et al. 2017, Suppl. material
3). The variable #sd was a categorical variable for inland glacier sites (recent or old),
but continuous and scaled to zero mean and unit variance for tidewater glacier
sites. As the availability of mapped former glacial fronts in the period 1993-2018
varied between tidewater glaciers (Cook et al. 2010), the sampling of #sd was het-
erogeneous and not synchronised across glaciers, which prevented the use of a
categorical variable to model #s4. When the sampling unit (pitfall traps, pin frame
or 5 m quadrat) was nested within a transect, transect identity was included as a
random effect. Response variables were observed for species richness, plant cover
(at species level or higher) and species presence/absence and were modelled using
Poisson, zero-inflated binomial and Bernoulli distributions, respectively. Weak-
ly-informative priors determined by a Gaussian distribution (mean p = 0, standard
deviation 6 = 10) were used to model the effects of predictors. Random effects were
drawn from a Student’s #distribution (df'= 3, mean p = 0, standard deviation ¢ =
10). Models were run using four chains for 5000 iterations (including 2500 burn-
in iterations). Traces of the sampling behaviour of each predictor were scrutinised
(Suppl. material 4) and the R-hat convergence diagnostic (Vehtari et al. 2021)
was computed (Suppl. material 5) to verify that the models converged towards
reliable predictions. A posterior predictive check was used to compare modelled
and observed data and evaluate the quality of the models (Suppl. material 4). The
significance of each effect being positive or negative was assessed using Bayesian

95% credible intervals (CL),).

Results

Taxonomic inventory

Eighteen native species of vascular plant were found at tidewater glacier sites
(Suppl. material 6), representing 78% of the native species known from South
Georgia. At inland glaciers, only seven native species were observed (30%). Four
introduced species occurred on both types of glacier sites: Poa pratensis, Taraxa-
cum officinale agg., Cerastium fontanum and Poa annua (Suppl. materials 7, 8).
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Figure 2. Frequency of occurrence across transects of the 10 most common vascular plants around tidewater glaciers (a, n = 21 transects),

inland glaciers (b, n = 18 transects) and most frequent invertebrates around tidewater glaciers (c, n = 21 transects). Introduced species are

highlighted in red.
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At tidewater glaciers, C. fontanum was the second and P annua was the seventh
most frequent species (Fig. 2a). On forelands of inland glaciers, 2 annua was the
second, C. fontanum the fourth and 7. officinale agg. the eighth most frequent
species (Fig. 2b).

Sixteen native species of terrestrial invertebrates were identified with high confi-
dence at tidewater glacier sites (Suppl. material 6), representing 48% of the native
species on South Georgia. At inland glacier sites, only five native species were
present, representing 15% of known native species. Five introduced species were
found at the tidewater glacier sites and none at the inland sites (Suppl. material
7): Merizodus soledadinus (Coleoptera), Hypogastrura viatica (Collembola), Aptero-
thrips secticornis (Thysanoptera), Mycomya sp. (Diptera) and Trichocera regelationis
(Diptera). Merizodus soledadinus and H. viatica were the fourth and tenth most
frequent invertebrate species, respectively, at tidewater glacier sites (Fig. 2¢).

Sampling quality

Accumulation curves of vascular plant species were close to saturation for most
of the sampled transects (n = 39, Suppl. material 9), indicating that samples were
largely representative of the communities present. However, accumulation curves
of invertebrate species did not reach a plateau or were not possible to produce
when transects were the smallest replication unit. In the following analyses, we thus
calculated diversity metrics only for plants, for which an assumption of near-com-
plete detection was reasonable. We investigated drivers of presence for a subset of
the ten most frequently encountered invertebrate species, assuming that detection
— though likely incomplete — remained equally probable across sampling sites.
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Community-wide effects of time since deglaciation and glacier site

The structure of vascular plant communities was significantly constrained by #,
glacier site and marginally by their interaction in forelands of both tidewater and
inland glaciers (Table 1, Fig. 3).

Around tidewater glaciers, the number of bryophyte morpho-species increased lin-
early with #d, while the number of vascular plant species initially increased and then
reached a plateau (Fig. 4, Suppl. material 5). Bryophytes seemed to be more abundant
at intermediate #54 and there was no clear effect of #d on the cover of vascular plants,
but the cover of lichens was higher in areas exposed for longer (Suppl. materials 5,
10). Compared to Harker Glacier, Lyell Glacier hosted a lower number of vascular
plant species and a higher number of bryophyte morphospecies, while Nordenskold
Glacier was associated with a higher cover of bryophytes (Suppl. materials 5, 10).

Table 1. Summary of results from ANOVA-like permutation tests (n = 999 permutations) for con-
strained correspondence testing whether community composition was significantly constrained by

tsd, glacier site and their interaction.

Tidewater glaciers Inland glaciers
Variable F df ? F df ?
Time since deglaciation (zs4) 3.23 1 0.001 3.45 1 0.007
Glacier site 3.06 2 0.001 4.86 2 0.001
Interaction #sd: Glacier site 1.41 2 0.068 2.28 1 0.046
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Figure 3. Taxonomic composition of vascular plant communities across time since deglaciation (57 in
years) at tidewater (a) and inland (b) glacier sites. The two first components of a non-metric multidi-
mensional scaling (NMDS) from an ordination on the presence data at the transect level are mapped.
Each circle, rectangle or triangle corresponds to a transect from a given site and deglaciation time

(black to red). Small crosses represent the score of the ten most frequent species on the ordination plots.
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At inland glacier sites, there were significantly more vascular plant species in
older than in recently-deglaciated areas (Fig. 4, Suppl. material 5), as well as a
higher cover of vascular plants and bryophytes (Suppl. materials 5, 10). Compared
to Husvik Glacier, Col Glacier hosted a lower number of vascular plant species and
reduced cover of vascular plants and of bryophytes (Suppl. materials 5, 10). Hodg-
es Glacier did not differ from Husvik Glacier in terms of community-level metrics.

Species-level effects of time since deglaciation and glacier site

At tidewater glacier sites, the introduced Cerastium fontanum and Poa annua were
most likely to occur across a broad range of intermediate # (Fig. 5a, Suppl. ma-
terials 5, 10), which was also the case for the native species Deschampsia antarcti-
ca and Colobanthus quitensis. The probability of occurrence of the native Phleum
alpinum initially increased and then reached a plateau with increasing #sd. The
native Festuca contracta, Acaena tenera, A. magellanica, Rostkovia magellanica and
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correspond to the null hypothesis (effect is zero).

Galium antarcticum were more frequent at older deglaciated sites. Similarly, the
two lichens Stereocaulon sp. and Pseudocyphellaria sp. and the mosses Syntrichia
robusta and Polytrichum sp. were more likely to occur in older deglaciated areas,
while the presence of the liverwort Marchantia berteroana was not affected by #sd.
The cover of C. fontanum decreased with increasing zsd (Fig. 5b, Suppl. materi-
als 5, 10), while the cover of P annua showed no evidence of change. Amongst
native vascular plants, the cover of C. quitensis showed no evidence of change
with #sd, D. antarctica and P alpinum were most abundant at intermediate #sd
and F contracta had higher cover in older deglaciated areas. Amongst bryophytes
and lichens, the cover of Stereocaulon sp., Pseudocyphellaria sp. and Marchantia
berteroana showed no evidence of change with #sd, while Polytrichum sp. was most
abundant at intermediate #s4 and Syntrichia robusta increased in cover with #sd.
At inland glacier sites, the occurrence of the invasive Zaraxacum officinale agg.
did not differ between old and recent areas of deglaciation (Fig. 6a, Suppl. materi-
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als 5, 10), while the invasive P annua and C. fontanum were more frequent in old-
er deglaciated locations. The native D. antarctica, A. magellanica and Polystichum
mobhrioides did not significantly differ between #d, while all other native plants
became more frequent in older deglaciated areas. The cover of all plants (with the
possible exception of D. antarctica and P alpinum) was higher in old deglaciated
areas (Fig. 6b, Suppl. materials 5, 10).

At tidewater glacier sites, the native spider Micromaso flavus seemed more fre-
quent at older deglaciated sites, but there was no clear effect of #54 on the presence
of other reliably sampled invertebrates (Fig. 5¢, Suppl. materials 5, 10).

For both inland and tidewater glaciers, there were notable differences between
sites in the presence and cover of species (Suppl. materials 5, 10). The invasive
C. fontanum was scarce at Lyell Glacier and abundant at Nordenskjold Glacier,
where the introduced springtail Hypogastrura viatica was also more common, while
P annua was more frequent at Harker Glacier. At inland sites, 7. officinale agg. was
more frequent at Hodges Glacier, while 2 annua was less abundant at Col Glacier.

Discussion
Colonisation by introduced species

Introduced vascular plants and invertebrates were well represented in the recent
stages of community assembly after glacial retreat on South Georgia. Four intro-
duced vascular plants were found on glacial forelands, with Cerastium fontanum

NeoBiota 92: 85-110 (2024), DOI: 10.3897/neobiota.92.117226 95



Pierre Tichit et al.: Introduced species infiltrate recent stages of succession after glacial retreat on sub-Antarctic South Georgia

and Poa annua being very frequent, while Taraxacum officinale agg. and P, pratensis
were rarely observed. Around tidewater glaciers, C. fontanum and P annua oc-
curred across a broad range of #sd and C. fontanum was more abundant in recently
rather than in older deglaciated sites, indicating that these species are effective
pioneers on glacial forelands along South Georgia’s coast. Notably, flowering spec-
imens of C. fontanum were found in areas deglaciated less than five years prior to
the survey, approximately 50 m from the terminus of Lyell Glacier. Both species
originate from temperate regions of the Northern Hemisphere (POWO 2023,
Suppl. material 7), are widespread on South Georgia (Black 2022) and have suc-
cessfully invaded most islands in the sub-Antarctic (Frenot et al. 2005). Poa annua
is invasive on the maritime Antarctic South Shetland Islands (Molina-Montenegro
et al. 2012; Hughes et al. 2015) and both species are also early colonisers of new-
ly-deglaciated areas on a glacier foreland on the sub-Antarctic Kerguelen Islands
(Frenot et al. 1998). At tidewater glaciers on South Georgia, the rapid colonisa-
tion by C. fontanum and P annua outpaced that of most native vascular plants,
with the possible exceptions of Deschampsia antarctica and Colobanthus quitensis,
with these invasive plants effectively short-cutting the successional sequence fol-
lowing glacial retreat. At inland sites, C. fontanum and P annua were less common
in more recently-deglaciated areas, but direct comparisons with tidewater glaciers
are not possible due to methodological differences. In contrast, the dandelion 7
officinale agg. appeared equally capable of colonising old and recently-deglaciated
areas inland, which likely results from its seeds being wind-dispersed over large
distances.

We also documented the presence of five introduced invertebrate species on
recently-deglaciated forelands, indicating an ability to disperse and survive in chal-
lenging environments. This capacity to track glacial retreat is particularly remark-
able for three of these invertebrates that are flightless and suggests high mobility
through passive dispersal (Héagvar et al. 2020) or active locomotion, as previously
reported for the carabid beetle Merizodus soledadinus (Convey et al. 2011; Renault
2011; Laparie et al. 2013; Lebouvier et al. 2020). The invasive springtail Hypo-
gastrura viatica was frequent on coastal forelands (in particular at Nordenskjold
Glacier), which underlines the high dispersal capacity of this species that is also in-
troduced on other sub-Antarctic islands and in parts of the South Shetland Islands
(Frenot et al. 2005; Greenslade and Convey 2012).

What characteristics of introduced plants and invertebrates make them capa-
ble of infiltrating the dynamics of colonisation on glacial forelands? The isolation
and harsh environment of sub-Antarctic islands generate environmental filters
that may provide opportunities for invaders with a mixture of typical invasive
traits that guarantee high resource acquisition and efficient dispersal (Laparie et
al. 2013; Liao et al. 2021) and pioneer traits such as low plant height and resis-
tance to abiotic stress (Laparie et al. 2012; Mathakutha et al. 2019; Bazzichetto
etal. 2021). Both P annua and C. fontanum are small annual plants with shallow
roots (although P annua can adopt a perennial life cycle and develop into swards),
investing heavily in rapid growth and early reproduction and lack the vegetative
and longer-lived tissues typical of the perennial native species that allow multi-year
survival under stressful abiotic conditions (Frenot and Gloaguen 1994; Frenot et
al. 1998; Chwedorzewska et al. 2015; Johner 2020). It is possible that ruderal
traits act as pre-adaptations that provide a colonisation advantage as communities
develop around receding glaciers.
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Possible impacts of introduced species

Although native plants seem to co-occur with the two invasive pioneers C. fonta-
num and P annua, these invasive plants may have impacts on native communities
in glacial forelands. During competition experiments in the field in the South
Shetland Islands, P annua reduced the biomass and photosynthetic abilities of
C. quitensis and D. antarctica (Molina-Montenegro et al. 2012). On South Geor-
gia, C. quitensis and D. antarctica might also be the native plants most likely to
experience direct competition with C. fontanum and P annua, given their similar
early position in the succession on glacial forelands. Competitive interactions be-
tween invasive and native taxa are likely to change with ongoing environmental
changes and climate warming, possibly to the advantage of introduced species that
generally originate from more temperate regions (Molina-Montenegro et al. 2019;
March-Salas and Pertierra 2020; Convey and Hughes 2022; Daly et al. 2023).
However, our data also show that C. fontanum declines in abundance, while P2 an-
nua remains equally common in post-glacial plant communities as they are even-
tually colonised by native perennial plants, suggesting that native plants can be
stronger competitors than some invasive annuals. Despite this, the two invasive
plants remain a component of plant communities at least 30 years after deglacia-
tion both in inland and coastal forelands and these taxa are now so widespread on
South Georgia that large-scale control is not feasible (Black 2022).

Current and future impacts of introduced species will likely vary between gla-
cier locations. For instance, we found that Nordenskjold Glacier had higher plant
cover, but was also more invaded by introduced plants and invertebrates than the
two other tidewater sites. Whether these local differences are due to contrasting
topography, microclimate, soil quality or disturbance by macrofauna or human
activities is still to be investigated, but they deserve consideration when assessing
impacts of biological invasions on glacier-associated communities and developing
conservation strategies.

Introduced invertebrates may also have impacts on the terrestrial ecosystems of
sub-Antarctic islands (Convey et al. 2010; Houghton et al. 2019). In our study,
they were restricted to coastal sites, suggesting that inland sites might provide ref-
uges for native taxa (but see Lebouvier et al. (2020) who note that M. soledadinus
is now invading inland and higher altitude locations on the Kerguelen Islands).
However, with very limited representative survey data available away from coastal
locations on South Georgia, it is also unclear whether inland areas would be suit-
able for many/most native taxa given their high degree of isolation, inhospitable
conditions and low diversity of habitats. The presence of the predatory M. soleda-
dinus is of great concern for the native invertebrate diversity as it can locally drive
prey species to extinction, impact the life cycle of co-existing species and funda-
mentally reshape invertebrate communities (Convey et al. 2011; Lebouvier et al.
2020). The introduced springtail, A. viatica, might act as a food source to the
introduced predator, as well as competing directly or indirectly with native species,
such as Cryptopygus antarcticus (Convey et al. 1999). Our results suggest that com-
munities in newly-deglaciated areas may not be exempt from the negative effects
of invasive invertebrates that may alter the trajectory of invertebrate community
succession compared to when they are absent.

The early expansion of introduced species likely modifies soil characteristics,
provides biomass and generates biotic interactions in newly-deglaciated areas
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(Badenhausser et al. 2022), which might have consequences for the entire suc-
cession process following glacial retreat. In other systems, biological invasions can
alter the speed (Gallego-Tévar et al. 2020) and trajectory of primary successions
(Flory and Clay 2010), but little is known in the context of glacier-associated
communities. Moreover, the impacts of invasive species in glacial forelands may
not be exclusively negative (Walther et al. 2009), as some native taxa might benefit
from a modified succession. Our study highlights the need for future research to
understand if and how introduced taxa can alter the trajectory and speed of colo-
nisation dynamics following glacial retreat.

Community changes and underlying mechanisms along the
deglaciation chronosequence

Opverall, we found an increase in the cover and diversity of plants along the chrono-
sequences in glacial forelands. This is consistent with the basic process of primary
succession following glacial retreat (Jones and Henry 2003; Flg and Hégvar 2013;
Vater and Matthews 2015; Glausen and Tanner 2019; Gwiazdowicz et al. 2020;
Pothula and Adams 2022) and we can presume that a similar trend would have been
found with invertebrate communities if sampling quality had allowed. Although
our study did not include sites deglaciated more than 30 years previously, we found
evidence that the rate of accumulation of vascular plant species decreased along the
chronosequence, which contrasts with proglacial successions across the world (Jones
and Henry 2003; Pothula and Adams 2022), eventually reaching a plateau repre-
senting a high proportion of the native flora of South Georgia. Contrasting with
other regions globally where glacier-associated taxa represent a very small propor-
tion of the overall biodiversity, these differences may relate to the specificity of the
flora on sub-Antarctic islands, that typically consists of species with higher dispersal
ability and adaptations enabling survival in harsh abiotic conditions (Convey 1996).

There were interspecific differences in the colonisation speed of native plants
that may help to disentangle the mechanisms underpinning the deglaciation chro-
nosequence. Deschampsia antarctica and Colobanthus quitensis were the first na-
tive species to colonise tidewater glacier sites alongside two genera of lichen (Sze-
reocaulon and Pseudocyphellaria), followed by Phleum alpinum and, subsequently,
Acaena magellanica, A. tenera, Festuca contracta, Rostkovia magellanica, Galium
antarcticum and three bryophyte taxa. Interestingly, D. antarctica and C. quitensis
are the only two native angiosperms in the more extreme maritime Antarctic and
are known for their high degree of tolerance to adverse conditions (Cavieres et al.
2016; Clemente-Moreno et al. 2020), which may contribute to their ability to
colonise very recently-deglaciated sites on South Georgia. The pattern of primary
succession following deglaciation on the sub-Antarctic Kerguélen Islands showed
some differences to South Georgia, as cushion-forming Colobanthus species and
tussock-forming Poa kerguelensis, but not D. antarctica, were amongst the first colo-
nisers (Frenot et al. 1998). The early succession on South Georgia resembles progla-
cial communities of glaciers at high latitudes and altitudes where lichens, mosses
and some grasses are first to colonise, but later trajectories differ due to the presence
of shrubs and trees (Jones and Henry 2003; Nakatsubo et al. 2005; Garibotti et al.
2011; Fickert and Griininger 2018; Ruka et al. 2023). Regional idiosyncrasies in
the successional colonisation of deglaciated areas on sub-Antarctic islands are likely
a result of missing species in disharmonious floras which may lead to increased
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vulnerability of developing native communities to invasive plants with traits largely
absent for the native species pool. Even across glaciers of the same type on South
Georgia, community composition was largely determined by glacier identity, which
underlines the importance of the local microenvironment and the composition
of adjacent communities in shaping successions following glacial retreat (Bayle et
al. 2023). Native invertebrate communities around tidewater glaciers primarily
consisted of mites, springtails, dwarf Linyphiidae spiders, Promecheilidae beetles
and winged dipterans, resembling proglacial arthropod communities across alpine,
sub-polar and polar ecosystems (Kaufmann 2001; Hodkinson et al. 2004; Franzén
and Dieker 2014; Hagvar et al. 2020; Moret et al. 2020; Ruka et al. 2023).

Conclusions

Besides providing an important baseline on the patterns of community assembly
along a deglaciation chronosequence in the sub-Antarctic, this study highlights
the need for future research that quantifies the impacts of invasive pioneers on
the speed and trajectory of ecological succession in glacier-associated ecosystems.
While current colonisation dynamics suggest that invasive species infiltrate the
sequence without outcompeting native colonisers, further studies are required to
determine whether this co-occurrence will persist with ongoing climate change,
glacial retreat and habitat transformation. On South Georgia and other sub-Ant-
arctic islands, invasive species will likely track the ongoing and future retreat of
glaciers where they are present. Our study illustrates that synergies between the
effects of climate change and biological invasions constitute a key research avenue
in vulnerable montane, polar and sub-polar ecosystems.
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Supplementary material 1

Positions of all transects (black dots) along former deglaciation fronts (from 1993
to 2017, light to dark purple) in the vicinity of tidewater glaciers or in recent and

old deglaciation areas in the vicinity of inland glaciers

Authors: Pierre Tichit, Paul Brickle, Rosemary J. Newton, Peter Convey, Wayne Dawson

Data type: pdf

Explanation note: For the latter, the approximate last known positions of the glacier are highlighted
in light purple (Husvik: 1958, Hodges: 1970, Col: 2023).

Copyright notice: This dataset is made available under the Open Database License (http://opendata-
commons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement
intended to allow users to freely share, modify, and use this Dataset while maintaining this same

freedom for others, provided that the original source and author(s) are credited.

Link: hteps://doi.org/10.3897/neobiota.92.117226.suppll

Supplementary material 2

Adapted Braun-Blanquet scale used in the study of inland glacier sites

Authors: Pierre Tichit, Paul Brickle, Rosemary J. Newton, Peter Convey, Wayne Dawson

Data type: pdf

Copyright notice: This dataset is made available under the Open Database License (http://opendata-
commons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement
intended to allow users to freely share, modify, and use this Dataset while maintaining this same

freedom for others, provided that the original source and author(s) are credited.

Link: hteps://doi.org/10.3897/neobiota.92.117226.suppl2

Supplementary material 3

Results of model selection, based on the posterior likelihood of models for each

variable

Authors: Pierre Tichit, Paul Brickle, Rosemary J. Newton, Peter Convey, Wayne Dawson

Data type: pdf

Explanation note: SE indicates standard error. The simplest model with best predictive performance
determined was that using pairwise comparisons of the expected log pointwise predictive density
(elpd-diff). Point estimates of the expected log pointwise predictive density (elpd_loo), the ef-
fective number of parameters (p_loo) and the loo information criterion looic are also provided.

Copyright notice: This dataset is made available under the Open Database License (http://opendata-
commons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement
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freedom for others, provided that the original source and author(s) are credited.
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Model traces, conditional effects and posterior predictive check of each modelled

variable

Authors: Pierre Tichit, Paul Brickle, Rosemary J. Newton, Peter Convey, Wayne Dawson

Data type: pdf

Copyright notice: This dataset is made available under the Open Database License (http://opendata-
commons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement
intended to allow users to freely share, modify, and use this Dataset while maintaining this same

freedom for others, provided that the original source and author(s) are credited.
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Supplementary material 5

Summary of effects of time since deglaciation for each glacier site on all variables
modelled with Bayesian Inference (including quadratic and interaction terms if

retained in the best model)

Authors: Pierre Tichit, Paul Brickle, Rosemary J. Newton, Peter Convey, Wayne Dawson

Data type: pdf

Explanation note: Effects on the presence and cover of taxa are on a logit scale. Effects on unbound
count data are on a log scale. The R-hat statistic is provided to assess the convergence of each
estimate.

Copyright notice: This dataset is made available under the Open Database License (http://opendata-
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intended to allow users to freely share, modify, and use this Dataset while maintaining this same

freedom for others, provided that the original source and author(s) are credited.
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Supplementary material 6

List of species found at tidewater and inland glacier sites

Authors: Pierre Tichit, Paul Brickle, Rosemary J. Newton, Peter Convey, Wayne Dawson

Data type: pdf

Explanation note: Introduced species in bold. Taxonomical information from up-to-date database
(POWO 2023; Banki et al. 2024).

Copyright notice: This dataset is made available under the Open Database License (http://opendata-
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Supplementary material 7

Description of the introduced species observed in the survey (n = 9)

Authors: Pierre Tichit, Paul Brickle, Rosemary J. Newton, Peter Convey, Wayne Dawson

Data type: pdf
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Supplementary material 8

Average cover (in %) across transects of the 10 most common vascular plants

around tidewater glaciers (2, n = 21 transects), inland glaciers (4, n = 18 transects)
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Data type: pdf
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intended to allow users to freely share, modify, and use this Dataset while maintaining this same

freedom for others, provided that the original source and author(s) are credited.

Link: hteps://doi.org/10.3897/neobiota.92.117226.suppl8

Supplementary material 9

Species sampling curves for each surveyed transect

Authors: Pierre Tichit, Paul Brickle, Rosemary J. Newton, Peter Convey, Wayne Dawson

Data type: pdf

Copyright notice: This dataset is made available under the Open Database License (http://opendata-
commons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement
intended to allow users to freely share, modify, and use this Dataset while maintaining this same

freedom for others, provided that the original source and author(s) are credited.
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Supplementary material 10

Effect of time since deglaciation on the presence of plant and invertebrate species at

tidewater and inland glacier sites modelled with Bayesian Inference

Authors: Pierre Tichit, Paul Brickle, Rosemary J. Newton, Peter Convey, Wayne Dawson

Data type: pdf

Explanation note: Transparent points represent the original data. Lines (tidewater) or points (inland)
are the estimated mean effects of #d. Purple, turquoise and yellow areas (Harker: purple, Lyell:
turquoise, Nordenskjold: yellow) or intervals (Husvik: purple, Col: turquoise, Hodges: yellow)
represent the Bayesian 95% credible intervals, respectively.

Copyright notice: This dataset is made available under the Open Database License (http://opendata-
commons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement
intended to allow users to freely share, modify, and use this Dataset while maintaining this same

freedom for others, provided that the original source and author(s) are credited.
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Supplementary material 11

Plant and invertebrate inventory on glacial forelands of South Georgia (2022-2023)

Authors: Pierre Tichit, Paul Brickle, Rosemary J. Newton, Peter Convey, Wayne Dawson

Data type: zip

Explanation note: GPS positions, plant and invertebrate inventories made across tidewater (2022)
and inland glaciers (2023) on South Georgia.

Copyright notice: This dataset is made available under the Open Database License (http://opendata-
commons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement
intended to allow users to freely share, modify, and use this Dataset while maintaining this same

freedom for others, provided that the original source and author(s) are credited.

Link: hteps://doi.org/10.3897/neobiota.92.117226.suppl11

Supplementary material 12

Bryophyte and lichen morphospecies observed on glacial forelands of South
Georgia (2022-2023)

Authors: Pierre Tichit, Paul Brickle, Rosemary J. Newton, Peter Convey, Wayne Dawson

Data type: zip

Explanation note: Bryophyte and lichen morpho-species were photographed across two 5 x 5 m
quadrats at opposite ends of each 30 m transect on forelands of tidewater glaciers. Specimens are
recorded in Suppl. material 11.

Copyright notice: This dataset is made available under the Open Database License (http://opendata-
commons.org/licenses/odbl/1.0/). The Open Database License (ODbL) is a license agreement
intended to allow users to freely share, modify, and use this Dataset while maintaining this same

freedom for others, provided that the original source and author(s) are credited.

Link: https://doi.org/10.3897/neobiota.92.117226.suppl12

NeoBiota 92: 85-110 (2024), DOI: 10.3897/necbiota.92.117226 110



A peer-reviewed open-access journal NeoBiota 92: 111-128 (2024)

@ NCOBIOta DOI: 10.3897/neobiota.92.121288

Advancing research on alien species and biological invasions

Research Article

The 50-year history of anglers' record catches of genus
Carassius: circumstantial evidence of wiping out the native
species by invasive conspecific

Marek émejkal1 , Kiran Thomas’, Vladimir Koren?, Jan Kubecka'’

1 Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, Na Sadkach 7, 370 05, Ceské Budéjovice, Czech Republic
2 Charles University, Institute for Environmental Studies, Faculty of Science, Benatskd 2, Praha 2, CZ12800, Czech Republic
Corresponding author: Marek Smejkal (marek.smejkal@hbu.cas.cz)

Abstract

Successful invasive non-native fish species can cause enormous damage to native biodiversity. In
mainland Europe, the introduction of the gibel carp (Carassius gibelio) has led to a decline in popu-
lations of the formerly widespread native crucian carp (C. carassius). Both invasive and native species
develop two phenotypes, namely stunted and deep-bodied, which depend on the intensity of compe-
tition and predation in the water body. The deep-bodied phenotype is associated with a more diverse
fish community composition, can attain large sizes and is very attractive to recreational anglers. This
study analysed trends in the record sizes of native crucian carp and invasive gibel carp (individuals
close to the maximum attainable size of the species) reported by recreational anglers over the last 50
years in Czechia, recording the invasion of gibel carp from its beginnings to the fully established pop-
ulation phase. The study provides circumstantial evidence that gibel carp is behind transition from the
relative abundance of large crucian carp to near extirpation, while large gibel carp have taken over the
reports of record catches in the genus Carassius. This indicates that the crucian carp, which is currently
classified as critically endangered in the Red List of Czechia, has very limited possibilities to realise its
deep-bodied phenotype. It also shows the potential of using data from recreational anglers for map-

OPEN 8/\((555 ping invasion processes and as a source of relatively localised information on endangered species.
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Introduction

Invasive non-native species can have an enormous impact on freshwater ecosys-
tems, displacing native species or even causing their complete extinction (Gurevitch
and Padilla 2004; van der Veer and Nentwig 2015; Smejkal et al. 2023). Invasive
non-native species can threaten native species through predation (Grabowska et
al. 2019), competition for food resources and space in the ecosystem (Tapkir et
al. 2022), hybridisation (Papousek et al. 2008) or through disease transmission
(Gozlan et al. 2005). The spread of invasive non-native species has been facilitated
by intentional or unintentional introductions (Sakai et al. 2001; Blackburn et al.
2011; Almena et al. 2023) and one of the most common routes of introduction for
invasive non-native species fish has been through aquaculture and the ornamental
fish trade (Naylor et al. 2001; Balon 2004).

Fish of the Cyprinidae family were the first to be spread outside their native wa-
ters (Balon 2004). The gibel carp (Carassius gibelio) was accidentally introduced to
Eastern Europe in the mid-20™ century along with other cyprinids from the Amur
Basin to be bred in aquaculture (Hensel 1971; Kalous et al. 2012). The migration
of the invasive gibel carp in the Danube River was recorded in the 1970s (Téth
1976) and the first records in Czechia date back to 1975-1976 (Halacka et al.
2003). The gibel carp rapidly invaded most of Western Europe and today reaches
as far as the Scandinavian and Iberian Peninsulas (Wouters et al. 2012; Rylkov4 et
al. 2013; Ribeiro et al. 2015). The invasion went unnoticed to a certain extent due
to the relatively high morphological similarity with the feral form of the goldfish
(Carassius auratus) already present in Europe (Hensel 1971; Szczerbowski 2002),
so that the exact development of the invasion process and the resulting damage to
local aquatic ecosystems were not recorded in detail.

Due to limited resources in monitoring the progress of invasive non-native
species, it has proven useful to utilise knowledge, photos and video recordings
collected by people through approaches such as citizen science, culturomics and
iEcology (Ladle et al. 2016; Jari¢ et al. 2020a, 2021). In addition, meaningful
data can be collected by recreational anglers and managed by angling associations
(Pinder et al. 2015; Venturelli et al. 2017; Pentyliuk et al. 2023, which, if collected
systematically, can provide relatively standardised evidence of the progress of the
species’ invasion (Vejiik et al. 2019; Lyach 2022; Thomas et al. 2023). In addition,
recreational anglers have a particular preference for the individuals of fish that are
exceptionally large for the species in question (Wilde and Pope 2004; Garcia-Aso-
rey et al. 2011). These are referred to as “record” or “trophy” catches and are often
presented in social media and angling magazines. These exceptional catches have
not been particularly recognised by the scientific community in the past (Boon et
al. 2024). However, they can be used to examine the status of the population in a
particular area (Jari¢ et al. 2020b) and a decreasing size of catches and maximum
length reached in the population can be indicative of overfishing or overall poor
population status (Rochet and Trenkel 2003; Shin et al. 2005; Boon et al. 2024).

Despite the great attention paid by recreational anglers to large species and in-
dividuals (Beardmore et al. 2015; Birdsong et al. 2021), so-called “coarse fish spe-
cies” also participate in record catch competitions, especially in countries with a
large recreational angling community (Rolfe 2010; Locker 2014). One of these
coarse fish species is the crucian carp (Carassius carassius), a cyprinid species that
has the extraordinary ability to adapt its morphological characteristics to the expe-
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rienced level of competition and predation (Bronmark and Miner 1992; de Meo et
al. 2021, 2022). This adaptation is so extreme that the two phenotypes produced
by crucian carp were previously considered to be two different species (Holopainen
etal. 1997). In small water bodies, where competition for food is the main driver,
a stunted form develops with a usual maximum size of less than 20 cm and an en-
larged head compared to the total body size (Holopainen et al. 1997), while in the
presence of piscivorous fish, the crucian carp changes its shape to a deep-bodied
morph with a relatively small head and can reach a total length of up to 50 cm
(Bronmark and Miner 1992; de Meo et al. 2021; Vinterstare et al. 2023). The
latter form is prized by recreational anglers for its relative rarity and is, therefore,
likely to be entered in record catches.

The crucian carp used to be one of the most abundant species in small European
lentic waters; however, it declined due to habitat reduction and the invasion of the
gibel carp in Western and Central Europe (Tapkir et al. 2022, 2023; Fedorédk et al.
2023) and due to competition with congener goldfish and common carp (Gyprinus
carpio) (Copp et al. 2010; Busst and Britton 2015, 2017), as well as due to changes
in pond management (Sayer et al. 2011, 2020). The crucian carp, gibel carp and
feral goldfish are relatively similar, but the distinguishing characteristics between
the crucian carp and the two invasive Carassius species allow the crucian carp to be
recognised (Szczerbowski 2002; Papousek et al. 2008).

This study thus attempts to retrospectively map the disappearance of the large-
sized crucian carp after the invasion of the gibel carp, which was not well docu-
mented by the regular monitoring activities of scientists and nature conservation
authorities. To this end, recreational angling magazines and websites dedicated to
record catches were scrutinised for focal species. In addition to information on
fish and catches, recreational anglers also provided photos of their record catches.
The study selected evidence of record catches of native crucian carp and invasive
gibel carp and used common bream (Abramis brama) and roach (Rutilus rutilus) as
a reference dataset. These species were not as severely affected by the invasion of
the gibel carp in Czechia as native species in southern latitudes and the gibel carp
did not cause a significant decline in the populations of these species in reservoirs
and large rivers (Riha et al. 2009; Lusk et al. 2010; Perdikaris et al. 2012). It was
hypothesised that: i) the increase of the invasive gibel carp will be accompanied by
a decline in reports of large individuals of the native crucian carp over time and ii)
the reference datasets of common bream and roach will not show the same trends
as those of native crucian carp due to the lower impact of the gibel carp invasion
on these species.

Materials and methods

Record catches extraction and verification

The first dataset compiled for the study includes reported catch records of the focal
species for which the recreational angling magazines “Rybafstvi”, “Rybai”, “Cesky
Rybdi”, “Sportovni Rybdfstvi”, “Kajman” and the recreational angler’s website
“mrk.cz” were examined for evidence of record fish of the species crucian carp,
gibel carp, common bream and roach from the years 1973-2022, resulting in a
dataset spanning 50 years. The submitted photos, together with the total length

(TL, in cm), weight (kg; W) and angling area code, were first reviewed by a mag-
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azine editor-in-chief or an expert (an experienced angler and often an authority
from the Czech or Moravian Anglers Union, or from the anglers’ community on
the mrk.cz website) before being officially admitted to the competition. Selected
photos appeared directly in the magazines, while the rest of the record catches were
not selected for publication in the magazines and were included in the annual sum-
marised statistics of record catches. Both datasets were extracted in a standardised
manner, focusing on the presence of TL, W, species, water type (lentic, lotic) and
numerical angling area identifier (code unique to a particular water body or river
section, if available in the record). In addition, due to the similarity between cru-
cian carp and gibel carp, the authors’ team reviewed all available photos to assess
the reliability of the dataset and changed the category from crucian carp to gibel
carp (or vice versa) where appropriate. We also extracted the central GPS position
of the angling site and the total area in ha and assigned the angling ground to three
existing watersheds in Czechia (Elbe, Danube and Odra; Suppl. material 1).

The angling sites are part of the Czech and Moravian Anglers Unions, which
are large organisations with around 330,000 members and whose angling grounds
cover the catchment areas of the Elbe, Danube (Morava) and Odra Rivers in Cze-
chia. There are 76,000 kilometres of watercourses and 107 reservoirs in Czechia.
The area of waters totals 42,000 hectares, both in lotic and lentic ecosystems and
is accessible for recreational angling with a licence.

Statistical analyses

To estimate whether the number of record-sized individuals of a given species
follows any pattern in the time series, the data were tested with the funtimes
package (Lyubchich and Gel 2023) using the local regression-based WAVK test
method (Wang et al. 2008; Lyubchich et al. 2013) within the R software (R Core
Team 2023). The Sieve bootstrap enhancement to test for a trend (monotonic or
non-monotonic) was used with the WAVK function for each species separately
(Lyubchich et al. 2013).

In addition, the records of native crucian carp and invasive gibel carp were anal-
ysed to determine whether they differ in their maximum recorded length and weight.
The crucian carp and gibel carp datasets were tested for normality assumptions using
the Shapiro-Wilk normality test. As the data were not normally distributed, the
Mann-Whitney U-test was used for all data regardless of the year of capture.

Generalised additive models (GAM) were used to assess trends in fish size during
the study period (Wood 2017). To test whether the trend in maximum length and
weight changed over the years, two GAMs were created with all species in the first
stage, with length and weight as response variables and species, year and angling
ground size as explanatory variables. To check the validity of k-value, the gam.
check function was used (Augustin et al. 2012; Wood 2017). In addition, a total
of eight GAMs were created (for each species separately) with length and weight
as response variables and year as an independent variable to assess species-specific
trends over the years. The effect of the variable year was modelled using cubic re-
gression splines (bs = “cr”). General additive models were created using the mgev
package (Wood 2001, 2017).

Generalised additive models were used to plot the points of records of all four
species for each decade, using the number of reported catches in each period as the
response variable and their GPS locations as the explanatory variable, by creating
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contour plots (Wood 2017). Each line (or contour) represents the number of re-
ported catches in that area within the country. The proximity of the lines indicates
the steepness of the gradient. The model check was performed using the gam.
check function (Augustin et al. 2012; Wood 2017). The graphical visualisation of
the data was created using the ggplot2 and ggmap packages (Kahle and Wickham
2013; Wickham 2016).

Results

In total, the dataset contained 982 records in the period 1973-2022, with 124 re-
cords of native crucian carp (mean TL = 39.8 + 4.3 cm, mean W = 1.46 + 0.43 kg),
248 invasive gibel carp (TL = 44.5 £ 4.0 cm; W = 1.82 + 0.50 kg), 369 common
bream (TL=62.3+5.7 cm, W =3.29 +0.87 kg) and 241 roach (TL=40.8 £ 3.5 cm,
W =1.09 + 0.27 kg). Of the total number of catches, 66.9% of the native crucian
carp were caught in lentic waters, while the figures for invasive gibel carp, common
bream and roach were 62.9%, 42.5% and 36.5%, respectively. The highest con-
tribution to the dataset was made by the magazine “Rybdfstvi’(700), followed by
Kajman (103), mrk.cz (93), Cesky Rybat (48), Rybét (34) and Sportovni Rybéistvi
(4). When checking the available photos of crucian carp and gibel carp, 27 and 98
photos were obtained, respectively. The reliability of species identification on these
photos reached 63% for crucian carp and 100% for gibel carp. All misidentifica-
tions were made after 1993, while all 10 crucian carp records with photos were
confirmed as crucian carp before that year.

Trend analyses of reported record fishes

The test for any trend on all four species indicated that all species contain a signifi-
cant trend in their data (WAVK test: crucian carp p < 0.001; gibel carp p < 0.001;
common bream < 0.001; roach < 0.05). Trends in number of record crucian carp
reported by recreational anglers declined sharply after 2005 and, for these data and
the best fit, we used a model with moving window (MW) 7 and a polynomial fit
of degree 11 (WAVK test = 34.098, p < 0.001). Reports of invasive gibel carp first
appeared in 1985 and were comparable in number to native crucian carp between
1985 and 2000. Since then, reports of invasive gibel carp have become very dom-
inant in terms of record sizes (Fig. 1A). The best fit for the gibel carp was a linear
increasing trend (WAVK test = 152.51, MW = 7, p < 0.001). In comparison to
this trend, the record size reports for common bream and roach did not show a
strong decreasing or increasing trend (Fig. 1B, C). The best fits were a polynomial
fit of degree 3 in common bream (WAVK test = 35.996, MW =9, p < 0.001) and
a linear trend in roach (WAVK test = 40.395, MW =9, p = 0.021).

Trends in species maximum sizes

The reported native crucian carp were, on average, smaller than invasive gibel carp
in both length (39.8 + 4.3 cm vs. 44.5 = 4.0 cm, W = 6167.0, p < 0.001; Fig. 2A)
and weight (1.46 = 0.43 kg vs. 1.82 + 0.50 kg, W = 8282.5, p < 0.001; Fig. 2B).
The general additive model for maximum recorded length (M1) and weight (M2)
differed significantly between fish species, with the exception of roach length (Ta-
ble 1), with a positive estimate for gibel carp and common bream and a negative
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Figure 1. The number of record catches extracted from angling magazines and websites between
1973 and 2022 for A the native crucian carp (Carassius carassius), invasive gibel carp (C. gibelio) and
reference fish species B common bream (Abramis brama) and C roach (Rutilus rutilus). The period
captures the invasion phase of gibel carp from early invasion phase to fully established, as well as the

current impact on the native and critically endangered crucian carp in Czechia.

estimate for roach in terms of weight and, further, with a positive effect of angling
ground size (M1: t = 2.36, p = 0.018; M2: t = 2.34, p = 0.020) and a positive effect
on weight in the Elbe catchment (M2: t = 2.28, p = 0.023). The effect of year was
significant for both models (M1 F = 4.844, p < 0.001; M2: F = 3.936, p < 0.001)
and the total explained deviation of the model was 83.4% and 71.8% for M1 and
M2, respectively. The trend for the recorded maximum lengths was unimodal for
native crucian carp with maximum values around the year 2000 (GAM: F = 15.12,
p < 0.001, 33.4% deviance explained), while it gradually increased for invasive
gibel carp (GAM: F = 18.84, p < 0.001, 24.1%), was relatively stable for common
bream (GAM: F = 0.009, p > 0.05, 0.0%) and showed a fluctuating trend with
the maximum around 1990 in roach (GAM: F = 3.841, p < 0.001, 14.7%; Fig. 3).
Similarly, the maximum weight was recorded around the year 2000 for crucian
carp (GAM: F = 21.93, p < 0.001, 44.7%), while the maximum recorded weight
increased gradually in gibel carp (GAM: F = 3.726, p = 0.002, 8.5%) and the fit
was linear in common bream (GAM: F = 2.335, p = 0.014, 7.6%) and fluctuating
in roach (GAM: F = 10.19, p < 0.001, 16.7%; Fig. 4).

The GAM contour plots showed the concentration of large-sized fish mainly
in the area of the lowland rivers and the interconnected oxbows. While common
bream and gibel carp were almost ubiquitous, record-sized crucian carp and roach
showed a more aggregated distribution with few hotspots in Czechia (Fig. 5).
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Figure 2. The comparison of reported record catches size in the 50-year dataset. The maximum
attainable size of the invasive gibel carp (Carassius gibelio) significantly exceeds the maximum size of
the native crucian carp (C. carassius) in Czechia in both A total length and B weight. The boxplot
boundaries represent upper and lower quartiles; the thick lines represent medians and the whiskers

represent 1.5 times the interquartile range. Violin plots represent kernel density distribution.

Table 1. The parametric coefficient of general additive models for record catches of native crucian
carp (Carassius carassius), invasive gibel carp (C. gibelio), common bream (Abramis brama) and roach
(Rutilus rutilus) with response variable of total length (upper table) and weight (lower table). The
significance of smooth term on variable year was < 0.001 for both models and explained deviance

was 83.4 and 71.8%, respectively.

Estimate t-value p-value
GAM Length
Intercept 40.174 74.966 <0.001
Species:Roach 0.383 0.709 NS
Species:Bream 22.069 43.021 <0.001
Species: Gibel 3.812 6.876 <0.001
Angling ground size 0.001 2.369 0.0181
Type: Lotic -0.088 -0.267 NS
Basin: Elbe 0.298 0.840 NS
Basin: Odra -0.820 -1.152 NS
GAM Weight
Intercept 1.408 19.973 <0.001
Species:Roach -0.420 -5.908 <0.001
Species:Bream 1.810 26.838 <0.001
Species:Gibel 0.314 4.305 <0.001
Angling ground size 7.094e™ 2.157 0.031
Type: Lotic 0.001 0.198 NS
Basin: Elbe 0.107 2.280 0.029
Basin: Odra -0.041 -0.440 NS
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Figure 3. The GAM trend-line of record catches size (total length) in the 50-year dataset. The GAM
fit has been computed with the stat_smooth function. The data suggest: A unimodal response in the
native crucian carp (Carassius carassius) with time B increase maximum attainable size in the invasive
gibel carp (C. gibelio) C stabilised size limits in common bream (Abramis brama) and D maximum
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Figure 4. The GAM trend-line of record catches size (weight) in the 50-year dataset. The fit has
been computed with the smooth function with a value of k = 1 to avoid overfitting. The data suggest
A unimodal response in the native crucian carp (Carassius carassius) with time B moderate increase
in maximum attainable size in the invasive gibel carp (C. gibelio) C relatively stabilised size limits in

common bream (Abramis brama) and D fluctuating trend in roach (Rutilus rutilus).
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Discussion

Given the speed at which invasions are progressing in the aquatic environment,
it appears that utilising the information collected from citizens can help combat
the problem (Jari¢ et al. 2020b, 2021; Loki et al. 2023). This study shows circum-
stantial evidence of declining trend in the distribution of the native large crucian
carp in Czechia, as recorded by recreational anglers” catches. This trend in record
catches of invasive gibel carp and native crucian carp corresponds well with the sta-
tus of crucian carp in Czechia, where the first change in species status from “Least
Concern” to “Vulnerable” occurred in 2000, i.e. around the same time that catches
of gibel carp appeared more frequently in the record statistics than those of crucian
carp. The increase in misidentifications in the native crucian carp records after
1993 indicates that the data are likely to include some misidentified gibel carp, so
that their dominance in the catches will be likely even more absolute. However,
this dataset did not contain all variables that could have accounted for the decline
of crucian carp; thus, there is a chance that other biotic (e.g. more intense common
carp stocking) or abiotic (e.g. climate change) factors contributed to its decline.
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Trends in occurrence and size with relation to species ecology

Both native crucian carp and invasive gibel carp were found more frequently in
the lentic waters, which is consistent with their ecology (Holopainen et al. 1997;
Tarkan et al. 2023). The size of the angling water and the catchment area of the
Elbe had a slight positive influence on fish size in the general model for all species.
This result may need to be tested in more detail using a larger dataset, as not much
scientific literature has been published on angling for fish of record size and such
result may apply only to some species.

While the records of both reference species showed a relatively stable trend
around the same average value, both native crucian carp and invasive gibel carp
showed GAM trend-lines indicating changes in maximum size. For crucian carp,
the unimodal response with a decline in recorded maximum size in recent years
suggests either growth limitations or possible confusion with invasive gibel carp
or hybrids between crucian carp and gibel carp around 2000. Both options are
possible, as the growth restriction may be caused either by increased interspecific
competition due to the invasion of the gibel carp (Auwerx et al. 2021; Tapkir
et al. 2022) or by the negative effects of increasing average temperature on fish
growth (Emmrich et al. 2014). While the prediction of crucian carp via growth
parameters suggests that growth increases with temperature (Tarkan et al. 2016),
the record-size crucian carp seems to benefit from rather low temperatures and the
best lakes are located in northern latitudes and with the presence of piscivorous fish
(Rolfe 2010; Vinterstare et al. 2023).

Hybridisation is also a likely explanation, as both species form hybrids under
certain circumstances (Papousek et al. 2008; Knytl et al. 2018) and hybrids also
form between the crucian carp and the goldfish (Smartt 2007). Despite the em-
phasis on hybridisation in Carassius studies (Papousek et al. 2008; Wouters et al.
2012; Knytl et al. 2018, 2022), the results of strong invasive gibel carp suggest that
this is competition between native crucian carp and probably the main reason for
the decline in crucian carp populations (Tapkir et al. 2022, 2023).

The sequence of gibel carp invasion in Czechia

The gibel carp was accidentally introduced to Hungary together with the commer-
cial Asian fish species (Hypophthalmichthys molitrix, H. nobilis, Ctenopharyngodon
idella) in the 1950s (Téth 1976; Hol¢ik 1980). The westward invasion of the gibel
carp started in the Danube catchment, and commercial catches of Carassius ge-
nus increased from 3% to 15% in the period from 1958 to 1976 in the Danube
(Téth 1976; Hol¢ik 1980) and the first records in Czechia were in the Morava
River (Danube watershed) in 1975-1976 (Halac¢ka et al. 2003). Due to inter-ba-
sin aquaculture transfers, the first reports of gibel carp in the Elbe River Basin
were recorded as early as 1980 (Kubecka 1989) and soon became the dominant
taxa within the genus Carassius (Halacka et al. 2003; Lusk et al. 2010). The first
record in this dataset also comes from the Danube catchment. However, this study
focused on fish of record size, so it is likely that several years will pass between the
invasion and the record catches.

There are currently three invasive species of the genus Carassius living in Czechia,
the goldfish (including feral form), C. langsdorfii in addition to already mentioned
gibel carp (Kalous et al. 2007, 2013; Rylkovd et al. 2013). These species can hy-
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bridise with each other and form viable populations of hybrid origin (Keszte et al.
2021) and are, therefore, considered a species complex in some studies (Rylkova et
al. 2013; Knytl et al. 2022). All of them are of similar appearance (Hensel 1971),
the largest individuals can reach a length of more than 40 cm and, therefore, all can
be included in angling statistics under the name of invasive gibel carp. Although
it is widely believed that the gibel carp is the most widespread invasive Carassius
species in Central Europe and the other two species are of lesser importance in
terms of competition with native crucian carp (Lusk et al. 2010; Musil et al. 2010;
Fedorcdk et al. 2023), it might be interesting to investigate the relative proportion
of these invasive species in European mainland.

Engaging public in conservation of crucian carp

The passion for enhancing native crucian carp populations was first brought to
public attention in England, where Peter Rolfe launched his attempt as a pilot an-
gler to reintroduce the species to Norfolk waters and promote the existence of ex-
ceptionally large fish in ponds (Copp and Sayer 2010; Rolfe 2010). The approach
has been underpinned by the scientific literature and the presence of European
pike (Esox lucius) has been embedded in the management of larger ponds to en-
courage the presence of the deep-bodied phenotype that can reach exceptional sizes
that are attractive to recreational anglers (Bronmark and Miner 1992; Bronmark
et al. 1995; Pettersson and Bronmark 1997; Rolfe 2010). This concept involves
easing the intraspecific competition through predation (i.e. thinning out the carp
population in the water body) and the simultaneous production of crucian carp in
small ponds and stocking in larger water bodies.

Although the conservation and fisheries management described above is artifi-
cial, it has its roots in the life-history strategy of the crucian carp. In the floodplain
rivers, the population has a metapopulation structure with a rare deep-bodied phe-
notype in multi-species community of large water bodies or lowland rivers (Brén-
mark and Miner 1992; Bronmark et al. 1995; Holopainen et al. 1997). These
individuals can colonise pools in the floodplain and lay the foundation to the
shallow-bodied phenotype that is formed in a single-species community without
the presence of piscivores due to the frequent occurrence of anoxia (Blazka 1958;
Holopainen and Hyvirinen 1985; Piironen and Holopainen 1986). These pools
are then source populations and provide a surplus of fish in the main river channels
during floods, where they can produce deep-bodied and potentially large-sized
fish. From the perspective of Czechia, it appears that the deep-bodied phenotype
disappeared faster than the shallow-bodied phenotype, as citizen-science projects
resulted in finding few tens of sites (Smejkal etal. 2021). Water Framework Direc-
tive monitoring in the Vltava watershed has not detected crucian carp in the last 15
years, while gibel carp are abundant (Barton and Smejkal 2022), so we can assume
that the trend presented in the catch records is reliable.

Culturomics role in fish conservation with emphasis on large-size fish

Culturomics in conservation has been shown to be an effective means of raising
public understanding, framing conservation issues and engaging people in timely
environmental monitoring (Ladle et al. 2016). Recreational angling with catch-
and-release ethics for each species is a conservation strategy and these contests have
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been shown to be effective in raising awareness of species conservation and getting
people’s attention (Cooke and Suski 2005). The catch data of mahseer (7or spp.)
from the Cauvery River in India is a good example of how organised angling can
be used as a tool to monitor species conservation, as it effectively contributes to
species conservation and fisheries management measures (Pinder et al. 2015). The
appreciation of environmental goods and services is often a part of societal culture
and digitised or documented information, such as angler logbooks, helps to under-
stand the behaviour of recreational anglers towards a species (Hutt et al. 2013) and
can be used for conservation and management measures via culturomics. Angler’s
ecological knowledge, which largely depends on the size and frequency of their
catches (van den Heuvel and Rénnbick 2023), can be an effective tool for conser-
vation alongside the cultural influences on their interpretations of environmental
change (Thornton and Scheer 2012). There are approximately 226 million recre-
ational anglers worldwide (World Bank 2002; Arlinghaus et al. 2015, 2019) and -
3% of the total population of Czechia are registered in angling unions (Boukal et
al. 2012), so this angling information, if systematically retrieved and analysed, can
provide a good source of information for conservation efforts.
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Abstract

Invasive plant species (IPs) are widespread in forests and cause substantial environmental, economic
and social impacts. They occupy native ecological niches, causing local extinctions to the detri-
ment of native biodiversity and disrupting ecosystem services provision. How landscape character-
istics may determine the success of IPs remains unclear and, more importantly, how land-use and
land-cover changes may result in spatial shifts in the invasion risk. Furthermore, the study of how
landscape factors may influence biological invasions has focused on particular species, but not the
IPs’ community. In this study, we identify and assess landscape variables that influence the pres-
ence and distribution of the IPs' community in temperate forests of a global biodiversity hotspot
in south-central Chile. We fitted spatially explicit models, combining field-sampling information
and landscape variables related to land-use/land-cover, topography, climate, soil characteristics and
anthropogenic factors to explain and predict the presence and distribution of the IPs' community.
From the whole sampling of plant species, we identified eight plant species classified as IPs: three
trees and five shrubs. We used field data from 125 500 x 2 m-transects, in which we registered spe-
cies richness, abundance and basal area of IPs' community. Distance to forest plantations was the
landscape variable with the most substantial influence on IPs" presence and distribution. Richness,
abundance and basal area of IPs’ trees were higher at shorter distances from forest plantations. The
basal area of IPs trees was the best model explaining the relationship between IPs' community and
landscape variables. All descriptors of the IPs’ community showed similar spatial patterns: species
richness, abundance and tree basal area are higher in more disturbed areas. Our findings contribute
to increasing our understanding of the distribution patterns of IPs in forest landscapes. Our models
can be suitable tools for designing strategies to prevent, mitigate or make integrated control of the

impacts of invasive species in forest landscapes.

Key words: Alien plants, basal area, biological invasions, land cover, landscape dynamics, land use
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Introduction

Biological invasions might be shaped by landscape characteristics, as landscape
structure may influence the patterns of the invasive species community. Anthropo-
genic landscape alteration plays a fundamental role in explaining the patterns and
magnitude of invasions by exotic plants (Gonzdlez-Moreno et al. 2015). This asso-
ciation is mainly mediated by an increase in propagule pressure, the degree of dis-
turbance and habitat connectivity favourable to invasion. Likewise, invasions may
shape landscapes, as the invasive species can alter its surrounding environment to
make conditions more conducive to its presence (Gouws and Shackleton 2019).
For instance, according to Bartuszevige et al. (20006), the landscape structure is of
primary importance, while some community attributes, such as disturbance histo-
ry, canopy openness and woody plant composition, are of secondary importance
to determine the invasion risks of the alien shrub Lonicera maackii. In this case,
the shrub invades from multiple foci (towns) rather than in a frontal advance,
independently of the landscape connectivity (i.e. the number of corridors), but
depending on edge habitat, probably due to increased propagule pressure. Thus,
some of the community attributes associated with L. maackii invasion may be
indicators of past disturbances.

Invasive plants (IPs) can be considered a particular component in the succession
of the plant community. IPs distributions show wide ecological amplitudes, con-
sidering they might adapt to different and novel climatic and geographical zones
(Thinley et al. 2020). The IPs’ presence may be regulated by mechanisms occurring
at global scales, but also at local scales of anthropogenic (e.g. social, economic and
political) and biophysical variables (Montti et al. 2017). Thus, IPs invasion risks
would depend on the co-occurrence of specific factors at different spatial scales,
from global to local. These factors include suitable environmental and climatic
conditions, propagule introduction by humans and a posteriori landscape-scale
dispersal. For instance, agricultural lands are usually most susceptible to invasion
amongst all other land-use types, irrespective of the species (Thinley et al. 2020).

The land-use type may be crucial for shaping the invasion process (Kueffer
2017). Land-use changes related to political processes can create an invasion debt
that causes unexpected linkages amongst the invasive plant, native dispersers, land
management and topography that, together, can cause cascading changes in eco-
systems (Lenda et al. 2018). For instance, the invasion of the alien walnut Juglans
regia in Poland since 1989 has been a multifaceted process (Lenda et al. 2018).
Human-related alterations to propagule pressure biotic and abiotic factors have
led to the spread of walnuts from abandoned human settlements and fields to
forest ecosystems. Moreover, the changes in land-use and land-cover may result
in spatial shifts in the invasion risk (Wang et al. 2016). Although some IPs might
not be established in dynamic and heterogeneous landscapes (even with favourable
climate conditions), the species may establish when a disturbance such as land-use
change occurs (Gillson et al. 2008). The landscape permeability increases, allowing
IP colonisation; this produces patchily distributed stands of the same age. Many
invasive plants perform better in cleared areas; thus, the connectivity of cleared
areas and undisturbed habitat results is critical for their successful colonisation
(Green et al. 20006).

Several models represent and predict the dispersion of individual IPs’ species
considering the characteristics of their natural range, including species distribution
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models (Elith 2017). However, few studies have considered the IPs’ community
to elaborate dispersion or distribution models. Amongst these few studies, we find
that of Gong et al. (2020), who used an assemblage-niche-model platform to build
niche-based species distribution models and project potential distributions of two
invasive plant species (Cecropia peltata and Ulex europaeus), changes in their distri-
bution under the scenarios of global changes, as well as the underlying mechanisms
or factors driving these changes. To assess the status of fish stocks, multispecies
virtual population analysis is an attempt to take species interactions; some models
treat them as aggregate (continuous) biomass and capture more realistic biological
interactions and processes (Gupta et al. 2019). According to Plagdnyi et al. (2022),
multispecies models can reduce bias in parameters, reference points and projec-
tions. Multispecies models that cover a wide range of species in the ecosystem span
multiple trophic levels from primary producers to top predators. In the context of
connectivity conservation plans, they generally develop considering a single species
and are rarely empirically evaluated for their relevance to others, limiting our un-
derstanding of how connectivity requirements differ between species (Brennan et
al. 2020). These same authors recommend evaluating multispecies connectivity to
prioritise areas for conservation that safeguard the connectivity needs of multiple
species of conservation concern.

Landscape characteristics were one of the most critical drivers for most plant
responses in the research about constraints of restoration outcomes across spatial
scales of an invasive plant (Rohal et al. 2019). According to their research, the abi-
otic and landscape variables combined at a patch scale drive the plant community
results. Climatic and land-use variables were good predictors of landscape suscep-
tibility to invasion in the south-eastern U.S. (Ldzaro-Lobo et al. 2020), especially
distance to settlements. Systems anthropogenically perturbed, i.e. developed areas
and barren lands were more prone to be invaded. Homogenisation of landscapes
through anthropogenic activities (agriculture, forest plantations, urbanisation)
helps biotic homogenisation and is a process attributed primarily to the establish-
ment of exotic species (Lobos et al. 2016). Landscape heterogeneity and corridors
for propagule dispersal may also increase the landscape susceptibility to invasion
for most species (Ldzaro-Lobo et al. 2020). The influence of landscape composi-
tion and configuration on invasion risk is species-specific. Thus, to better under-
stand the potential impacts of IPs, it is necessary to know the IPs’ habitat and the
main variables that may facilitate/impede their presence and abundance.

In Chile, 743 species of alien plants have been reported, a higher proportion
(15%) than in other Latin American countries (Fuentes et al. 2013). Of these
species, over 100 are considered IPs (Fuentes et al. 2014). There is a high con-
centration of alien species in the South-central region, where practically all IPs at
the national level are present. Amongst the causes of this distribution are multiple
colonisation waves, higher levels of anthropogenic disturbance, great agricultural
and livestock activity and intensification of forest crops in the mid-20" centu-
ry (Fuentes et al. 2014). The eight species that form the community of IPs in
our study area are considered invasive, according to Herrera et al. (2016). Acacia
dealbata reduces species richness under its understorey, plant cover and seed den-
sity, thus modifying the floristic composition, while increasing the coverage of
other alien plant species (Herrera et al. 2016). Acacia melanoxylon promotes an
increase in water-nitrogen concentration and alterations in litter characteristics in
native riparian forests, altering the activity and community structure of microbial
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decomposers (Pereira et al. 2021). Eucalyptus globulus causes alterations of net-
works of interaction between species of the native community, alters the dynamics
of leaf litter-fall, can increase the concentration of soil nitrate, delay the growth
of undergrowth plant species and decrease fungal biomass in the river ecosystem
(Castro-Diez et al. 2004; Medina-Villar 2016). Cytisus striatus is considered a nox-
ious weed in the United States (Ketchum and Rose 2003) and grows aggressively,
displacing native species. It increases the risk and intensity of fires and leads the fire
to the top of the trees (Fuentes et al. 2014). Rosa rubiginosa forms monospecific
stands, so, in advanced stages of the invasion, it can impoverish the species compo-
sition and alter the structure of affected plant communities (Herrera et al. 2016).
It can alter pollination mutualisms by attracting native and exotic pollinators and
reducing the reproductive success of native plants. Rubus ulmifolius proliferates by
colonising open sites, where it prevents the regeneration of native plants, resulting
in impoverishment in species composition and altering the structure of affected
plant communities (Herrera et al. 2016). It forms impenetrable barriers that limit
the circulation of animals and make large areas inaccessible. Zeline monspessulana
creates favourable conditions for fire generation because it tends to form monospe-
cific groupings, it replaces native vegetation, reduces the load capacity of grazing
land and increases combustible material (Herrera et al. 2016). Ulex europaeus is
one of the 100 of the World’s Worst Invasive Alien Species (GISD 2021). It is
highly competitive, displaces cultivated and native plants and alters soil conditions
by fixing nitrogen and acidifying it. Ulex europaeus creates an extreme fire hazard
due to its oily, highly flammable foliage and seeds and abundant dead material.

Our study provides critical information to understand the relationship between
the landscape structure and the IPs in forest landscapes in south-central Chile.
Specifically, we: (a) identified and assessed the main landscape variables that influ-
ence the presence and distribution of the IPs community and, (b) fitted spatially
explicit models to predict the areas with higher IPs invasion risks. Our proposed
model could facilitate early detection and control of IPs, delaying their spread
and conserving native flora and fauna, especially in natural protected areas. This
research will contribute to our understanding of spatial variation in the key to the
success of IPs and control them in the global forests.

Materials and methods
Study area

Our study was conducted in four landscapes of La Araucania Region in south-cen-
tral Chile (Fig. 1). These landscapes are in three representative areas of the re-
gion: Lumaco (38°18'16"S, 73°05'35"W) in the Coastal-Mountain Range,
Freire (38°57'18"S, 72°36'46"W) in the Central Valley and Pucén (39°16'54"S,
71°56'35"W) along with Curarrehue (39°21'28"S, 71°34'59"W) in the Ande-
an-Mountain Range. The two latter contain three natural protected areas: Huer-
quehue National Park, Villarrica National Park and Villarrica National Reserve
(CONAF 2011).

The extension and biophysical characteristics are similar in the four landscapes
(Appendix 1: Table A1); however, there are some differences in their main land-use
and land-cover types (related to their main economic activities). They constitute a
gradient of disturbance, from most disturbed landscapes in the Coastal-Mountain
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Figure 1. Location of four landscapes in La Araucanfa Region, south-central Chile and their main land uses and land covers.

Range (Lumaco) and Central Valley (Freire) to more minor disturbed landscapes
near the Andean-Mountains Range (Pucén and Curarrehue) (Altamirano et al.
2020). In Lumaco, forest plantations occupy 64% of the total area, while the re-
maining native forest only 16% (Fig. 1). In Freire, agricultural lands occupy 62%
and native forest only 11%; while in Pucén and Curarrehue, native forests are the
primary land use with 71% and 82% of the area, respectively.

The four landscapes are located inside the Chilean hotspot of biodiversity
named Chilean Winter Rainfall-Valdivian Forest, which harbours richly endem-
ic flora and fauna (Mittermeier et al. 2011). This hotspot contains 3,893 native
vascular plants, of which 1,957 species (50%) are endemic (Arroyo et al. 20006).
However, a generalised loss of native forest cover has occurred recently and keeps
going, mainly due to conversions to shrublands and exotic forest plantations in
some places (Miranda et al. 2017). These forest plantations (exotic species mono-
cultures, mainly Pinus and Eucalyptus) have dominated large areas of central Chile
since the 1990s.

Field sampling

In each landscape, we located 500 x 2 m transects via a random sampling scheme
stratified by their main land cover (i.e. native forest, tree plantation, agriculture
and pastures) and accessibility. The total number of transects was 125: 31 in Luma-
co, 36 in Freire, 30 in Pucén and 28 in Curarrechue (Fig. 2). We identified all
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Figure 2. Distribution of 500 x 2 m-transects (n = 125) in four landscapes in south-central Chile. Transects are located via a random

sampling scheme stratified by land-use types (see Fig. 1).

trees and shrubs higher than 1.4 m in height to species level in each transect. This
height is a good standard metric to register the reality of a moment of the sample,
but does not consider smaller, usually younger, plants that could be of great abun-
dance and greater importance in the future. Then, we classified them according
to their origin (native or alien) and life form (tree or shrub) and measured their
height and diameter at breast height (DBH). We estimated the species richness,
trees and shrubs abundance and basal area as potential response variables for those
plants registered as IPs to monitor their presence and distribution according to the
classification done by Fuentes et al. (2014).

Landscape variables

We extracted a set of landscape variables from spatially-explicit data on climate,
topography, soil, and anthropogenic characteristics to obtain the explanatory vari-
ables for modelling. We used the climate variables which were obtained from the
WorldClim database (www.worldclim.org) and included 19 temperature indica-
tors, rainfall and bioclimatic variables. We derived bioclimatic variables from the
monthly temperature and rainfall values to be more biologically meaningful. These
variables represent annual trends in seasonality and extreme or limiting environ-
mental factors (Hijmans et al. 2005). In addition, we included elevation, aspect,

NeoBiota 92: 129-153 (2024), DOI: 10.3897/neobiota.92.112164 134



Juan Gutiérrez et al.: Proximity to forest plantations associated to invasive plants

slope and distance to rivers (SRTM Data) for topographical variables. For soil
variables, we extracted for each sample point the dry bulk density (Bden), cation
exchange capacity (CEC), soil pH measured in H,O (SpH), soil organic carbon
(SOC) and soil organic carbon content (SCC) from Soilgrids database (www.soil-
grids.org), a collection of international soil classes and characteristics of the world,
based on modern statistical modelling techniques (Hengl et al. 2014). We also
considered soil information from a local database (La Araucania soil series; Pfeiffer
etal. (2019)): erodability (value and range), erosion risk, erosion class and evapo-
transpiration. For anthropogenic variables, we estimated distance to roads, wild-
fires and agricultural burning (IDE, Minagri https://ide.minagri.gob.cl/geoweb/)
and distance to urban centres (i.e. cities and towns). We measure proximity to the
main land cover by the Euclidean distance to native forests, forest plantations,
agricultural land and pasture covers.

Modelling and predicting IPs community presence and distribution

Our models considered the landscape variables as explanatory (predictor) variables
and presence and distribution as response variables (i.e. richness, abundance and
basal area of IPs’ community). We built a correlation matrix between landscape
variables and excluded all highly correlated variables (|| > 0.6) to avoid multicol-
linearity for model building. We used boosted regression trees (BRT) for statistical
modelling, a technique that comprises two algorithms, to link the explanatory
variables (landscape variables) to the dependent variables (IPs variables). BRT gen-
erates many regression trees combined into one ultimate regression tree model,
drastically boosting accuracy and predictive performance (Elith et al. 2008). We
generated regression trees using the gbm package in R (Ridgeway 2007). This pro-
cedure uses three variables, namely, learning rate (/), bag fraction (4f) and tree
complexity (z). We built several models using different /r and #c values to obtain
the optimal combination (Elith et al. 2008). We reduced the models by removing
variables with less relative influence every time we ran them until they had their
best performance, represented by a high explained deviance (D?) and low error
(rRMSE). Additionally, the most frequently appearing variables had greater consis-
tency and were eventually selected. After training the model, a validation accuracy
score estimates the model performance on an independent dataset (20%). When
the dataset of observations is divided into k disjoint subsamples (or folds), then a
group is taken as a holdout or test dataset and the remaining groups as a training
dataset; this procedure is known as K-fold cross-validation. In our study, we ad-
opted the latter procedure (with K = 5) to validate, avoid overfitting and estimate
the average classification.

Then, we calculated the performance for each fitted model (percentage explained
deviance; D?) (Littke et al. 2014), the relative root-mean-square error (rRMSE)
(Aertsen et al. 2010) and the correlation between observed and predicted values.
We chose those predictor variables with a strong relationship with the response
variable (> 10% of influence in BRT models). The model estimates the relative in-
fluence of predictor variables (influence) by the frequency at which a variable is se-
lected for splitting, weighted by the squared model improvement due to each split
and averaged over all trees (Elith et al. 2008). The relative influence of each variable
was scaled so that the sum resulted in 100, with higher values, indicating a more
substantial influence. The boosting process involves an iterative step-wise process
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of selecting the model with the maximum deviance and the minimum rRMSE at
each stage (Elith et al. 2008). Finally, models were used to build prediction maps
of the IPs distribution and identify the areas with higher values of IPs abundance,
richness and basal area. These areas would represent the best conditions for poten-
tial IPs invasion according to the landscape variables.

Akin-Fajiye and Gurevitch (2018) used a boosted regression tree to model fac-
tors associated with species presence, density and change in density of an invasive
plant. Boosted regression trees are suitable for this analysis because they do not
require any assumptions about the data distribution, do not impose linearity and
accommodate missing data using surrogates. Nunez-Mir et al. (2019) also used a
boosted regression tree to develop a statistical model to predict with 86% accuracy
on average the invasiveness of alien woody plant species found across the United
States by comparing 63 invasive and 794 non-invasive exotic woody plant spe-
cies naturalised. The boosted regression tree model comprises a flexible regression
structure with improved predictive performance affected by boosting (Colin et al.
2018). Boosting is an adaptive method combining many simple models to im-
prove predictive performance. In their research, Colin et al. (2018) conclude that
boosted regression trees are an appealing method for estimating green vegetation
from remotely-sensed images. Boosted regression trees benefit from being robust
to the inclusion of irrelevant predictors and the presence of outliers (Forsyth et al.
2018). Boosted regression trees can also model complex non-linear relationships,
including step-functions and generally predict better than traditional modelling
approaches (Elith et al. 2008).

Results
General patterns of species richness

We recorded in the study area a total of 247 plant species, of which 61 (24.6%)
were alien species (Appendix 1: Table A2). The proportion between life forms (i.e.
tree and shrub) were similar and balanced (circa 1:1) amongst landscapes. How-
ever, this ratio varied when considering native or alien species. For native species,
trees and shrubs were relatively balanced (56% and 44%, respectively). Meanwhile,
of the 61 alien species, most were trees (67%) and the rest were shrubs (33%).

Total native species richness was higher in Pucén (58) and Curarrehue (52)
than in Lumaco (39) and Freire (31) (Fig. 3a). The proportion between native
and alien species was different amongst landscapes, being highest in the number
of alien species in Freire, with 28 out of 59 (47.5%), but < 20% in the other three
landscapes. Proportions between life forms (trees and shrubs) were also variable
amongst landscapes. We recorded six trees and five shrubs (20%) of alien plants
in Lumaco, nine trees and three shrubs (19%) in Curarrehue and seven trees and
three shrubs (15%) in Pucén (Fig. 3b).

We found eight invasive species (IPs community) in the study area, meaning
15% of the total alien species in the study area (a total of 61 alien plants) (Fig. 3b):
three tree species (Acacia dealbata, Acacia melanoxylon and Eucalyptus globulus) and
five shrubs (Cytisus striatus, Rosa rubiginosa, Rubus ulmifolius, Teline monspessulana
and Ulex europaeus). In Lumaco, 64% of alien plants were invasive species. In
Freire, 25% of alien plant species were invasive, while in Pucén and Curarrehue,
we found 50% and 33% of invasive plant species, respectively.
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Figure 3. Richness and abundance of invasive plant species in four landscapes in La Araucanfa Region, south-central Chile a the number of

native and alien species by life form. In parenthesis, the total number of species in each county b invasive species registered in each county.

Landscape variables influencing the IPs’ community

After checking the correlation matrix, the boosted regression tree models and the
consistency of explanatory variables of each model (Appendix 1: Table A3), we
selected the following variables for the models: 1) distance to forest plantations,
2) distance to towns and populated centres, 3) distance to rivers; 4) the minimum
temperature of the coldest month (TMin), 5) cation exchange capacity at 22.5 cm
deep (CEC 22.5) and 6) soil organic carbon stock in 15-30 cm depth (SOC). Due
to the large number of landscape variables considered, we ran a high number of
models (n = 130) with different explanatory variables. Checking for the deviance
value and the best performance evaluation allowed us to obtain fewer and bet-
ter models relying on a few explanatory variables (Table 1). The models with the
best performances (best goodness of fit) included the basal area of IPs trees, IPs’
abundance and IPs’ richness, respectively.
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Table 1. Performance statistics for boosted regression tree models of invasive plants species using
three indicators (species richness, abundance and tree basal area). Explained deviance of the fitted
model (D?), Pearson’s correlation coeflicient (corr) and relative root mean square error (rRMSE) are

reported. * Values for cross-validation.

Model D? D2 cv* Corr Corr cv* rRMSE*
Tree basal area 0.97 0.68 0.98 0.66 9.04
Abundance 0.57 0.35 0.71 0.59 14.88
Richness 0.49 0.32 0.72 0.57 21.01

Modelling IPs community distribution

Distance to forest plantations was the primary explanatory variable in all models
(Fig. 4). This explanatory variable had the strongest relative influence on species rich-
ness, abundance and basal area of invasive trees, overcoming 50% of relative influence
and reaching a maximum of 85%. For IPs richness, distance to forest plantations had
57.5% of the relative influence, while soil organic carbon stock and distance to towns
were the second and third variables, with 26.5% and 16%, respectively (Fig. 4a).
For IPs abundance, distance to forest plantations had 85% of relative influence. In
contrast, cation exchange capacity (CEC22.5) distance to populated centres were the
second and third variables, with 8% and 7%, respectively (Fig. 4b). For the basal area
of IPs trees, distance to forest plantations was 59% relative influence; the minimum
temperature of the coldest month (TMin) and the distance to rivers were the second
and the third variables, with 22% and 20%, respectively (Fig. 4c).

Partial dependence plots showed that the less distance from the forest plan-
tations, the greater the IPs richness and abundance and basal area of IPs trees
(Fig. 5a). All these explanatory variables showed a striking decrease of around 1000
m to forest plantations. Soil organic carbon stock and distance to towns also ap-
peared as explanatory variables in the species richness model. IPs richness kept
constant with soil organic carbon stock until it almost attained 60 tonnes per
hectare, then it fell abruptly (Fig. 5b). IPs richness also increased along with the
distance to towns up to around 10,000 m and decreased gradually. IPs” abundance
constantly decreased along with increased cation exchange capacity (CEC 22.5
deep), with a sudden fall when this explanatory variable reached 30 cmolc/kg. IPs
also decreased further from cities. The basal area of IPs’ trees was higher near forest
plantations; the striking decrease occurs before 500 m distance (Fig. 5¢). The basal
area remained constant with low values of the minimum temperature of the cold-
est month (TMin), but increased just when this temperature surpasses 3.8 °C. The
relationship between the basal area of IPs’ trees and distance to rivers was irregular,
decreasing the basal area through increased distance to rivers.

Predicting the IPs community distribution

Distribution models predicted higher IPs" richness in Lumaco than in the other
landscapes (Fig. 6a), especially in the northern area. In Freire, the highest IPs
richness was predicted alongside the Allipen River (which crosses the territory) and
a tree plantation patch. Meanwhile, in Pucén and Curarrehue, models predicted
only small patches of higher IPs’ richness. Regarding IPs abundance (Fig. 6b), in
Lumaco, landscape variables enhance the highest abundance of IPs in practically
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Figure 4. The relative influence of landscape variables in boosted regression tree models of invasive plant species a richness b abundance
and c tree basal area. Explanatory variables include distance to forest plantations, towns, populated centres and rivers, minimum tempera-

ture of the coldest month (TMin), cation exchange capacity (CEC22.5) and soil organic carbon stock.

the entire county. In the other landscapes, the highest abundance coincides with
the patches observed for the richness model. We found the highest basal area values
of invasive trees in Lumaco (Fig. 6¢), but basal area varied more than abundance
values. There were small patches with high basal area values in the other landscapes.
but to a lesser extent than richness and abundance. IPs richness, abundance and
the basal area of trees had similar spatial patterns; therefore, areas of higher IPs’
invasion risks in the study area coincided for all models, although they included
different explanatory variables. Boosted regression tree model predictions showed
that Lumaco is the county with the highest probability of spreading invasive plants,
while Curarrehue has the lowest probability.
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Discussion
Landscape variables influencing the IPs community

Proximity to forest plantations resulted in the primary landscape variable influenc-
ing IPs” distribution. Recent reviews have shown that forest plantations are gen-
erally related to lower local species richness than native ecosystems (Escobedo et
al. 2017; Brazeiro et al. 2018). In some cases, substituting native ecosystems with
forest plantations reduced local plant richness by an average of 35% (Brazeiro et
al. 2018). Disturbance often drives plant invasion and may modify the community
assembly (Escobedo et al. 2017). Disturbance events (e.g. fire, grazing, mowing ac-
tivity of fossorial mammals and tree plantation conversion) remove plant biomass
and create invasive plant species colonisation (Mouillot et al. 2013). IPs’ frequently
grow faster than natives, have more efficient seed dispersal and higher resource-use
efficiency and fecundity than native species (Van Kleunen et al. 2010); thus, they
can rapidly colonise and establish disturbed sites.

Changes in land use and land cover may result in spatial shifts in the invasion risk
of IPs (Wang et al. 2016). The invasive plant usually establishes when a disturbance
such as land-use change occurs. The landscape permeability increases, allowing colo-
nisation by the invasive plant and producing patchily distributed stands of the same
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Figure 6. Predictions for IPs’ community distribution for species richness (a), abundance (b) and (c) basal area of invasive trees.

age. Many IPs perform better in cleared areas; thus, the connectivity of cleared areas
is as critical for colonisation as the connectivity of undisturbed habitats (Green et
al. 2006). One rule of thumb in invasion biology mentions “that land use promotes
invasions” and might be reversed in many landscapes; for example, land manage-
ment can form an invasion barrier, whereas land abandonment often enables invasion
(Kueffer 2017). For example, high agricultural labour and intense grazing may tem-
porarily “control” tree and shrub invasions (Rubus ulmifolius, Ulex europaeus, Acacia
spp). However, it does not imply that those species cannot re-invade after land aban-
donment or if the land is converted to forest plantations. Selective grazing pressure by
livestock, whereby the animals selectively seek the more palatable species first or exclu-
sively, can create an environment conducive to IPs (Morokong and Blignaut 2020).
High values of IPs" richness, abundance and tree basal area were recorded near
forest plantations. For the implementation of forest plantations, planting, pruning
and thinning activities are carried out in the first years with the application of
pesticides. These tasks involve the removal of the original vegetation, the alteration
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of both the soil structure and water regulation (Granados-Sdnchez et al. 2007; Ju-
llian et al. 2018; Gémez 2021). This generates a scenario of opportunities for new
spaces for the entry of IPs. Studies indicate that the invasion of species such as
Ulex europaeus has been strongly influenced by landscape context and dynamics,
particularly in land covers, such as forest plantations (Altamirano et al. 2016). It
reinforces findings from studies in Mediterranean landscapes showing that land-
scape composition (land use/cover) represents by far the most important group
of variables associated with invasions of alien plant species (Gonzdlez-Moreno et
al. 2015). IPs are taking advantage of niches available in more open and degraded
land covers, such as bare land, agriculture and shrublands (Altamirano et al. 2016).
Thus, it is expected that alterations and change dynamics constitute ideal scenarios
for establishing invasive species, taking advantage of disturbed or deforested areas
and over-grazed meadows. It is essential to recognise the role of linear corridors,
such as roads, canals and abandoned lots, like reservoirs and conduits for the move-
ment and re-invasion of invasive plants in the landscape. For example, in our study
area, these strips usually contain several herbaceous shrubs and tree species that can
survive there because disturbance occurs at a much lower frequency than in the
agricultural field. In contrast, some areas have fences that reduce domestic grazing.

A higher basal area of invasive trees near rivers might be related to the basic need
for water and the reduced competition from native plants due to regular flooding
(Cuda et al. 2017). In the first metres, the rocky riverbed prevents the establishment
of these plants. Models predicted the highest basal area values of IPs’ trees in the most
stable and consolidated riverside area. Rivers may act as a source of IPs propagules
(Chytry et al. 2008; Catford et al. 2011), thus serving as a dispersal pathway for a
high species number (rivers are of the most invaded ecosystems globally). The irregu-
lar trend found for the relationship between rivers and the basal area of IPs trees seen
could be based on the topographical profile of areas surrounding rivers and anthro-
pogenic interventions such as roads, forest plantations and agricultural land. Finally,
we can add landscape fragmentation; in Chile, the Mediterranean ecosystems of the
central zone are the areas most affected by habitat loss and fragmentation in the coun-
try (Blondel and Ferndndez 2012), reducing vegetation to patches. The minimum
temperature of the coldest month showed a direct relationship with the basal area of
invasive trees. Invasive species require moderate temperatures in the coldest month to
maintain their productivity. In temperate climates, most invaded areas by alien plants
correspond to higher annual average temperatures and low altitudes, making these
areas environmentally more favourable (Gonzdlez-Moreno et al. 2015).

Invasive species richness also indicates key ecosystem services such as carbon stor-
age. For instance, values are higher at a range of 38 to 58 tonnes per hectare of soil
organic carbon content; under this interval, there are no data. An adequate amount
of soil organic carbon content is essential for sustainable agriculture and mitigating C
flux to the atmosphere (Yimer et al. 2006). A decline in SOC generally decreases vege-
tational productivity and alters the soil’s capacity to act as a sink for atmospheric CO,.

Modelling IPs’ distribution

The basal area of invasive trees resulted in the best model to predict IPs' community
distributions. Distance to forest plantations, minimum temperature of coldest month
and distance to rivers were the main explanatory variables of this model. These vari-
ables express the disturbance, climatic condition and water availability of the study
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area. Tree basal area is frequently used as an indicator of the condition of tree cover and
to evaluate the effect of different phenomena and processes, such as climate change,
invasion, forest inventories and restoration (Bradford and Bell 2017; Jo et al. 2018;
Suganuma et al. 2018; Corona et al. 2019). Tree basal area is also an indicator of forest
recovery and it is amongst the structural attributes suggested as a reference for moni-
toring restoration projects (Suganuma et al. 2013; Altamirano et al. 2019). Structural
attributes are measurable even in the early stages of community development, which
places them as good indicators for monitoring the evolution of communities. Basal
area values may indicate the incorporation of biomass by the species used in the resto-
ration process with the influence of density (dos Reis et al. 2014). Additionally, there
is a relationship with habitat quality since basal area shows the highest values in places
with adequate climatic, soil and biotic conditions. Tree basal area has a rapid increase
when it is favoured by conditions of high availability of light, the proximity of wa-
tercourses and nutrients, which is a fundamental feature for its recommendation as a
monitoring indicator and reference values as possible targets for restoration. Londe et
al. (2020) considered basal area amongst eleven ecological indicators commonly used
to evaluate the monitoring and evaluation of restoration forests. These researchers
ratify that these indicators are also suitable for monitoring reference ecosystems of
different dimensions since the mature fragments did not influence them. The basal
area had a significant relationship with the fragment area. However, we also need to
consider some limitations of model predictions (Jarnevich et al. 2015). For instance,
the number of samples will be usually desirable, being as large as possible, but it also
depends on financial resources. Some context variables are unavailable, but can be use-
ful to explain the variation and distribution of IPs (e.g. social variables). Therefore, un-
certainty is part of model inference and a important topic to consider. Our approach
has limitations, but is a useful tool to guide management decisions to control IPs.

Predicting the IPs’ community distribution

Our models represent introduced organisms that managed to naturalise, establish
successfully and disperse widely, occupying environments with a wide variety of cli-
matic, topographical, soil qualities and anthropogenic intervention. Therefore, our
prediction models would be more accurate to represent reality. Perret et al. (2019)
suggested that the distribution modelling of invasive plants focusing solely on the
conditions experimented in the range and native region of a species may be mislead-
ing. For example, the genus Pinus L. has shown an increase in its niche size by 10%
in territories that invade worldwide from its niche size in its place of origin (Per-
ret et al. 2019). These species show great physiological capacities to grow in more
diverse and extreme climatic conditions than in their original distribution range.
Besides, in their new territories, IPs occupy a niche broader than their original one
due to the release from some of the constraints in their territory (such as predators,
diseases and parasites) (Guisan et al. 2014; Tingley et al. 2014; Perret et al. 2019).

Boosted regression tree model predictions for the basal area of IPs trees showed a
significant relationship between a larger basal area of invasive trees and sites where
land use is mainly forest plantations and close to rivers, as occurs in Lumaco. As the
most disturbed one (i.e. with the most extensive replacement of native vegetation
by forest plantations), this county showed the highest probabilities of IPs’ invasion
risk. Pucén and Curarrehue, on the opposite extreme of the disturbance gradient,
showed the lowest probability values.
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The predictions of our models, based on local information, can give early de-
tection of the areas with a higher probability of being colonised by invasive plant
species. This would allow government agencies and land managers to respond rap-
idly to prevent invasive plants from thriving in new environments following their
introduction (Battini et al. 2019). Species distribution models are widely used to
predict the potential distribution of invasive species, providing excellent tools for
designing strategies to prevent or mitigate impacts of alien invasive species. Our
predictions can also guide management under a global change scenario.

Our models can be suitable tools for designing strategies to prevent, mitigate
or make integrated control of the impacts of invasive species. For example, in
Pucén and Curarrehue, strategies based on our inferences and predictions would
be helpful to prevent invasion of the protected areas: Huerquehue National Park,
Villarrica National Park and Villarrica National Reserve (CONAF 2011). Further-
more, knowing the richness, abundance and distribution of alien species provides
essential information to design prevention activities, early detection and integrated
control of invasive alien species within protected areas. These actions are being
considered urgent globally to ensure the conservation of native flora (Kutschker
etal. 2015). On the other hand, our models could be used to mitigate the impact
of invasive plant species in Lumaco and Freire and they can even be considered in
native forest restoration programmes.

Conclusions

Land use is a critical landscape variable influencing the presence and distribution
of the community of invasive plants. In particular, proximity to forest plantations
was the most influential variable in all models.

Even IPs occupy human-disturbed environments since these types of interven-
tions enhance biological invasion; we do not know the main factors that allow the in-
vasion’s success in anthropogenised temperate environments with high accuracy. We
hope our findings will help increase knowledge about the landscape characteristics
that influence invasion processes, understand what promotes species invasion outside
their natural range and predict which ecosystems will be invaded and under what
conditions. In this way, decision-makers could act in time to implement prevention,
mitigation and restoration measures against invasions of alien plants, especially in
high-diversity places, such as protected areas and sites that deliver ecosystem services.
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Appendix 1

Table A1. Biophysical characteristics of study area.

Municipality

Lumaco

Freire

Pucén

Curarrehue

Climate (Ministerio de Agricultura
2015)

‘Warm temperate rainy
with Mediterranean

‘Warm temperate rainy
with Mediterranean

‘Warm temperate with

Mediterranean influence and

Cold rainy temperate with
Mediterranean influence

influence influence to a lesser extent cold rainy and in lesser medium tundra
temperate with Mediterranean | due to the effect of altitude
influence and tundra due to | and warm temperate with
the effect of altitude. Mediterranean influence.
Average annual temperature (°C) 10.94 12.07 8.62 7.69
(Hijmans et al. 2005)
Mean maximum temperature warmest 23.7 24.66 22.63 22.11
month (°C) (Hijmans et al. 2005)
Mean minimum temperature coldest 2.78 3.75 0.07 -1.08
month (°C) (Hijmans et al. 2005)
Average rainfall of the wettest month 228.97 266.93 294.2 227.52
(mm) (Hijmans et al. 2005)
Average rainfall of the driest month 26.66 40.98 45.27 31.35
(mm) (Hijmans et al. 2005)
Table A2. Plants species in four landscapes of La Araucania Region, south-central Chile.
. . Study area
Life form Species 3
Lumaco Freire Pucén Curarrehue
Native species
Tree Araucaria araucana X
Austrocedrus chilensis X
Aextoxicon punctatum X X X X
Amomyrtus meli X
Amomyrtus luma X
Cryptocarya alba X
Caldcluvia paniculata X
Dasyphyllum diacanthoides X X X
Drimys winteri X X X X
Embothrium coccineum X X X X
Eucryphia cordifolia X X X X
Gevuina avellana X X X
Lithraea caustica X
Lomatia hirsuta X X X X
Luma apiculata X X X X
Laureliopsis philippiana X X
Laurelia sempervirens X X X
Luma chequen X
Myrceugenia planipes X
Maytenus boaria X X X X
Myrceugenia exsucca X X X
Nothofagus alpina X X X X
Nothofagus dombeyi X X X X
Nothofagus antarctica X X
Nothofagus oblicua X X X
Nothofagus pumilio X X
Peumus boldus X X X
Persea lingue X X X X
Podocarpus nubigenus X
Podocarpus saligna X X
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Life form

Species

Study area

Lumaco

Freire

Pucén

Curarrehue

Tree

Saxegothaea conspicua

X

X

Sophora cassioides

Weinmannia trichosperma

Shrub

Apristotelia chilensis

=

Azara dentada

Azara lanceolata

Azara serrata

=

Azara integrifolia

=

Azara microphylla

X R R

R R R R X

Baccharis concava

Berberis darwini

o

b

Baccharis racemosa

Baccharis poeppigiana

KR KR

Buddleja globosa

Berberis emperrifolia

Baccharis linearis

Berberis microphylla

Berberis negeriana

Berberis rotundifolia

Berberis trigona

Chusquea culeou

Colletia spinosa

Chusquea quila

AR R K

Colliguaja salicifolia

R R R X R XX

Cynanchum pachyphyllum

>

Drimys andina

o]

b

Discaria serratifolia

Desfontainia spinosa

Ephedra chilensis

Fuchsia magellanica

Gaultheria mucronata

Gaultheria pumila

Greigia sphacelata

Loasa acanthifolia

Lomatia dentata

Lomatia ferruginea

Lapageria rosea

Myrceugenia chrysocarpa

Maytenus disticha

Muehlenbeckia hastulata

Mitraria coccinea

Maytenus magellanicus

b

Myrceugenia lanceolata

Myrceugenia parvifolia

Myrceugenia leptospermoides

Ovidia andina

b

Piper aduncum

Psoralea glandulosa

Pseudopanax laetevirens

Rhamnus diffusus

Ribes magellanicum

Rhaphithamnus spinosus

Sophora macrocarpa

Sphacele chamaedryoides

Ugni molinae

R KR X)X

Vestia foetida
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Study area

Life form Species " "
Lumaco Freire Pucén Curarrehue

Alien species

Tree Acacia dealbata X X

Acacia melanoxylon X X X X

Acer pseudoplatanus X X

=

Betula sp

Castanea sativa X X

o
o

Corylus avellana

Crataegus monogyna X

Cupressus macrocarpa X

Eucalyptus delegatensis

Eucalyptus globulus X

Eucalyptus nitens

Laurus nobilis

Malus domestica

Pinus radiata X

Populus alba

Prunus cerasus

Prunus domestica

Prunus pérsica

Pseudotsuga menziesii

Quercus ilex

R e AR AR AR A R A R R A e e
>
>

Quercus petraea

Quercus Rubur X

Salix babylonica X

Sequoia sempervirens

Shrub Acacia farnesiana

Cytisus striatus X

Rosa rubiginosa X
Rubus ulmifolius X

Salix caprea

Salix viminalis

I A A AR A R AN

Smilax aspera

Teline monspessulana X

=

Ulex europacus X

PP R R R K R K )

=

Vaccinium myrtillus
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Table A3. Consistency and frequency of explanatory variables of each model.

Response variable Explanatory variable Consistence Frequency Mean relative influence (%)

Richness Dist. to forest plantations 1.0 12 48.9
Soil organic C stock 1.0 12 24.5
Dist. to towns 1.0 12 15.2
Dist. to agric. land 0.9 11 9.7
Dist. to populated centres 0.8 10 7.4
Dist. to agric. burning 0.8 9 7.3
Temp. annual range 0.7 8 6.5
Dist. to prairies 0.6 7 4.9
Cation exchange capac. (15 cm) 0.5 6 4.1
Soil org. C content (30 cm) 0.4 5 3.8
Bulk density (15 cm) 0.3 4 3.3
Dist. to forests fires 0.3 3 2.4
Aspect 0.2 2 1.4
Mean diurnal range temp. 0.1 1 0.9

Abundance Dist. to forest plantations 1.0 9 86.3
Cation exchange cap. (22.5 cm) 1.0 9 7.5
Dist. to populated centres 1.0 9 5.6
Soil organic C stock 0.9 8 4.9
Dist. to cities 0.8 7 4.2
Dist. to native forest 0.7 6 3.9
Slope 0.6 5 3.1
Bulk density (15 cm) 0.4 4 2.6
Aspect 0.3 3 2.7
Dist. to prairies 0.2 2 1.6
Elevation 0.1 1 0.3

Invasive Tree basal Area | Distance to forest plantations 1.0 15 53.4
TMin 1.0 15 13.5
Dist. to rivers 1.0 15 11.0
Dist. to native forest 0.9 14 9.3
Precipitation Seasonality 0.9 13 6.7
Dist. to prairies 0.8 12 6.6
Soil org. C content (30 cm) 0.7 11 4.9
Dist. to populated centres 0.7 10 3.8
Bulk density (15 cm) 0.6 9 2.4
Dist. to roads 0.5 8 2.1
Soil organic C stock 0.5 7 1.0
Soil org. C content (15 cm) 0.4 6 0.6
Dist. to cities 0.3 5 0.5
Dist. to agric. burning 0.3 4 0.4
Soil org. C content (22.5 cm) 0.2 3 0.4
Dist. to forests fires 0.1 2 0.3
Soil pH x 10 in H,O (30 cm) 0.1 1 0.1

NeoBiota 92: 129-153 (2024), DOI: 10.3897/neobiota.92.112164

153






A peer-reviewed open-access journal

% NeoBiota

Advancing research on alien species and biological invasions

NeoBiota 92: 155-171 (2024)
DOI: 10.3897/neobiota.92.119621

Research Article

Riparian invader: A secondary metabolite of Impatiens
glandulifera impairs the development of the freshwater
invertebrate key species Chironomus riparius

Frederic Hiiftlein'®, Jens G. P. Diller'®, Heike Feldhaar?®®, Christian Laforsch'?

1 Department of Animal Ecology I, University of Bayreuth, Bayreuth, Germany

2 Animal Population Ecology, University of Bayreuth, Bayreuth, Germany

3 Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
Corresponding author: Christian Laforsch (christian.laforsch@uni-bayreuth.de)

OPEN 8ACCESS

Academic editor: Jaimie T. A. Dick
Received: 26 January 2024
Accepted: 23 February 2024
Published: 2 April 2024

Citation: Hiiftlein F, Diller JGP
Feldhaar H, Laforsch C (2024)
Riparian invader: A secondary
metabolite of Impatiens glandulifera
impairs the development of the
freshwater invertebrate key species
Chironomus riparius. NeoBiota 92:
155-171. https://doi.org/10.3897/
neobiota.92.119621

Copyright: © Frederic Hiiftlein et al.

This is an open access article distributed under
terms of the Creative Commons Attribution
License (Attribution 4.0 International -

CCBY 4.0).

Abstract

Invasive species represent a significant threat to native biodiversity. The Himalayan Balsam mpatiens
glandulifera is an annual plant, which is invasive in Europe and often inhabits the riparian zone. It pro-
duces several secondary metabolites causing, for example, growth inhibition of terrestrial plants and
invertebrates. One of these metabolites is the quinone 2-methoxy-1,4-naphthoquinone (2-MNQ).
‘The compound gets washed out from the above-ground parts of the plant during precipitation and
may then leach into nearby waterbodies. Despite some evidence for the allelopathic effect of plant sec-
ondary metabolites on terrestrial invertebrates, little is known about how 2-MNQ affects the survival
or development of aquatic dipteran larvae, despite the importance of this functional group in Euro-
pean freshwaters. Here, we investigated the effects of 2-MNQ on larvae of the river keystone species
Chironomus riparius in acute and chronic scenarios. The toxicity of 2-MNQ towards the first and the
fourth larval stage was determined in a 48-hour acute exposure assay. We show that 2-MNQ has a neg-
ative impact on the development, growth and survival of C. riparius. The LC_ of 2-MNQ was 3.19
mg/l for the first instar and 2.09 mg/l for the fourth instar. A ten-day chronic exposure experiment,
where the water was spiked with 2-MNQ, revealed that 2-MNQ had a significantly negative impact
on larval body size, head capsule size, body weight, development and survival. These results demon-
strate the negative impact of the secondary metabolite 2-MNQ from the terrestrial plant 7. glandulifera
on a crucial macroinvertebrate inhabiting the adjacent stream ecosystem in riverine ecosystems. This

may lead to a decline in population size, resulting in cascading effects on the food web.

Key words: Allelopathy, benthic macroinvertebrates, ecotoxicity, invasive species, 2-methoxy-1,4-

naphthoquinone

Introduction

The riparian zone, the transition zone between terrestrial and freshwater ecosys-
tems, is amongst the most diverse habitats worldwide. The vegetational and struc-
tural diversity acts as a refuge for small mammals hiding in shrubs, trees serve as
perching and nesting sites for birds and fallen wood debris provides resources for
terrestrial as well as aquatic invertebrates (Naiman and Décamps 1997). Hence, it
supplies the freshwater system with allochthonous organic and inorganic materials
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(Gregory et al. 1991; Naiman et al. 1993). A major threat to the riparian zone,
the adjacent freshwater ecosystems and their biodiversity are invasive alien species
(Pysek 1994). In times of globalisation, the frequency of biological invasions is
rising continuously in every type of habitat and taxonomic group (Mills et al.
1993). Species are frequently introduced through the freight or ballast tanks of
ships, planes and trucks, whose traffic have risen strongly because of increasing
trade (Verling et al. 2005; Hulme 2009).

Invasive plants can impair native species by producing allelopathic metabo-
lites. The Japanese knotweed Fallopia japonica, for example, produces resveratrol,
amongst other chemicals, which has been found to have inhibitory effects on seed
germination and seedling growth of various plant species, potentially influencing
the structure and composition of plant communities in invaded areas (Abgrall
et al. 2018). Rhododendron ponticum, another invasive plant species, is known to
significantly impact aquatic habitats through multifaceted ecological interactions
(Erfmeier and Bruelheide 2010). The colonisation of freshwater ecosystems by R.
ponticum leads to alterations in water quality, light availability and nutrient cycling
(Vitousek 1990; Urgenson and Reichard 2007). The shading effect induced by its
dense canopy significantly impacts algal growth, while the release of leachates from
its leaves influences microbial and fungal communities (Hladyz et al. 2011; Monk
et al. 2014; Jones et al. 2019). Furthermore, the slower decomposition rates of R.
ponticum litter compared to native plants in waterbodies contributes to organic
matter accumulation (Jones et al. 2019). Studies on leachates from Senecio jaco-
baea or Petasites hybridus have demonstrated notable concentrations of phytotox-
ins, like pyrrolizidine alkaloids (PA), originating from these plants in small streams
and seepage water (Kisielius et al. 2020). Additionally, precipitation amplified PA
concentrations by a factor of ten in stream water, posing potential challenges for
aquatic ecosystems, particularly during the rainy season (Kisielius et al. 2020).

Another well-known example of an invasive alien species in riparian habitats
is the Himalayan Balsam Impatiens glandulifera. It belongs to the family of the
Balsaminaceae, reaches a height of up to 2.5 m, can disperse up to 2500 seeds per
mature plant in a radius of 10 m and achieves up to 90% cover of invaded plots
(Beerling and Perrins 1993; Hejda et al. 2009; Chapman and Gray 2012). The
pathways of introduction typically include trade with the plant and seed mixture
contamination (Millane and Caffrey 2014). Dispersal can also happen through
wildlife or waterways, as the seeds are adapted for water dispersal (Pysek and Prach
1995). A reason for its invasive success is the release of allelopathic secondary me-
tabolites like the quinone 2-methoxy-1,4-naphthoquinone (2-MNQ) (Chapelle
1974; Ruckli et al. 2014a; Meyer et al. 2021). 2-MNQ is released from the roots
of 1. glandulifera into the ground (Lobstein et al. 2001; Ruckli et al. 2014a). As the
substance leaches into the ground, it inhibits the growth of seedlings and juveniles
of native co-occurring plants, like the stinging nettle Urtica dioica or inhibits the
arbuscular mycorrhiza colonisation of sycamore saplings (Ruckli et al. 2014a, b;
Bieberich et al. 2018). 2-MNQ is further washed off the leaves during precipita-
tion leading to a pulsed introduction of this allelochemical in high concentrations
into adjacent habitats, including waterbodies in riparian habitats (Lobstein et al.
2001; Ruckli et al. 2014a). Run-off of /. glandulifera has been shown to inhibit
the growth of the aquatic green algae Acutodesmus obliquus and also affects the
mortality, the growth and the reproduction of Daphnia magna, a key species in
standing freshwater habitats, building the link between primary producers and
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higher trophic levels (Brett and Goldman 1997; Diller et al. 2022). However, it is
not known yet if 2-MNQ of the invasive alien species /. glandulifera has an impact
on riverine arthropods and ecosystems.

Amongst running waters, rivers belong to the most diverse ecosystems, provid-
ing the potential for various ecological niches due to the richness of different and
heterogeneous habitat patches (Lake 2000). Here, benthic macroinvertebrates in-
habit almost every ecological niche and act as links between the input of allochtho-
nous material and higher trophic levels such as fish (Richardson 1993). Chirono-
midae (non-biting midges) are essential members of the benthic macroinvertebrate
fauna in riverine ecosystems, as they frequently represent the most abundant spe-
cies group (Armitage et al. 1995). They are often used as bioindicators for water
quality and play a significant role in assessing the ecological state and health of
flowing waters (Hellawell 1986) due to their high susceptibility to anthropogenic
pollutants, such as heavy metals (de Bisthoven et al. 1992), pesticides (Tassou and
Schulz 2009) or antibiotics (Park and Kwak 2018). In contrast to these pollutants,
the effects of 2-MNQ released by 1. glandulifera have as yet not been tested on this
key species of running waters.

This paper, therefore, aimed to examine the effects of the allelopathic second-
ary metabolite 2-MNQ on the growth, development and survival of Chironomus
riparius. We performed acute immobilisation tests, as well as low-dose chronic
exposure experiments using concentrations that are comparable to those released
during rain events in nature (Ruckli et al. 2014a).

Material and methods

Chironomus culture

The starting culture, consisting of 10 egg ropes, was provided by Dr. Philipp Egeler
from the ECT Ockotoxikologie GmbH (Flérsheim am Main, Germany). The or-
ganisms were then transferred into a self-built breeder (68 cm high x 42 cm wide
x 55 cm deep), located in a Rubarth P 850 climate cabinet (Rubarth Apparate
GmbH, Laatzen, Germany) with constant conditions of 20 * 0.1 °C and 12 h
light-dark cycle. The breeder consisted of gauze on three of the four sides and an
acrylic glass plate on the front side, with two holes for gloves and a smaller hole to
fit, for example, conic centrifugal tubes or exchange the medium, so that the cage
never had to be opened. Inside the cage, two white bowls were placed, filled with
quartz sand (average grain size: 0.16 mm, purchased from Quarzwerke GmbH,
Frechen, Germany) and 1.5 litres M4-Medium (Elendt and Bias 1990) (see Suppl.
material 1: fig. S1 for the experimental set-up). The larvae were fed ad libitum,
every 3 days, with Tetramin fish food (Tetra GmbH, Melle, Germany).

Acute immobilisation test

Solid 2-MNQ was purchased from Sigma-Aldrich (Merck KGaA, Darmstadt, Ger-
many), with 98% purity. In order to make it soluble in water, it was solved in 100 pl
DMSO (Dimethylsulphoxide 99.7% purity; Bernd Kraft GmbH, Duisburg, Ger-
many) per litre medium. The tests were conducted according to the OECD guide-
lines (OECD Test No. 235, 2011) for the first and adapted for the fourth instar
larvae as those rely on sediment, which is not required in the guideline. The tests

NeoBiota 92: 155-171 (2024), DOI: 10.3897/neobiota.92.119621 157



Frederic Hiiftlein et al.: 2-MNQ impairs development of C. riparius

were performed in 6-well plates with a volume of 10 ml (Eppendorf AG, Hamburg,
Germany). In each well, five first instar larvae were randomly placed. The first instar
larvae were exposed to two control treatments (control: pure M4-medium; solvent
control: M4-medium with 100 pg/l DMSO) and seven different concentrations
of 2-MNQ (2, 3, 4, 5, 6, 7 and 8 mg/l). These values were chosen according to
run-off values from Ruckli et al. (2014a) who found that 12.21 mg 2-MNQ/I can,
on average, be found in rainwater rinsed from 7. glandulifera. Every treatment was
replicated five times. The well plates were randomly placed on the same shelf in a
climate chamber with constant conditions of 20 + 0.1 °C and 16 h:8 h light:dark
cycle and the experiment was conducted for 48 hours. The individuals were not fed
during the experiment. At the end of the experiment, mortality was noted for each
replicate in each treatment.

The procedure for the acute immobilisation test with the fourth instar larvae
was very similar to that of the first instar, with the difference that 3 g of quartz
sand (average grain size: 0.16 mm, purchased from Quarzwerke GmbH, Frechen,
Germany) were added to every well. Quartz sand was added to avoid any addition-
al stress for the individuals, as fourth-instar larvae require sediment for building
their characteristic living- and feeding tubes (Armitage et al. 1995). Sediment was
added in advance and subsequently, the respective treatment suspensions (control
medium, solvent control and the different concentrations of DEP dissolved in
M4-medium with DMSO) were poured over. The individuals were not fed during
the experiment. After the tests, the LC, | (the lethal concentration that results in a
50% change of response of the tested animals) was calculated to assess the acute

toxicity of 2-MNQ.

Chronic exposure experiment

For the chronic test with C. riparius, 50 second instar larvae, as they are the first
sediment-dwelling instar, per replicate (five for every treatment) were randomly
placed in a 1 litre Weck- beaker (J. WECK GmbH u. Co., KG, Wehr, Germany)
that was filled with 800 ml M4-medium and 120 g quartz sand (average grain size:
0.16 mm, purchased from Quarzwerke GmbH, Frechen, Germany). The control,
the solvent control for DMSO and three different concentrations of 2-MNQ (1,
2 and 3 mg/l) were each replicated five times. The concentrations were chosen
according to the results of the acute immobilisation test (LC, for the first instar:
3.19 mg/l). The 25 beakers were randomly placed in a climate chamber with con-
stant conditions of 20 + 0.1 °C and 16 h:8 h light:dark cycle. All beakers were
gently aerated through a pump-hose system, with two pumps aerating the beakers
through an air distributor (3 x 12-way distributor, 6 mm diameter each, OSAGA
Deutschland, Glandorf, Germany). The larvae were fed with 0.5 mg Tetramin fish
food per larva per day. The test lasted ten days until the control individuals had
reached the fourth instar. Subsequently, the larvae were fixed in 80% ethanol and
photographed under a dissecting microscope (Leica M50, Wetzlar, Germany; light:
Leica KL 300 LED, Wetzlar, Germany) equipped with a digital image analysis sys-
tem (camera: OLYMPUS DP26, Hamburg, Germany; cellSens Dimension v.1.11,
OLYMPUS, Hamburg, Germany). The mortality in every replicate was recorded at
the end of the experiment and the mean of the five replicates was calculated for the
whole treatment. One beaker in the 1 mg/l treatment cracked in the middle of the
test and became leaky as a result, which is why it was excluded from the analysis.
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The body length of surviving preserved larvae was measured with a digital image
analysis system using a polygonal line from the posterior end of the head capsule
(HC) to the last visible appendage. After the whole larvae were photographed and
measured, they were decapitated for further analysis. The width of the HC was
measured from the left margin to the right margin at the widest points of the head.
Abnormal head capsules were defined as such when the HC was constricted in
combination with heavy pigmentation due to difficulties in the moulting process
and recorded (yes/no) (Suppl. material 1: fig. S1).

Measurement of dry weight of larvae

To measure the dry weight, decapitated larvae and the respective heads were placed
into disposable weighing pans (41 x 41 x 8 mm, neoLab Migge GmbH, Hei-
delberg, Germany) and put into a desiccator for three days, to allow the etha-
nol to evaporate entirely. After three days, the larvae and the pans were weighed
on a semi-micro scale in mg to the nearest second decimal (OHAUS Explorer
EX225D/AD, OHAUS Europe GmbH, Ninikon, Switzerland, = 0.06 mg linear-
ity deviation). Subsequently, the larvae were removed from the pan and the latter
was measured without the larvae to determine the dry weight of the total number
of larvae per replicate. For comparing the mean dry weight per larva, the total
dry weight was divided by the number of larvae that survived until the end of the
experimental period.

Instar distribution

The distribution of the larval stages in the treatments was determined following
the method of Watts and Pascoe (2000) where the larval stages can be determined
by measuring the head width, which provides reliable information about the larval
instar, independent of the nutritional stage.

Data analysis

The data were analysed using the statistic programme R Version 4.0.4 (R Core Team
2020). The LCSO—Value, the plots and the dose-response curves for the acute immo-
bilisation tests for L1 and L4 larvae were calculated with the built-in R package “drc”
(Ritz et al. 2015). Residual plots of response variables were used to test for homosce-
dasticity and normality using the R package DHARMa (Hartig 2022). Generalised
linear models (GLMs) with body length, head capsule width and dry weight as
response variables and treatment as a covariate were created using the base R glm()
function. We employed a Gaussian distribution with a default logit link function in
the GLMs to elucidate the impacts of 2-MNQ on both body weight and head cap-
sule width. For the end-points mortality and abnormal head capsules, we employed
binomial distributions with logit link functions. F-statistics were calculated with the
function Anova() to assess p-values for differences between treatments. To compare
treatment effects, we ran pairwise comparisons using the Tukey-HSD post-hoc test
with Holm correction using the multcomp package (Hothorn et al. 2008). Head
capsule widths, body lengths, dry weight and instar of individuals from the different
treatments were plotted using the ggbetweenstats function from the ggstatsplot pack-
age (Patil 2021). General differences in larval stage distributions between treatments
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were determined using a Pearson’s X° test and pairwise comparisons of proportions
with Bonferroni correction using the pairwise.prop.test() function. Abnormal HCs
were analysed using a Bayesian binomial generalised linear model using the “arm”
package (Gelman and Su 2023), due to the extremely wide confidence intervals in
the regular binomial glm, leading to incorrect output.

Results

Acute immobilisation test

After 48 hours of exposing the first instar larvae, there was no observable mortality
in both the control and solvent control medium and the treatment exposed to
2 mg/1 2-MNQ. The animals in the treatment exposed to 3 mg/l 2-MNQ showed
44% mortality and the animals in the 4 mg/l treatment showed already 80% mor-
tality. Mortality reached 100% in the 5 mg/I treatment (Fig. 1A). As the calculated
LC50 for first instar larvae towards 2-MNQ is 3.19 mg/l, 3 mg/l was set as the
highest concentration of 2-MNQ in the chronic exposure experiment.

The 48-hour acute immobilisation test for the fourth instar larvae revealed a
calculated LC, | of 2.09 mg/l (Fig. 1B). No mortality was recorded in the controls.
The individuals exposed to 2 mg/l 2-MNQ showed a mortality of 20%. The mor-
tality of individuals exposed to 3-8 mg/l was 100%.

Chronic exposure experiment
Body length and head capsule width

The body length of the individuals was significantly different between the treat-
ments (one-way ANOVA: X? = 862.23; df = 4, p < 0.001). The body length of the
individuals treated with 2 mg/l 2-MNQ (mean *+ SE 8.33 £ 0.05 mm; n = 5) and
3 mg/l 2-MNQ (mean £ SE 7.05 £ 0.38 mm; n = 5) was significantly smaller than
the control (mean + SE 14.04 £ 0.22 mm; n = 5), the solvent control (mean + SE
14.17 £ 0.18 mm; n = 5) and the individuals exposed to 1 mg/l 2-MNQ (mean *
SE 13.47 £ 0.21 mm; n = 4) (p < 0.001 for all comparisons). The individuals of
the 2 mg/l treatment had a significantly larger body length than those of the 3 mg/l
treatment (p < 0.001). There was no significant difference between the control and
the solvent control (p = 0.996), the control and the 1 mg/l treatment (p = 0.40)
and the solvent control and 1 mg/l 2-MNQ (p = 0.26) (Fig. 2A).

The width of the head capsules (HCs) was significantly different between treat-
ments (one-way ANOVA: X? = 30.562; df = 4, p < 0.001). The HC-width of the
individuals treated with 2mg/1 2-MNQ (mean * SE 424.03 + 28.60 pm) was sig-
nificantly smaller than the control (mean * SE 547.01 £ 3.46 pm) (p = 0.012), the
solvent control (mean + SE 542.55 + 2.23 pm) (p = 0.02) and the 1 mg/l (mean *
SE 533.88 * 3.35 pum) treatment (p = 0.03). The HC-width of the individuals
treated with 3 mg/l 2-MNQ (mean + SE 349.45 + 33.20 um) was significantly
smaller than the HC of the individuals of all other treatments (p < 0.01), except
from the individuals of the 2 mg/l treatment (p = 0.15). The HC of the control in-
dividuals was significantly larger than the HCs of the 1 mg/I treatment (p = 0.05).
There was no significant difference between the control and the solvent control

(p = 0.54) and the solvent control and 1 mg/l 2-MNQ (p = 0.71) (Fig. 2B).
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Figure 1. Dose-response curves with the fitted regression curve for the effect of 2-MNQ on the mortality of A first instar and B fourth

instar larvae of C. riparius and the calculated LC, with standard error for both instars.
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Figure 2. Body length (A) and head capsule width (B) of larvae from C. riparius exposed to different concentrations of 2-MNQ (mean

+/- SE; ANOVA; p < 0.05). Letters indicate significance between treatments. Framed values represent the mean of each group. Only sig-

nificant differences between treatments and control are indicated.

Abnormal head capsules

Individuals exposed to 2 and 3 mg/l 2-MNQ showed significantly more abnormal-
ities in form of conspicuous constrictions of the head capsule compared to the con-
trol (one-way ANOVA of Bayesian binomial regression: X° = 37.711; df = 4, p <
0.001) (Fig. 3). Of the individuals exposed to 2 mg/l 2-MNQ, 16 (8%) showed
abnormal head capsules (p < 0.001 compared to the control) and of the animals
exposed to 3 mg/l 2-MNQ, 8 individuals (9%) showed abnormal head capsules
(p < 0.001 compared to the control) (Fig. 3).

Dry weight

There was a significant difference between the treatments for the mean dry weight
per larva (one-way ANOVA: X ?=238.6; df = 4; p < 0.001). The animals exposed
to 3 mg/l 2-MNQ (mean + SE 0.17 £ 0.02 mg) showed a significantly lower mean
dry weight per larva than the animals of the control treatment (mean + SE 0.86 £
0.07 mg) (p < 0.001), the individuals from solvent control (mean + SE 0.84 £
0.05 mg) (p < 0.001) and the individuals exposed to 1 mg/l 2-MNQ (mean * SE
0.67 £ 0.03 mg) (p < 0.001). The animals treated with 2 mg/l 2-MNQ (mean *+
SE 0.21 + 0.01 mg) showed no difference in the dry weight per larva (p = 0.94),
compared to the animals exposed to 3 mg/l 2-MNQ. The individuals exposed to
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Figure 3. Distribution of abnormal head capsules in larvae of C. riparius exposed to different concentrations of 2-MNQ. Letters indicate

significance between treatments. Only significant differences between treatments and control are indicated.

2 mg/l 2-MNQ had a significantly lower dry weight per larva than the controls,
the solvent controls and the animals exposed to 1 mg/l 2-MNQ (C: p < 0.001;
DMSO: p < 0.001; 1 mg/l: p < 0.001). The animals of the control treatment, the
animals from the solvent control and those exposed to 1 mg/l 2-MNQ did not
differ significantly in dry weight per larva (Fig. 4).

Instar distribution

The distribution of the larval instars differed significantly between the treatments
(X? (8, N =960) = 421.91, p < 0.001). The larval instars” distribution showed that
100% of the control individuals reached the fourth instar at the end of the test. In
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Figure 4. Dry weight per larvae from C. riparius exposed to different concentrations of 2-MNQ (mean
+/- SE; ANOVA; p < 0.05). Letters indicate significance between treatments. Framed values represent

the mean of each group. Only significant differences between treatments and control are indicated.
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the solvent control, 97.6% of the individuals reached the fourth instar, while.1.6%
only reached the third instar and 0.8% did not moult and stayed in the second
instar. In the 1 mg/l treatment, 4% of the individuals reached the third instar at the
end of the test and 96% reached the fourth instar. In the 2 mg/l treatment, 47.4%
of the individuals reached the fourth instar, while 50.5% reached instar three and
2.1% stayed in the second instar. In the 3 mg/l treatment, 36% of the individuals
reached the fourth instar, 56% reached the third instar and 8% did not moult at
all (Fig. 5).

The distribution of larval instars differed significantly between the individuals
exposed to the control treatment and all other groups (1 mg/l: p = 0.005; all other
comparisons: p < 0.001), except with the solvent control (p = 0.08).

Mortality

The mortality of C. riparius in the 10-day chronic exposure test showed a signif-
icant difference between the treatments (one-way ANOVA: X = 285.66; df = 4;
p < 0.001). The animals exposed to 3 mg/l 2-MNQ (mean * SE 32.6% =+ 2.42)
showed significantly higher mortality than the animals of the control (mean + SE
1% £ 0.45) (p < 0.001), the solvent control (mean * SE 1.2% + 0.49) (p < 0.001)
and the ones exposed to 1 mg/l 2-MNQ (mean + SE 1% * 0.41) and2 mg/I
2-MNQ (mean * SE 11.6% * 2.58) (p < 0.001). In addition, the animals exposed
to 2 mg/l 2-MNQ expressed significantly elevated mortality compared to the con-
trol, the DMSO treatment and 1 mg/l 2-MNQ (p < 0.001 for all comparisons).
The other treatments showed no significant difference in mortality (Fig. 6).

AB B C D

(n=243) (n=194) (n=192) (n=87)
DMSO 1 mg/l 2 mg/l 3 mg/l
Treatment

Figure 5. Distribution of larval instars from C. riparius exposed to different concentrations of 2-MNQ. Letters indicate significance

between treatments.
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Figure 6. Mortality in percent of the C. riparius larvae exposed to different concentrations of
2-MNQ (mean +/- SE; ANOVA; p < 0.05). Letters indicate significance between treatments. Framed
values represent the mean of each group. Only significant differences between treatments and control

were indicated.

Discussion

Our results show that 2-MNQ has the potential to impair the survival and de-
velopment of C. riparius after acute 48 hour and chronic 10-day exposure. We
determined the LC,  after 48 h for the first instar larvae of C. riparius ata 2-MNQ
concentration of 3.16 mg/l and 2.09 mg/l for the fourth instar larvae. Larvae of
C. riparius exposed to a concentration of 2 and 3 mg/l 2-MNQ in the 10-day
chronic exposure experiment had significantly increased mortality, reduced body-
and head capsule size, as well as reduced body weight. They were further delayed
in their development and showed a significantly higher proportion of individuals
with deformed and abnormal head capsules.

The doses applied in the acute (max. 8 mg/l) and chronic (max. 3 mg/l) toxicity
tests were below the concentration reported to be leached from one single plant af-
ter rain events (12.21 mg/l) (Ruckli et al. 2014a). . glandulifera is known to grow
densely and crowd out other plant species by forming monocultures along river-
banks (Pattison et al. 2016; Cuda et al. 2017). Consequently, it could be assumed
that rain events and subsequent run-off have a substantial impact on the survival
and development of freshwater invertebrates when an /. glandulifera monoculture
surrounds the waterbody. This of course depends on the velocity of the river and
the water volume of the waterbody, which are both important factors in terms of
the dilution effects of xenobiotics, where a lower dilution increases the bioaccu-
mulation and contamination risk (Keller et al. 2014; Dris et al. 2015). As a re-
sult, benthic macroinvertebrates living in small and slowly running waters should
be more susceptible to incoming 2-MNQ because of a higher accumulation risk
(Logan and Brooker 1983; Clements 1994).

It has already been shown that low concentrations of 1.5 mg/l 2-MNQ can sig-
nificantly impair the growth and survival of individuals of the freshwater key species
Daphnia magna (Diller et al. 2023). In comparison, the closely-related compound
plumbagin (2-methyl-5-hydroxy-1,4-naphthoquinone) from the roots of Plumbago
zeylanica shows toxic effects on survival at 1 mg/l towards marine copepods and
the synthetic derivate of 2-MNQ, menadione (2-methyl-1,4-naphthoquinone)
has an LC,, of 2.3 mg/l against adults of Dreissena polymorpha (Sugie et al. 1998;
Wright et al. 2006). These results concerning LC values and survival analyses are in
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concordance with the LC, we found (2.09-3.19 mg/l) for 2-MNQ and suggest sim-
ilar toxicity of 1,4-naphthoquinones towards invertebrate organisms. Responsible
for the high toxicity of 2-MNQ towards invertebrates could be the high reactivity of
quinones, due to electron-withdrawing carbonyl groups and redox properties, with
an even higher reactivity of 1,4-naphthoquinones in an aqueous medium (Pereyra et
al. 2019). This is due to a nucleophilic substitution and the interaction of non-polar
and hydrophobic regions of reactants, causing irreparable damage to DNA by al-
kylating nucleophilic sites (Tandon and Maurya 2009; Pereyra et al. 2019).

The requirement of sediment of fourth instar larvae could be a reason for the
higher toxicity of 2-MNQ), compared to the first instar. Naphthalene, for example,
a structurally related compound to 2-MNQ), is known to be easily oxidised and
interact with a SiO /air interface (Barbas et al. 1993). This can lead to a higher
concentration of 2-MNQ in the sediment than in the water column, resulting
in a higher exposure risk (Corpus-Mendoza et al. 2022) as sediment is crucial for
the second to the fourth instar larvae of C. riparius. The sediment is required for
building tubes out of silk from the salivary glands, used for nutrient acquisition
and protection by the larvae (Armitage et al. 1995). However, it has to be further
investigated if 2-MNQ is interacting with the SiO, surface of quartz sand in an
aqueous environment and if that interaction increases or decreases the toxicity of
2-MNQ. Another possible explanation for the higher toxicity of 2-MNQ towards
the fourth instar larvae could be that it is the last developmental stage before pu-
pation. This could lead to higher susceptibility towards endocrine-disrupting sub-
stances like 2-MNQ, as the last larval stage of homometabolic insects requires the
highest titre of ecdysteroids, to shift the larval genome towards pupal pattern for-
mation (Smith 1985; Mitchell et al. 1999; Mitchell et al. 2007). The development
of the larvae could further be impaired by 2-MNQ disrupting the function of the
cytochrome P450-dependent steroid hydroxylase ecdysone-20-mono-oxygenase,
which hydroxylates the inactive ecdysone to the active moulting hormone ecdys-
terone, which can lead to delayed moulting or in general impaired postembryonic
development and inhibition of pupal formation (Smith et al. 1979; Smith 1985;
Mitchell et al. 2007). Other 1,4-naphthoquinones seem to have similar effects on
insects. Juglone, plumbagin, menadione and lawsone also show toxic effects on
the larvae of the saturniid moth Actias lunas, evident by increased mortality and
developmental time (Thiboldeaux et al. 1994). Another possible explanation for
why 2-MNQ interferes with moulting is that it could inhibit the chitin synthetase
of insect larvae, which is crucial for the moulting process, as shown for the natural-
ly-occurring plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) originating
from Plumbago capensis towards the larvae of Bombyx mori (Kubo et al. 1983). The
darker head capsule may be explained by 1,4-naphthoquinones’ ability to bind to
and modify the colour of chitosan (Muzzarelli et al. 2003). This could also be the
case for chitin, the acetylated version of chitosan (Dutta et al. 2004).

Even though some chironomid species are known for their extreme tolerance
towards environmental conditions like pH, temperature, oxygen content and even
salinity, they are susceptible to anthropogenically induced pollution, drugs and
other endocrine-disrupting substances (Vermeulen et al. 2000; Taenzler et al. 2007;
Serra et al. 2017). If their biomass is significantly reduced, there could be a severe
impact on higher trophic levels, depending on the chironomids as a food source.
This could be shown in modelled exposure scenarios of the Chinook salmon (On-
corhynchus tshawytscha) and the associated macroinvertebrate prey community, as
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some pesticides only affected the growth rates of salmon populations by reducing
the availability of prey (Macneale et al. 2014). In addition, also terrestrial predators
like bats and birds are highly dependent on emerging chironomids as food sources,
leading to a potential food deficiency or at least increased energy demands due to
an increased predation radius and time away from the nest when breeding in those
organisms (Barclay 1991; Martin et al, 2000; Jackson et al. 2020).

For the assessment of the impact of 2-MNQ on riverine ecosystems, it might
be essential to investigate the potentially different sensitivity of various macroin-
vertebrates, as C. riparius is known to display a comparatively greater tolerance
towards deteriorating water quality (Pinder 1986; Jiang et al. 2021; Leitner et al.
2021). Understanding these interspecific differences in sensitivity may be crucial
for risk assessment and will, therefore, serve as a basis for effective conservation and
management strategies.

Conclusion

This study reveals substantial acute and chronic toxicity of 2-MNQ towards the
larvae of C. riparius. Individuals exposed to concentrations of 2 mg/l upwards
showed a significantly reduced body size and head capsule size, a significantly re-
duced dry weight per larvae, developmental abnormalities and increased mortality
compared to unexposed individuals. 1. glandulifera is spreading extensively around
the world, building monocultures across riverine ecotones and even invading forest
ecosystems. The exposure risk to 2-MNQ could be highly increased when larger
areas are covered by the plants at high densities along riverbanks. This can result in
higher amounts of 2-MNQ leaching into aquatic ecosystems after precipitation,
ultimately increasing its concentration within the waterbody. Our findings under-
score the critical need for monitoring this neophyte, emphasising the imperative
to focus on controlling its spread. This attention is vital to safeguard ecosystem
functions of flowing waters.

Future research should include how riverine communities adapt to and are in-
fluenced by allelopathic substances, addressing also species interactions and resil-
ience of these ecosystems.
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Abstract

Incorporating societal considerations into decisions related to invasive species management is desirable,
but can be challenging because it requires a solid understanding of the ecological functions and so-
cio-cultural and economic benefits and values of the invaded environment before and after invasion. The
ecosystem service (ES) concept was designed to facilitate such decision-making by establishing direct
connections between ecosystem properties and human well-being, but its application in invasive species
management has not been systematic. In this Discussion paper, we propose the adoption of the ES cas-
cade model as a framework for understanding the environmental effects, costs and benefits associated
with controlling an invasive shrub (Zamarix spp.) in riparian systems of the western United States. The
cascade model has the advantage of explicitly dissecting social-ecological systems into five components:
ecosystem structure and processes, ecological functions, ecosystem services, benefits and the economic
and socio-cultural valuation of these services and benefits. The first two have received significant attention
in the evaluation of Zamarix control effectiveness. The last three have long been implicitly acknowledged
over decades of Zamarix management in the region, but have not been formally accounted for, which

we believe would increase the effectiveness, accountability and transparency of management efforts.

Key words: Conceptual framework, ecosystem services, riparian systems, rivers, saltcedar,

operationalisation, tamarisk

Introduction

Over the last two decades, the ecosystem service (ES, or ecosystem services - ESs)
concept has emerged as a powerful tool to facilitate decision-making in environ-
mental planning and natural resources management. The greatest contribution of
the ES concept to decision-making is that it uncovers the linkages between ecosys-
tem structure and functioning and the constituents of human well-being (Fisher
et al. 2009). By explicitly acknowledging and documenting the dependence of
humans on ecosystems (La Notte et al. 2017), the ES concept contributes to the
increasingly popular concept of social-ecological systems, encompassing not only
economic perspectives, but also other various facets of human-nature relationships
such as health, social relations, indigenous and local knowledge and culture and
perceptions (Anderies et al. 2004; Potschin-Young et al. 2018).
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The ES concept has been employed by international organisations such as the
IUCN (Neugarten et al. 2018), the European Commission (Maes et al. 2012;
EU FP7 OpenNESS 2017), UNEP (UNEP 2014), and the Intergovernmental
Platform on Biodiversity and Ecosystem Services (IPBES) to craft policy and man-
agement guidelines (Tengd et al. 2017; IPBES 2019). However, its widespread
integration into practical decision-making contexts (i.e. “real-world” situations)
has proven challenging (e.g. Rozas-Vasquez et al. (2019) for spatial planning) and
has seen slower progress in some fields such as invasive species management. While
the effects of invasive species on ESs have been extensively studied (Charles and
Dukes 2007; Vila and Hulme 2017; Rai and Singh 2020), the ES concept has been
rarely used in the evaluation of outcomes of invasive species management (Funk
et al. 2014; Schaffner et al. 2020). This is unfortunate considering the overall im-
portance of socio-cultural values and perceptions in invasive species management
and decision-making (Verbrugge et al. 2013). Using the ES concept would ad-
dress questions related to the typically conflicting positive (services) and negative
(disservices) effects of invasive species on socio-economic systems (Dickie et al.
2014) and would be particularly helpful to justify potential economic returns on
investment for invasives’ control (Funk et al. 2014; Hanley and Roberts 2019).

In this Discussion paper, we invite land managers and scientists to consider
employing the ES concept to integrate social-ecological outcomes in the evalu-
ation of control of invasive species. We frame our discussion around the case of
invasive shrubs in the genus Zamarix (tamarisk, saltcedar) that have extensively
invaded western U.S. river systems (Friedman et al. 2005; Nagler et al. 2011). To
date, assessments of the effectiveness of Zamarix control have mainly focused on
biophysical responses of invaded ecosystems (Goetz et al. 2024). We suggest that
the ‘ES cascade model’ (or simply, the ‘cascade model’; sensu Haines-Young and
Potschin (2010)) could serve as a framework to integrate socio-economic aspects
with these more traditional ecological assessments.

Brief history of Tamarix invasion and management

The history of non-native Zamarix in North America reflects a dynamic interplay of
ecosystem services and disservices that Zzmarix provided to a changing society, as has
been the case for many other invasive tree species worldwide (Dickie et al. 2014).
Tamarix was initially introduced to North America in the 19* century for ornamen-
tal purposes. In the first half of the 20" century, Zamarix not only escaped cultiva-
tion, but was also intentionally planted along riversides and reservoir shorelines to
control sediment erosion (Chew 2009). This facilitated its widespread invasion across
the western United States (Robinson 1965; Friedman et al. 2005; Nagler et al. 2011).

Control of Zamarix did not become common management practice until the sec-
ond half of the 20™ century, when large amounts of local, regional and federal funds
were allocated for this purpose. Beliefs that Zamarix consumed more water than
native vegetation, coupled with the need to increase water yield in arid river systems
was the main motivation for control efforts in the 1950s and 1960s (‘water salvage’,
Stromberg et al. (2009) and references therein). Beginning in the 1970s, society’s
growing recognition of the importance of natural systems and their preservation
triggered interest in assessing the value of Zzmarix as a wildlife habitat (Anderson and
Ohmart 1977) and determining its influence on fluvial geomorphologic processes
(Everitt 1980). Zamarix control was then justified by alterations in ecosystem func-

NeoBiota 92: 173-192 (2024), DOI: 10.3897/neobiota.92.118502 174



Eduardo Gonzdlez-Sargas et al.: The ecosystem service cascade model for invasive Tamarix

tions and other disservices that Zazmarix was purported to cause, such as increased
soil salinity, increased fire risk, degradation of cultural significance of riparian forests,
replacement of species with higher suitability as livestock feed and, more recently,
restricted recreational access to rivers (e.g. rafting, fishing, camping) (Di Tomaso
1998; Chew 2009; Hadley et al. 2018). Scientists and managers devoted consider-
able attention to evaluating the effectiveness of different control methods in terms of
both compliance and ecological effects during these decades (Taylor and McDaniel
1998; O’Meara et al. 2010; Sher and Quigley 2013; Gonzélez et al. 2017).

The difficulty of controlling the invasion through conventional chemical or
mechanical methods prompted the development of a biocontrol programme that
culminated in the release of a host-specific defoliating beetle (Diorhabda) at the
beginning of the 21 century (DeLoach et al. 2003). Biocontrol has been gener-
ally successful in reducing Zamarix biomass and growth at the continental scale
(Nagler et al. 2018). However, the release of the biocontrol agent was temporarily
halted after the realisation that a bird species federally listed as endangered, the
Southwestern Willow Flycatcher (Empidonax traillii extimus), used Tamarix habi-
tat and could be negatively affected by the programme (Bean and Dudley 2018).

We believe the identification and valuation of ESs could help to provide infor-
mation for decisions regarding potential management interventions in areas where
Tamarix remains a significant component of the riparian plant community. Al-
though biological control beetles have established along rivers across the American
West, residual Zamarix populations still occur and are sometimes managed by us-
ing targeted chemical and mechanical control combined with active introduction
of native vegetation. The presence of Tamarix is generally accepted within western
riparian ecosystems (Raynor et al. 2017; Darrah and van Riper 2018). It has been
recognised that Zamarix contributes to some ecological functions and ESs (Sogge
et al. 2008; Sher and Quigley 2013; Bean and Dudley 2018) in the absence of
comprehensive restoration of riparian systems that are degraded by multiple fac-
tors (Shafroth et al. 2008; Stella and Bendix 2019; Briggs and Osterkamp 2021).
Nevertheless, no attempts have been made to quantify these ESs.

The cascade model as framework to understand social-ecological
systems

ES emerged as a concept in 1981 (Ehrlich and Ehrlich 1981) after early discussions
by the Club of Rome in the 1970s (Haines-Young and Potschin 2010; Vermaat et
al. 2013), but did not gain popularity until the Millennium Ecosystem Assessment
(MEA 2005) used ESs to assess the effects of ecosystem degradation on human
well-being. The widespread promotion of ESs into market and payment schemes
(Gémez-Baggethun et al. 2010) triggered efforts for a better understanding of the
ES delivery process and, hence, its quantification and valuation. The cascade model
(Haines-Young and Potschin 2010) addressed this need as it formalised a theoretical
pathway from ecosystem structure and functioning to human well-being including
valuation of ESs. The model consists of a five-step sequence from identifying: 1) bio-
physical structure and processes and 2) ecological functions of ecosystems that give
the 3) potential basis for human well-being (ESs) in terms of 4) realised gains to so-
ciety (benefits) that can be 5) valued in economic and socio-cultural terms (Fig. 1).

The sequential nature of the cascade model helped to solve the problem of double
counting ESs in valuation approaches, by clearly identifying “intermediate” or sup-
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Ecosystems Socio-economic system
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1. Biophysical structure

2. Functions

3. Services (ESs) |

4. Benefits
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Figure 1. Ecosystem service cascade model of Haines-Young and Potschin (2010) adapted to represent a conceptual framework that
integrates socio-economic factors into Zamarix control monitoring across U.S. Southwestern rivers. Blue boxes represent the five steps of
the model. Processes were considered conjointly with functions (step 2) instead of as part of biophysical structure (step 1) as in the original
design. Yellow boxes include elements that can be used to develop the model steps for the Zamarix case. For an in-depth development of
biophysical structure indicators, see Goetz et al. (2024). We have combined the elements associated with ecosystem services (ESs) (step 3)
and benefits (step 4), given that they overlap considerably and to simplify the figure. Arrows reflect linkages between ecosystem structure,
functions, ecosystem services/benefits, and values, based on our best judgment. Suppl. material 1: appendix S1 provides a list of references
studying the functions of water cycling and evapotranspiration and biocontrol-related herbivory (trophic relationships). Suppl. material
1: appendix S2 includes an extended list of ecosystem services and benefits provided by systems dominated by Zamarix and replacement
vegetation such as native riparian forest and meadow vegetation that follows the CICES v.5.1 classification (Haines-Young and Potschin

2018). Suppl. material 1: appendix S3 describes economic valuation methods.

porting services (processes and functions in the model) that are necessary to produce
final services or ESs in the model (Wallace 2007; Costanza 2008; De Groot et al.
2010; Fu et al. 2011). Primary productivity is an example of a supporting service.
A second problem that the cascade model tried to address was the scarce knowledge
of how ESs are produced, maintained and affected by changes in the structure and
functioning of ecosystems (De Groot et al. 2010). By breaking down each step of
the cascade into categories and sub-categories, explicit links between the ecolog-
ical and socio-economic components of social-ecological systems can be created
(Haines-Young and Potschin 2010; Vermaat et al. 2013; Vidal-Abarca et al. 2016).
However, the model did not solve the problem of limited knowledge. There is a
lack of empirical data for biophysical structure, processes and functions of ecosys-
tems, which have typically been replaced by expert knowledge in ESs quantification
(e.g. Riis et al. (2020) for riparian systems). The cascade model set up a conceptual
framework necessary to address this limitation (Potschin and Haines-Young 2016;
Potschin-Young et al. 2018). In the following section, we develop each step of the
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cascade model in more detail and discuss how the monitoring of Zamarix control
outcomes has been following this conceptual framework. Additionally, we offer sug-
gestions for implementing the framework in cases where it is not being followed.

Integrating monitoring of Tamarix control outcomes within the
ecosystem service cascade model

Biophysical structure and processes of ecosystems

The first step of the cascade model is the assessment of the biophysical structure
and processes of ecosystems. The biophysical structure of ecosystems includes the
species composition, the structural and genetic diversity of flora and fauna and the
description of the physical environment that supports life (Fig. 1). In the original
definition of the cascade model of Haines-Young and Potschin (2010), processes
are simply the precursor of functions and they are the result of the activities and
dynamics of each ecosystem component without an explicit consideration of their
interactions (e.g. vegetation growth and river channel formation in our case study)
(see also De Groot et al. (2010)). The distinction between processes and functions
is ambiguous in literature. However, this distinction does not have high relevance
in the determination and valuation of ESs (Spangenberg et al. 2014; Baré et al.
2016; Czucz et al. 2020). For this reason, we only discussed here how biophysical
structure has been considered in Zamarix control studies and treated processes and
functions together in the next section. Thus, we followed the recommendation by
Potschin-Young et al. (2018) for adapting the ES cascade model to our case study.
Goetz et al. (2024) exhaustively reviewed the outcomes of Zamarix control
through monitoring using vote count and a meta-analysis of 96 studies published
from 1990 to 2020. They provided a list of indicators and ecosystem components
that have been monitored and noted an over-representation of vegetation monitor-
ing and a paucity of studies examining the response of other biotic and abiotic eco-
system components, such as fauna, physicochemical properties of water and soil and
geomorphic characteristics of fluvial landforms that riparian vegetation occupies.
We agree with the conclusions of Goetz et al. (2024) that more research on effects of
Tamarix control beyond the vegetation component is necessary and essential to pro-
vide information for the next steps of the cascade model and achieve an integrative
evaluation of riparian social-ecological systems across the American West.

Ecosystem functioning

Describing ecosystem functioning is the second step in the cascade model (Fig. 1).
Ecosystem functions are the subset of interactions between the biological and phys-
ical structure and processes that govern the flow of matter and energy across ecosys-
tems (Potschin and Haines-Young 2016; Raimundo et al. 2018; Hu et al. 2022).
Recommendations for integrating ecosystem functioning into evaluation of manage-
ment of natural resources, including invasive species management (e.g. Internation-
al Standards for Ecological Restoration, Gann et al. (2019)), have not been as widely
implemented as those related to biophysical structure (see Palmer et al. (2014) in the
field of ecological restoration and Gonzilez et al. (2015) for restoration of riparian
vegetation specifically). Ecosystem functioning has been overlooked for multiple
reasons. First, structural indicators are usually sufficient to evaluate compliance of
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management projects, which is often the only goal of monitoring (Matzek 2018).
Second, there is a tendency to remain at the “structural phase” of evaluation be-
cause of the common belief that, if the biophysical structure is restored, recovery of
processes and functions will follow (the ‘Field of Dreams’ hypothesis; see Palmer et
al. (1997) and Suding (2011)). Finally, ecological functions are harder to conceptu-
alise and monitor, despite efforts to simplify their quantification (e.g. Meyer et al.
(2015)). Advances in functional ecology, such as the emergence and application of
functional traits and functional diversity to understand ecosystem dynamics, can
help to better characterise ecosystem functions (Diaz et al. 2007; Haines-Young and
Potschin 2010; Funk et al. 2014). We are aware of only one study that used func-
tional traits and functional diversity to assess the effectiveness of Zamarix control.
Henry et al. (2023) used specific leaf area, plant height and seed mass to explore the
response of the riparian plant community to Zamarix biocontrol, but their choice of
traits was intended to reflect responses to environmental change (“response” traits)
instead of to reflect effects on ecosystem functioning (“effect” traits). Effect traits
are still underutilised in monitoring outcomes of management interventions (for
example, in ecological restoration, see Loureiro et al. (2023)).

A variety of ecosystem functions have been evaluated in the context of Tamarix
control; however, many of these functions have been relatively understudied. As
increasing water yield (or ‘water salvage’) was a long-standing management goal
for Tamarix control, the ecosystem function that has received most attention in the
evaluation of Zamarix control outcomes is water cycling and evapotranspiration
(Suppl. material 1: appendix S1). A growing body of literature has also been con-
sidering trophic relationships, directly or indirectly, via studies of the effects of the
biocontrol beetle on Zamarix defoliation, dieback, plant physiology and cover and
on other ecosystem components (biocontrol-related herbivory; Suppl. material 1:
appendix S1). However, a paucity of studies reflecting ecosystem functions other
than water cycling, evapotranspiration and biocontrol-related herbivory in Zamarix
control evaluations has been explicitly acknowledged by the scientific community.
For example, in a paper discussing the possible unintended consequences of the
Tamarix biocontrol programme that was beginning to unfold by the time of its
publication, Hultine et al. (2010) suggested that the decline in Zzmarix may lead
to reduced carbon storage and sequestration, at least in the short-term, a reduced
carbon exchange in the ecosystem and a release of nitrogen through defoliation and
downstream export following erosion of unstable landforms. They made a call to the
scientific community to test these hypotheses. More than ten years later, however,
litcle has been done to understand the changes in nutrient cycling that U.S. rivers
have experienced after the biocontrol programme was put in place or as a result of
Tamarix control efforts using other techniques (but see Uselman et al. (2011), Sny-
der et al. (2012) and Snyder and Scott (2020), in Suppl. material 1: appendix S1).
At least two other studies have quantified the response of other ecosystem functions
to Tamarix management. Kennedy et al. (2005) studied changes in aquatic food
webs after mechanical clearing of Zamarix along a small creek in Nevada. Tredick
etal. (2016) examined black bear scat to understand potential changes in bear diet
after removal of Zamarix in Canyon de Chelly National Monument, Arizona.

A core function that remains overlooked and supports several ecosystem services
is primary productivity (Fig. 1). In general, a more thorough understanding of eco-
logical functions associated with Zzmarix control evaluations could be achieved with
more frequent implementation of the methodologies and experience developed in
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the evaluation of invasive species management and other types of restoration ap-
proaches in a riparian context. This includes assessing ecological functions other than
water cycling and evapotranspiration, trophic relationships and nutrient cycling,

Ecosystem services and benefits

ESsand benefits are two sides of the same coin. ESs reflect what the ecosystem provides
to human welfare in biophysical terms, while benefits represent the contributions to
aspects of well-being, such as health and safety. As ESs and benefits commonly overlap
and their distinction is not critical for the valuation of the latter, we will concentrate
here on the definition and description of ESs and will not distinguish between ESs
and benefits in the next sections of the article. ESs are distinguished from functions
(step 2) in that there is a direct or indirect use of an ecosystem resource or property by
ESs beneficiaries, while functions represent the “capacity” or ability of the ecosystem
to generate ESs (Czucz et al. 2020). There are several classifications of ESs (e.g. MEA
(2005); The Economics of Ecosystems and Biodiversity — TEEB — developed by De
Groot et al. (2010); to name two of the most popular). One of the most used is the
Common International Classification of Ecosystem Services (CICES, Haines-Young
and Potschin (2013)). In its last published version (v.5.1, Haines-Young and Potschin
(2018)), 90 “classes” of ESs are detailed and grouped hierarchically into “groups”,
“divisions” and “sections”. At the highest level (sections), services are classed into: “a)
the provisioning of material and energy needs, b) regulation and maintenance of the
environment for humans or ¢) the non-material characteristics of ecosystems that
affect physical and mental states of people”. These are three of the four main catego-
ries of ESs that the MEA (2005) originally referred to as “provisioning”, “regulating”
and “cultural”, respectively. A consensus was reached to consider a fourth catego-
ry “supporting” as intermediate services. Supporting services are integrated in the
previous steps of the cascade model as ecosystem structure, processes and functions
(Carpenter et al. 2009). This matching with the MEA framework ultimately reflects
the intention of the CICES v.5.1 to cross-reference other classifications and facilitate
international comparisons (Haines-Young and Potschin 2018).

The CICES v.5.1 classification particularly addressed the complexity in distin-
guishing between ESs and benefits (Haines-Young and Potschin 2018). The defini-
tion of each service is made up of two parts; one describing the biophysical output
from the ecosystem (i.e., what the ecosystem delivers) and the other describing the
contribution it makes to human well-being (i.e. how that output is used or enjoyed by
people in terms of health, good social relations, security, basic needs etc.). While the
CICES list is rather exhaustive, it is not practical to include all ESs in actual evalua-
tions (Matzek 2018). Moreover, the contingent nature of the ES concept implies that
establishing a universally applicable, final checklist of ecosystem-supported services
is an unachievable (and unnecessary) objective. The list of services should be treated
more as a “menu’ of ESs and benefits themes, with steps one and two of the cascade
model serving to examine how particular systems operate and provide information
for the choice and quantification of ESs (Haines-Young and Potschin 2010; Potschin
and Haines-Young 2016; Potschin-Young et al. 2018). We are unaware of studies
evaluating the effectiveness of invasive riparian plant species management under the
prism of an ES approach. However, assessments of ESs outcomes of river restoration
have generated lists of ESs, based on project and system singularities (e.g. Acuna et al.
(2013); Terrado et al. (2016); Vermaat et al. (2013); Gerner et al. (2018)).

NeoBiota 92: 173-192 (2024), DOI: 10.3897/neobiota.92.118502 179



Eduardo Gonzdlez-Sargas et al.: The ecosystem service cascade model for invasive Tamarix

We identified the ESs and associated benefits that riparian systems dominated
by native species could provide compared to those dominated by Zamarix, as re-
placing Tamarix with native vegetation is one of the main goals of Zzmarix control
(Shafroth et al. 2008). We modified the list of ESs and benefits provided by ripar-
ian systems in Riis et al. (2020) for four types of dominant vegetation. We present
an abbreviated version of the list in Fig. 1 and an annotated, extended version in
Suppl. material 1: appendix S2. Dickie et al. (2014) also listed the ESs provided by
Tamarix, but we chose to use the classification by Riis et al. (2020) because Dickie
et al. (2014) did not use vegetation categories or compare between control/impact
or before/after Tamarix control. Dickie et al. (2014) simply enumerated the ESs
provided by Zamarix trees: visual amenity/ornamental (cultural ESs); timber, build-
ing materials, poles, posts, pulp, crafts and firewood and charcoal (provisioning
ESs); habitat for wildlife, protection from predators (supporting ESs); erosion con-
trol, including windbreaks and temperature regulation via shading (regulating ESs).

Some have described ESs provided by riparian systems that were affected by
Tamarix control (even though virtually none of them used the term “ecosystem
service” in their assessments). Dykstra (2010) enumerated the multiple potential
uses of Zamarix biomass obtained from removal efforts, including its transforma-
tion into composite wood, its use as biofuel in the form of wood pellets, bio oil
and charcoal and for artistic creations (“Timber”, “Biomass for fuel”, “Indirect in-
teraction — artistic”, Fig. 1; Suppl. material 1: appendix S2). Bateman et al. (2012)
assessed fire regulation by reduction of fuel loads (“Fire regulation”, Fig. 1; Suppl.
material 1: appendix S2). Wieting et al. (2023) and references therein showed that
Tamarix removal promotes erosion (“Erosion control” and “Buffering and attenu-
ation of mass movement”, Fig. 1; Suppl. material 1: appendix S2) by reducing the
stability of riverbanks and hydraulic roughness. This is typically perceived as a “dis-
service” by managers (Suppl. material 1: appendix S3). The ES that has received
more attention in the context of Zamarix control assessments is “Maintaining pop-
ulations and habitats” (Fig. 1; Suppl. material 1: appendix S2). Several publications
have compared the suitability of 7amarix-dominated and Zamarix-restored sites as
habitat for birds (e.g. Shanahan et al. (2011); Darrah and van Riper (2018); Ma-
honey et al. (2022)) and for herpetofauna (Bateman et al. 2012, 2015; Mosher and
Bateman 2016). To our knowledge, there are no other publications that discuss
and quantify the other ESs provided by forest patches and/or fluvial features dom-
inated by Zamarix or where Tamarix has been controlled, listed in Fig. 1. We see
this as an avenue for further research. A variety of methods for mapping and mod-
elling the supply and demand of ESs were summarised by Harrison et al. (2018).

Ecosystem service values

Once the ESs/benefits have been identified, the final step of the cascade model is
to conduct economic and socio-cultural valuations of the ESs/benefits (Fig. 1).
Values in general can be defined as the criteria by which we assign importance
to something and valuation is the process of expressing or quantifying that value
for a particular action or object (Farber et al. 2002; Potschin and Haines-Young
2016; IPBES 2019). Different valuation methods and techniques exist to give an
economic, typically monetary value, to ESs/benefits. They are divided into direct
market (e.g. production-based, cost-based), indirect market or “revealed prefer-
ence” (e.g. travel cost modelling, hedonic pricing) and simulated market or “stated

NeoBiota 92: 173-192 (2024), DOI: 10.3897/neobiota.92.118502 180



Eduardo Gonzdlez-Sargas et al.: The ecosystem service cascade model for invasive Tamarix

preference” (e.g. contingent valuation, choice experiments or conjoint analysis,
participatory mapping) methods. We present definitions and hypothetical exam-
ples of their use in the Zamarix control context in Suppl. material 1: appendix S3.
See Harrison et al. (2018) for an exhaustive list of ESs valuation methods.

Economic valuations are frequently used in cost-effectiveness, cost-benefit anal-
yses and damage assessments. In the context of Zamarix control, cost-effective-
ness and cost-benefit analyses could be used to combine monetary valuation of
improvements on ecosystem status and ESs, respectively, with the cost of resto-
ration actions (sezsu Terrado et al. (2016)), while damage assessments value the
loss of ESs (Unsworth and Petersen 1995; NPS 2005) and are more frequently
used to investigate the negative effects of invasive species (Marbuah et al. 2014).
Cost-effectiveness and cost-benefit analyses are key to assessing economic viabili-
ty of management interventions and are particularly relevant for invasive species
management (Hanley and Roberts 2019). Great Western Research (1989) analysed
the economic, environmental and social effects of 7amarix control in the western
United States and northern Mexico and estimated annual beneficial effects of $22
million and $40—62 million ($ are not inflation-corrected) for 50% and 90% con-
trol, respectively. Economic benefits outweighed adverse economic effects, but the
study did not factor in the control programme costs (Barz et al. 2009). Zavaleta
(2000) compared the monetary cost of water consumption and sediment retention
by Tamarix with removal costs to conclude that the economic gains of potential
eradication were considerable. The work by Zavaleta (2000) was frequently used
to justify Zamarix control in the region, but her estimates of water consumption
by Tamarix have been discredited by some (Stromberg et al. (2009) and references
therein). McDaniel and Taylor (2003) estimated the cost of several removal meth-
ods and compared them in terms of their cost-effectiveness using Zamarix mortali-
ty as an indicator of project compliance. Hart et al. (2005) provided detailed costs
of Tamarix removal during 1999-2003 along the Lower Pecos River (Texas), as
well as estimates of percent mortality, changes in salinity of the river water, chang-
es in water flow and estimates of water salvage. However, they did not calculate
cost-effectiveness ratios. Barz et al. (2009) conducted more explicit cost-benefit
analyses of Zamarix control efforts along the Middle Pecos River (New Mexico).
They concluded that attempting Zamarix eradication was not worthwhile, based on
consideration of different scenarios: direct costs of herbicide spraying, removal and
revegetation; indirect costs of increased bank erosion and reservoir sediment accu-
mulation following the eventual reduction of Zamarix; and benefits such as water
salvage and associated groundwater recharge. O’Meara et al. (2010) and Bateman
et al. (2012) provided detailed estimates of costs of different control methods, but
they did not report cost-effectiveness or cost-benefit ratios. More recently, Albers et
al. (2018) used bioeconomic modelling to consider the trade-off in terms of costs
and positive effects on the ecosystem between controlling invasive Zamarix and
restoring habitats with native species. All these examples show that, in the Zamarix
control case, indirect and simulated market methods are underutilised and that
the ES concept has been rarely, if ever, invoked. We believe a more systematic use
of the ES cascade concept in cost-effectiveness, cost-benefit analyses and damage
assessments would facilitate the comparison of results across studies.

Not all ESs and related benefits can be valued economically. While conceptual
and methodological developments in economic valuation have aimed to cover a
broad range of ESs, including cultural ESs, it can be argued that socio-cultural
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values (symbolic, aesthetic, ethical, relational etc.) cannot be fully captured by
economic valuation techniques (Schréter et al. 2014). Socio-cultural values in in-
vasive species management can be represented in more simple terms by the degree
of satisfaction of different interested parties. For example, the aesthetic apprecia-
tion of the ecological condition of riparian zones by different groups of people has
been evaluated with photo-elicitation surveys (e.g. Le Lay et al. (2013); Chin et
al. (2014); Arsénio et al. (2020)). Other methods for understanding preferences
or social values for ESs, such as deliberative valuation methods, preference ranking
methods and multi-criteria analysis methods (Harrison et al. 2018), have been
used in the evaluation of invasive species management planning more often than
for monitoring outcomes (e.g. Liu et al. (2011); Japelj et al. (2019)). Perceptions
and preferences of different interested parties are important because even the per-
ceptions of success by environmentally-informed sectors of the population such as
restoration practitioners do not necessarily align with abiotic and biotic parameters
measured in the field (Jahnig et al. 2011) and public acceptance of outcomes is key
for restoration success (Heldt et al. 2016). There is currently a dearth of studies
that describe and quantify public opinion about Zamarix control and what society
perceives as successful riparian ecosystem restoration along rivers in the American
West. We are unaware of any studies of this kind. Only Sher et al. (2020) have
explored how the human component (manager characteristics and decisions) may
help explain Zamarix control outcomes in terms of vegetation structure and com-
position. Clark et al. (2019) previously showed the high degree of collaboration
between restoration practitioners and scientists in Zamarix control contexts.

Finally, the value of ecosystems also has an ecological component that may be
represented by fundamental properties of ecosystems, such as resilience, stability,
health, complexity and integrity (De Groot et al. 2010). These are ecological values
(or intrinsic values of nature) that cannot be expressed in economic or socio-cultural
terms because they are not based on human preferences or principles, as they go be-
yond the anthropocentric approach of ESs (Kretsch and Stange 2016; Potschin and
Haines-Young 2016). The quantification of these critical ecosystem properties and
the subsequent integration into the evaluation of natural resources management,
is still in its infancy and is subject to intense debate and study in academic circles
(Jaunatre et al. 2013; Moreno-Mateos et al. 2020; Rohwer and Marris 2021; Dakos
and K¢éfi 2022; Ren and Coffman 2023). No efforts to value such fundamental eco-
logical properties of systems responding to invasive species management, includ-
ing Tamarix-dominated systems, have been made. Functional traits can be used to
value resilience and stability of plant communities through measurable properties,
such as functional redundancy, dispersion and response diversity (Laliberté et al.
2010). Other approaches to measure ecological values include ecological networks
(Raimundo et al. 2018) and genome sequencing that incorporates eco-evolutionary
processes in ecosystem recovery (Moreno-Mateos et al. 2020).

The importance of determining a relevant spatial scale in the
application of the cascade model for Tamarix control

An important consideration when assessing ESs and associated benefits in the con-
text of Zamarix control is the definition of the smallest spatial scale at which ESs will
be examined (i.e. the grain of the spatial scale, Turner et al. (1989)). For example, to
quantify the contribution of river restoration to ES provision, Vermaat et al. (2013)
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determined that the grain should be forest patches or fluvial features (e.g. sand or
gravel bar, secondary channel, terrace) no larger than 100 m?. Cassiano et al. (2013)
also used a 100 m? resolution to assess the contribution of remnant riparian forest
patches to water-related ESs in an agricultural landscape of south-eastern Brazil.
Rather than determining an optimal value for the grain size, Riis et al. (2020) de-
fined ESs provided by riparian systems using study units based on a classification
of four different vegetation types. Determining a spatial scale that can discriminate
between Zamarix- and native species-dominated units, possibly the forest patch or
fluvial features (see, for example, Scott et al. (2022) for criteria to determine rele-
vant geomorphic units), will be key for a fair socio-economic valuation of Zamarix
control projects using an ES approach. It will also be critical to determine the eco-
system biophysical structure, processes and functions of riparian systems (pre- or
post-Tamarix control) that constitute the first two steps of the cascade model.

Unfortunately, ESs provided by riparian corridors have usually been overlooked
precisely because they have been quantified using an inappropriately large grain
where ESs are assigned to general land-use categories, such as agricultural, urban
and natural (e.g. Felipe-Lucia and Comin (2015)). Lumping natural areas into one
category simplifies the heterogeneity of ecosystems and ignores important differ-
ences in dominant vegetation, which can strongly influence some attributes of eco-
system structure, such as biodiversity, that ultimately determine supporting func-
tions and final ESs (e.g. wildlife use: Zamarix-dominated, native-dominated and
mixed riparian forests can support different avian communities, Van Riper et al.
(2008)). For example, the aesthetic appreciation (class service “3.1.1.1” in CICES
v.5.1) of a mixed riparian forest dominated by healthy native cottonwoods (Populus
spp.) may not be the same as the one provided by a defoliated Zzmarix monocul-
ture, even though they both may be designated as “natural forests” when compared
to lands occupied by urban sprawl or agricultural fields. Evaluating the steps of the
cascade model at the appropriate scales is important so that resource management
actions are likewise implemented and monitored at the appropriate scale.

Conclusion

The ES cascade model provides a research framework to define, quantify and
value the services that ecosystems provide to society and we suggest it could be a
valuable tool for integrating social-ecological outcomes more systematically in the
evaluation of invasive species management, including Zamarix control. The ES
concept (and, by extension, the cascade model) can be useful for measuring the
socio-economic effects of management actions on human well-being as rigorously
as the effects on biophysical structure have been measured thus far for Zamarix
control (Goetz et al. 2024). This will ultimately increase effectiveness, account-
ability and transparency of both management and decision-making processes
(Funk et al. 2014). However, the use of an ES approach and the linear structure
of the cascade model do not necessarily imply that the final purpose of invasive
species management must be to make an ESs/benefits valuation, especially in eco-
nomic terms. This misconception has prevented more studies of ESs in restoration
projects (i.e. fear of denaturalising restoration ecology’s motivation to restore the
Earth’s natural capital, Matzek (2018)) and could risk having the same effect on
invasive species management (see also Gémez-Baggethun et al. (2010) and Kallis
et al. (2013) for criticisms of commodification of ESs). Each step of the cascade
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model is intrinsically valuable. The cascade model is intended to help conceptu-
alise all the possible measures and indicators of ecosystem change and how they
connect to each other, to provide an implementation framework and to identify
knowledge gaps (Potschin-Young et al. 2018).

Implementation of the cascade model in the context of Zamarix control will
require overcoming some challenges. For example, the current lack of information
on responses to Iamarix control for most ecosystem components, processes and
functions (Goetz et al. 2024) reduces the confidence of economic and socio-cul-
tural valuations. In addition, the paucity of studies on ESs in the Zzmarix control
context indicates that more collaboration between biophysical and social scientists
is needed. The comprehensive approach of the cascade model requires participa-
tion of multidisciplinary teams, which can be challenging to assemble depending
on the capacity and resources of organisations involved. The good news is that
there is evidence that land managers and scientists share information and com-
municate effectively when working on Zamarix control efforts (Clark et al. 2019).

With this paper, we hope to have provided clear guidelines and recommenda-
tions for how to achieve a comprehensive and holistic assessment of social-ecolog-
ical outcomes of a prominent invasive species management case: Zamarix control
in the American West. Further, we hope to stimulate discussion and consideration
of applying the cascade model more broadly to invasive species management in a
variety of contexts.
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