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Abstract
Cirsium arvense is one of the worst weeds in agriculture. As herbicides are not very effective and not ac-
cepted by organic farming and special habitats, possible biocontrol agents have been investigated since 
many decades. In particular plant pathogens of C. arvense have received considerable interest and have 
been promoted as “mycoherbicides” or “bioherbicides”. A total of 10 fungi and one bacterium have been 
proposed and tested as biocontrol agents against C. arvense. A variety of experiments analysed the noxious 
influence of spores or other parts of living fungi or bacteria on plants while others used fungal or bacte-
rial products, usually toxins. Also combinations of spores with herbicides and combinations of several 
pathogens were tested. All approaches turned out to be inappropriate with regard to target plant specific-
ity, effectiveness and application possibilities. As yet, none of the tested species or substances has achieved 
marketability, despite two patents on the use of Septoria cirsii and Phomopsis cirsii. We conclude that the 
potential of pathogens for biocontrol of C. arvense has largely been overestimated.
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Introduction

Cirsium arvense (L.) Scop. (Canada thistle) is a perennial root-budding geophyte capa-
ble of sprouting from creeping roots that make it a vigorous pioneer in open, disturbed 
habitats especially on nutrient-rich deep soils (Tiley 2010). Likely to be native of Eu-
rope, Western Asia and North Africa (Kazinczi et al. 2001), it has spread worldwide 
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(Figure 1), to become one of the most noxious weeds on agricultural land (Skinner et 
al. 2000). The most severe problems are caused in cereal fields and pastures, especially 
in Europe (Guillerm and Maillet 1982, Franzini 1982, Dietl 1982, Niemeth 2001, 
Purgar and Hulona 2008, Macak et al. 2008, Privalov et al. 2008), North America 
(Alex 1966) and New Zealand (Rahman 1982). Canada thistle was introduced to 
North America probably in the 17th century from Eurasia (Moore 1975, Tiley 2010). 
There it has become an invasive weed that aggressively suppresses crops on cultivated 
land and native plants on fallow land ( Moore 1975, Stachion and Zimdahl 1980).

C. arvense reproduces sexually with seeds and vegetatively with an expanding sys-
tem of root buds. While seeds aid long distance dispersal, the clonal propagation via 
the root system is considered to be most important for the effective colonization of a 
given location. New shoots develop out of root buds and build up dense patches of 
thistle shoots over the whole growth period. The formation of 106 shoots per square 
metre supported by a root system measuring 399 m in total length was observed by 
Stach (1996). With respect to the effect of Canada thistle on agriculture it is notewor-
thy that new shoots can develop out of very short root parts if the latter bear at least 
one root bud. At the end of the growing season only the above ground green parts of 
the plants die, while the root system overwinters.

The density of shoots and the long root system suppress the growth of most other 
plants. In the case of arable crops this causes a suppression of the cultivated plants. 
Yield losses of up to 60% have been reported depending on the kind of crop and on 
the weed density. In cereal crops for example, densities of 6 to 20 Canada thistle shoots 
per square metre cause up to 30% loss in grain yield. The overall global annual losses 
have been estimated at 320 million US$ (Bailey et al. 2000).

In conventional farming, herbicides are commonly applied to control Canada 
thistle. However, herbicides can damage non-target plant species (Matarczyk et al. 
2002, Rodwell and Sheffield 2005), other trophic levels (Bunemann et al. 2006) and 
adjacent ecosystems (Hayes et al. 2002, Relyea 2005, Perez et al. 2007). Additionally, 
in the case of C. arvense herbicides mostly affect the aboveground plant parts and not 
the root system. Therefore, they need to be applied several times a year and every year 
anew, making this procedure ineffective and expensive. In New Zealand, for example, 
the annual costs for herbicides, mowing and vaccination of grazing animals wounded 
by the thistle’s spines (Gourlay 2004) amount to NZ$ 27 million just for the pastoral 
industry in two regions of New Zealand.

In organic farming, where herbicides are not accepted, several other methods 
for thistle growth control are used. Hoeing and mowing, for example, are used as 
mechanical control methods (Hurrell and Bourdot 1996, Bacher et al. 1997, Kluth 
et al. 2003, Graglia et al. 2006, Lukashyk et al. 2008). Both of them do not harm 
the thistle substantially as they do not destroy the root system. On the contrary, hoe-
ing can even support the clonal spread of thistles, because they are able to form new 
shoots out of very short root cuttings. Mowing may even have a positive effect on 
the performance of the thistle as it can reduce the competitiveness of associated plant 
species (Edwards et al. 2000).
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Another possibility to curtail weeds is biological control with the help of biocon-
trol agents, usually insects, fungi, bacteria or viruses (McFadyen 1998). In the case of 
Canada thistle, useful control agents have been sought especially among competing 
plant species, herbivorous insects and fungus species. Experiments were performed 
with different competing clover species (Lukashyk et al. 2008) and grass/clover mix-
tures (Graglia et al. 2006) which, together with mowing, resulted in a reduction of C. 
arvense shoot density of up to 90%. Additionally, a strongly decreased above ground 
biomass was achieved, presumably by suppressing the regrowth of thistle shoots after 
mowing. Ang et al. (1994) showed for arable crops that increased interspecific compe-
tition from non-crop plants can reduce the abundance of C. arvense. Though Edwards 
et al. (2000) found similar results in a permanent grassland community, this technique 
has been classified as too intense and costly to be accepted among organic growers 
(Graglia et al. 2006). This technique is also not applicable in ruderal sites or habitats 
of conservational value.

Additionally, numerous studies about herbivores as potential biocontrol agents of 
C. arvense were performed. In a recent review, Cripps et al. (2011) reviewed five insect 
species that have been released in North America and New Zealand, however with-
out any indications of successful control. Neither the coleopterans Altica carduorum 
Guérin-Méneville, Lema cyanella (L.) (Chrysomelidae), Hadroplontus litura (F.) (= Ceu-
torhynchus litura), and Rhinocyllus conicus (Frölich) (Curculionidae), nor the dipteran 
Urophora cardui (L.) (Tephritidae) could be established at all locations, where they were 
released. Additionally, none of the species had a significant influence on the Canada 

Figure 1. Distribution area of Cirsium arvense. The green area represents the native area, red indicates 
the invaded area. Circles indicate major invaded island groups. For northern Africa it seems not to be 
clear if this is part of the native area or already invaded. In South America the hatched area indicates that 
the invaded area could be larger but references seem to be scarce. According to Meusel and Jäger (1992), 
Weber (2003), Tiley (2010), ISSG (2011).
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thistle populations (Cripps et al. 2011, Julien and Griffith 1999). Some other her-
bivorous beetles, like the chrysomelid Cassida rubiginosa Müller (e.g. Ang et al. 1995, 
Bacher and Schwab 2000, Clough et al. 2007) or the curculionid Larinus planus (F.) 
were accidentally introduced to North America. They became established at several lo-
cations, but also had little or no impact on Canada thistle (Julien and Griffiths 1999). 
The curculionid Cleonus piger Scop. (Watson and Keogh 1980) showed a considerable 
impact on C. arvense but has never been released as a biocontrol agent. A reason for 
this is certainly that the host range of Cleonus piger includes the artichoke and it could 
therefore not be considered as a suitable biocontrol agent (Cripps et al. 2011).

In their review Cripps et al. (2011) concluded that none of the herbivorous ar-
thropod species had a significant influence on Canada thistles. Since plant pathogens 
are often cited as second major group of biocontrol agents (e.g., Charudattan and 
Dinoor 2000), we analysed the existing studies on plant pathogens, mainly fungi and 
bacteria, as biocontrol agents to close this review gap. There are plenty of studies on 
this topic adopting a range of taxonomically diverse organisms and approaches. With 
the present paper we aim at summarizing the results of these works and at presenting 
a comprehensive review on the application of fungi and bacteria for biocontrol of 
Canada thistle, C. arvense.

Biological control is usually defined as the usage of living organisms to control 
other organisms. The current praxis, however, ranges from whole organism applica-
tions to the use of reproductive stages such as spores, parts of organisms and purified 
compounds. Such secondary metabolites may be included or excluded when defining 
biological control, see Ash (2010).The wide usage of the term “mycoherbicide” also 
plays with the obvious similarity between organisms, isolated compounds and syn-
thetic herbicides, when applied as an aerial spray. Therefore, we decided to include also 
fungal and bacterial products into this review, especially since six out of eleven biocon-
trol agents as listed below served as compound source and since they were specifically 
targeted against C. arvense.

Fungi as biocontrol agents

A total of 10 fungal species have been tested as biocontrol agents of C. arvense (Table 1). 
Some experiments tested the performance of the living fungi while others used fungal 
products, such as toxins.

Puccinia punctiformis

Most work was done on the biotrophic rust fungus Puccinia punctiformis (syn. P. ob-
tegens (Link) Tul. and C. Tul. and P. suaveolens (Pers.) Rostr.), which is considered to 
have the highest potential as a mycoherbicide (French and Lightfield 1990). The big 
advantage of P. punctiformis for a use as a biocontrol agent is its species specificity to 
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C. arvense. However, single reports of P. punctiformis on other Cirsium species and 
Asteraceae genera (Tykhonenko and Minter 2002, Berner et al. 2002) require further 
investigation. Research on P. punctiformis in biocontrol started almost 100 years ago 
when Olive (1913) studied how C. arvense became infected by the rust fungus and pro-

Table 1. Pathogens of Cirsium arvense, proposed for biocontrol. For further details, compare text. Effec-
tivity is subdivided into high (ability to kill the plant) and limited (not able to kill the plant). Specificity is 
subdivided into very high (specific to one species), high (specific to a few species of one family), low (many 
species of one family), very low (many species of different families).

Systematics Pathogen Affected 
plant part Effectivity Specificity Main references

Basidiomycota Puccinia 
punctiformis

leaves, 
shoots

limited, 
local very high

Frantzen (1994), French et al. 
(1988), French and Lightfield 
(1990), Kluth et al. (2003)

Ascomycota Phomopsis 
cirsii

dead stems 
and leaves, 
roots

high high
Leth and Andreasen (1999), 
Leth and Andreasen (2000), 
Leth et al. (2008) 

Sclerotinia 
sclerotiorum

dead and 
decaying 
stems and 
leaves

limited, 
local very low Brosten and Sands (1986), 

Bourdot et al. (1993, 1995)

Alternaria 
cirsinoxia leaves limited low

Berestetskii et al. (2010), 
Green and Bailey (2000 a, b), 
Green et al. (2001a)

Phoma 
destructiva

dead and 
living plant 
material

high unclear Guske et al. (1996), Guske 
(2002), Kruess (2002)

Phoma 
exigua leaves inconsistent very low

Bithell and Steward (2001), 
Waipara ( 2003), Bilder and 
Berestetsky (2006), Scott et al. 
(1975)

Stagonospora 
cirsii leaves high, with 

restrictions low 
Gasich and Berestetskiy 
(2006), Mitina et al. (2005), 
Yuzikhin et al. (2007)

Septoria cirsii leaves high very high Leth (1985, 1990)

Phyllosticta 
cirsii

unknown, 
only 
extracted 
phytotoxins 
tested

unknown unknown Berestetskiy et al. (2005), 
Evidente et al. (2007, 2008a)

Fusarium 
spec.

seeds, 
seedlings, 
leaves, roots

inconsistent low
Bailey BA et al. (1997 b, 
2000), Bailey KL et al. (2000), 
Gronwald et al. (2004)

Bacteria
Pseudomonas 
syringae pv. 
tagetis

leaves, 
shoots high low

Bailey KL et al. (2000), 
Johnson and Wyse (1991), 
Johnson et al. (1996), 
Lukens and Durbin (1985), 
Rhodehamel and Durbin 
(1985), Tichich and Doll ( 
2006)
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duced systemically infected shoots. The importance of these observations for a possible 
control of C. arvense was recognized by Cockayne (1915) and Ferdinandsen (1923). 
Later studies were carried out attempting to stimulate spore germination (French et al. 
1988, French 1990, French and Lightfield 1990, Frantzen 1994, French et al. 1994), 
to artificially spread spores in order to obtain higher infection rates (Thomas et al. 
1994, Guske et al. 2003, Kluth et al. 2003, Demers et al. 2006, Wandeler and Bacher 
2006, Müller et al. 2011) and studying interactions between P. punctiformis and insects 
(Friedli and Bacher 2001a, Kluth et al. 2001, Kluth et al. 2002, Cripps et al 2009).

Puccinia punctiformis causes two different kinds of infections, local and systemic 
infections. While local infections cause only small lesions on thistle leaves and influ-
ence the plant’s performance only marginally (Kluth et al. 2005), systemic infections 
usually kill the infected shoots within a few months, mostly before flowering (French 
and Lightfield 1990). Most studies were unable to reach higher rates of systemic infec-
tion than 20 to 50% by artificial inoculation (e.g., Van den Ende et al. 1987, French 
et al. 1988, Frantzen 1994, Wandeler and Bacher 2006, Müller et al. 2011). This is 
considered inadequate for a successful suppression of C. arvense (Van den Ende et al. 
1987, Van Leest and Scheepens 1994).

Wandeler and Bacher (2006) observed that the weevil Ceratapion (= Apion) onopordi 
Kirby (Coleoptera: Curculionidae) acts as a vector of P. punctiformis and that C. arvense 
becomes systemically infected after spore transmission. Only females were found to cause 
systemic infection (Friedli and Bacher 2001 a, b) suggesting that egg-laying, not feeding 
on the host plant is likely to be the underlying mechanism. Unfortunately, spore transmis-
sion by female C. onopordi did not result in an adequate infection and control level, either. 
The highest infection rate reached in this semi-field study was about 42%, whereas a rate 
of more than 80% or 90% would be necessary for effective control. Moreover, Cripps et 
al. (2009) found that rust infection rates were similar in areas with or without the weevil, 
indicating that its presence does not enhance systemic rust infection.

One can conclude that P. punctiformis as a potential biocontrol agent against C. ar-
vense presently has the serious handicap that there are no suitable methods to cultivate 
this biotrophic rust fungus, to produce sufficient amounts of infectious spores, and to 
applicate spores in an effective and economic manner to obtain the necessary infection 
rate. The most difficult step in this chain of argumentation is obviously the lack of 
understanding of the process by which a systemic infection is initiated.

Sclerotinia sclerotiorum

Sclerotinia sclerotiorum (Lib.) de By. is able to attack shoots and roots and can kill Canada 
thistles (Brosten and Sands 1986). Under natural conditions this fungus leads to localised 
patches of dead thistle shoots, ranging from one to several dead shoots. The extent of the 
destruction is possibly limited by Sclerotina’s slow rate of expansion (Brosten and Sands 
1986). All studies based on artificial infection showed mortality of vegetative shoots and 
a reduction in the root biomass (Bourdot et al. 1993, 1995, Bourdot and Harvey 1996). 
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Higher infection rates were achieved with plants that were experimentally wounded before 
the treatment (Bourdot et al. 2004). The potential of S. sclerotiorum as control agent seems 
to be limited, as thistle shoots need to be re-infected in the next growing season because 
the fungus seems to be unable to hibernate in the root system of the thistle (Bourdot et al. 
2006). A further limitation is the high variability of the impact of the fungus on the host 
population, leading to a reduction ranging between 20 and 95%. This depends on site, 
fungal strains and resistence of the C. arvense clones. Additionally, S. sclerotiorum needs a 
minimum of free water like rain or dew for a successful infection. This also limits the use 
as a biocontrol agent to some climate regions where free water is available (Brosten and 
Sands 1986). The major objection against the use of S. sclerotiorum, however, is its lacking 
host specificity and occurrence on several hundreds of known host plants. Whereas its 
virulence on C. vulgare, Carduus nutans and many more wildflower species (Bourdot and 
Harvey 1996) may not pose a problem, the virulence on canola and many vegetable spe-
cies Pennycook 1989) limits its use as a biocontrol agent. As S. sclerotiorum is not virulent 
on grasses and Trifolium ssp. Hurrell and Bourdot (1993) proposed using this pathogen 
on pastures. Since S. sclerotiorum can survive for a long time in the ground (Bourdot et al. 
2000) and as its spores are spread easily, its use on pastures may cause hazards after changes 
of land use and for adjacent areas, even if a safety zone is allowed (De Jong et al. 2002)

Alternaria cirsinoxia

Another fungus widely discussed as a biocontrol agent is Alternaria cirsinoxia E.G. 
Simmons and K. Mort., firstly isolated from C. arvense in Canada in 1993 (Sim-
mons and Mortensen 1997). Though it causes severe foliar necrosis (Green and 
Bailey 2000 a, b, Green et al. 2001a) its usefulness as a biocontrol agent is limited 
by a number of shortcomings. First, the fungus is not species-specific. Green et al. 
(2001a) tested several plant species from different families. With the exception of 
leafy spurge (Euphorbia esula, Euphorbiaceae) only Asteraceae were infected, but 
among these crops like sunflower (Helianthus annuus) and safflower (Carthamus 
tinctorius) could be found. Secondly, climatic conditions must be appropriate for 
the formation of appressoria and penetration of the leaf epidermis by the pathogen 
(Green et al. 2001a). Climatic conditions are also a limiting factor for the perfor-
mance of the mycelium. The mycelium survives at temperatures around 0°C and 
can also overwinter; temperatures above 40°C kill it, thus it could only be used in 
temperate climates. The growth optimum is reached at 20 to 25 °C (Green and 
Bailey 2000 b, Green et al. 2001b). Also humidity conditions are limiting for a 
survival of the fungus, as high air humidity or even free water is necessary for the 
germination of the conidia (Green and Bailey 2000b). Alternaria cirsinoxia is pri-
marily pathogenic on older, senescing leaves of C. arvense and infected plants can 
recover by developing new, healthy leaves (Green and Bailey 2000a, Gannibal and 
Berestetsky 2008) which additionally limits the fungus’ potential as a bioherbicide 
(Green and Bailey 2000a). Berestetskii et al. (2010) identified zinniol as one of the 
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phytotoxic substances in A. cirsinoxia. However, the use of zinniol as natural herbi-
cide is apparently limited by its non-specific phytotoxic activity and its cytotoxicity.

A combined treatment of A. cirsinoxia and the herbicide glyphosate on C. arvense 
was also tested. In a controlled environment, the combination of herbicide and the 
fungus caused more severe damage to Canada thistle than glyphosate alone, but did 
not reach a sufficient level of control. Moreover, the effects of A. cirsinoxia and glypho-
sate were not consistent in repeated field trials (Green and Bailey 2001). In conclusion, 
A. cirsinoxia is not suitable for the biological control of Canada thistle due to its low 
host specificity, unspecific toxicity and limited infection power.

Phomopsis cirsii

Phomopsis cirsii Grove, a necrotrophic fungus, was found on dead stems and leaves of C. 
arvense and C. eriophorum in Great Britain (Grove 1935) and later on those of C. palustre 
in Norway (Jørstad 1965) and Denmark (Leth 1985). In 2008, Leth et al. also found 
the fungus on seeds of C. arvense. Early season symptoms are black leaf veins and small 
limited necrotic lesions on stems, dying back of young shoots and wilting of shoots. Late 
season symptoms are black necrotised peduncles and bracts, black veins and black or 
brown necrotic lesions on the mature stems, often containing yellow patches with sporu-
lating pycnidia (Leth et al. 2008). It can overwinter in dead stems and forms conidia 
that are spread by rain splash or invertebrates. The fungus can be cultivated on artificial 
substrates, and several experiments showed that it is possible to infect shoots of C. arvense 
by spreading the fungal mycelium (Leth and Andreasen 1999, Leth and Andreasen 2000, 
Leth et al. 2008). Precondition is that conidia and mycelial fragments are in contact with 
free water at least for 18 h to cause infection. This time period can be shortened to 6 h by 
the addition of alginate (Leth and Andreasen 2000). Spraying the mycelium on two-year 
old thistle shoots resulted in a 50% reduction of fresh weight of the shoots (Leth and 
Andreasen 1999). In other experiments, isolates killed 100% of the inoculated plants 
(Leth et al. 2008), indicating a different virulence of different fungal strains. Leth et al. 
(2008) suggested that it may be possible to increase the pathogen’s virulence against a 
broad range of genotypes of C. arvense by optimising the cultivation practices. It remains 
to be investigated whether this fungus is really restricted to Cirsium species and whether 
it is able to kill whole thistle clones. If this turns out to be the case, the pathogen could 
become a promising candidate for the biocontrol of Canada thistle. Some applications of 
Ph. cirsii were covered by a patent (Leth 1985), for more details see below.

Phoma species

Phoma destructiva Plowr. was first mentioned in 1915 by Jamieson as the cause of a 
fruit rot in tomatoes. Later it was also mentioned to cause leaf blight in tomato (Eb-
ben and Critchle 1972) but the host spectrum is uncertain as Guske et al. (1996) and 
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Guske (2002) claim specificity of the fungus for C. arvense. This contradiction may 
be accounted for by the presence of different varieties or special forms within Ph. de-
structiva (Aulakh et al. 1969). Guske et al. (1996) were the first to mention this fungus 
as a biocontrol option against C. arvense. Germinating conidia cause systemic infec-
tions which influence the C/N ratio negatively and therefore reduce the plant growth 
(Huber 1998), leading to chlorosis of the above-ground plant parts, a reduction in the 
number of flower heads and seeds and a reduced biomass (Kruess 2002). It is possible 
to inoculate thistle shoots (Kruess 2002) with this perthotrophic (Guske 2002) fungus. 
Perthotrophic means that the fungus lives on dead plant material, killed before by the 
fungus itself. This reduced plant quality was mentioned as a contraindication against 
a combination of the fungal pathogen with the herbivorous beetle Cassida rubiginosa. 
Infected plants were less attractive as hosts and larval performance and survival of the 
beetle were reduced, so that synergistic effects were excluded (Kruess 2002) or perhaps 
masked through decreased attractiveness of thistles to this beetle.

Better results were reached by a combination of Ph. destructiva with other plant 
pathogens. The application of a mixture of four pathogens, Ph. destructiva, Ph. hederi-
cola (Durieu and Mont.) Boerema, Ph. nebulosa (Pers.) Mont. and a Mycelium steri-
lum significantly reduced the reproduction of the plants and also affected their roots, 
shown by a loss of dry root weight of 32% (Guske et al. 2004). A combination of Ph. 
destructiva with P. punctiformis reduced the shoot density (Kluth et al. 2005) but not all 
tested combinations of pathogens enhanced the control effect. A combination of Ph. 
hedericola and P. punctiformis was less effective than Ph. hedericola alone. The single ap-
plication of Ph. hedericola or Ph. nebulosa was less harmful to thistles than the combi-
nation of both. Application of Ph. nebulosa alone caused death of all main shoots. This 
fungus is nevertheless inappropriate as a biocontrol agent, as more secondary shoots 
arose after the primary ones died (Guske et al. 2004).

Another Phoma species found on C. arvense is Ph. exigua Desm. The weak leaf spot 
pathogen (Waipara et al. 1997), preliminarily identified as Ascochyta sonchi (Mel’nik 2000) 
and later reclassified to Ph. exigua (van der Aa et al. 2000, Boerema et al. 2004), parasitizes 
more than 300 plant species and is discussed as a biocontrol agent against Taraxacum 
officinale (Stewart-Wade and Boand 2004) and Gaultheria shallon (Zhao and Shamoun 
2006). The Canada thistle was originally not identified as a host of Ph. exigua (van der 
Aa 2000, Boerema et al. 2004) but could later be confirmed as such (Bithell and Steward 
2001, Waipara 2003, Bilder and Berestetsky 2006). Inoculation experiments showed that 
an artificial infection with the fungus is possible, but with inconsistent results between 
different isolates. The disease development was much faster on detached than on attached 
leaves, but the short-term experiment described by Bithell and Stewart (2001) does not 
allow further conclusions on the progress of this infection. Scott et al. (1975) identi-
fied several phytotoxins in Ph. exigua which they recommended for biocontrol. However, 
among these phytotoxins unspecific phyto- and cytotoxic cytochalasins are common and 
cytochalasin A and B even cause potato gangrene (Scott et al. 1975). Moreover, the main 
toxin ascosonchine is not virulent (Evidente et al. 2006), so that Ph. exigua cannot be 
recommended for biocontrol (Cimmino et al. 2008).



Esther Müller & Wolfgang Nentwig  /  NeoBiota 11: 1–24 (2011)10

Stagonospora cirsii

Stagonospora cirsii Davis is a causal agent of brown foliar lesions on C. arvense. If sprayed 
on seedlings during a dew period, it can kill nearly 100 % of the treated plants. The fungus 
can also be dusted as mycelium powder onto the soil surface which led to the death of 60% 
of treated seedlings in one study. Older plants are also affected but not killed. The fungus 
is able to survive over long periods, at least in sterile soil and remains viable on organic 
substrate after a cold winter period, but an infection of the thistle roots seemed to be im-
possible (Gasich and Berestetskiy 2006), which restricts its potential as a mycoherbicide.

S. cirsii also produces phytotoxins, demonstrated by the phytotoxic activity of 
culture filtrates to leaves and roots of C. arvense (Mitina et al. 2005). Yuzikhin et al. 
(2007) isolated a new phytotoxin, a nonenolid named stagonolide, from the fungus. 
The phytotoxin was shown to be unspecific in general but more selective against 
Asteraceae including sunflower (Helianthus annuus). Other crops, such as pepper 
(Capsicum annuum), tomato (Lycopersicon esculentum), wheat (Triticum aestivum), 
pea (Pisum sativum) and radish (Raphanus sativus) were also affected and displayed 
leaf necrosis. Stagonolide was most harmful to leaves and acts as a strong inhibitor 
of root growth in seedlings of C. arvense (30% decreased root length) and other 
Asteraceae. Other isolated nonenolides, stagonolide B-F, showed no toxicity against 
C. arvense (Evidente et al. 2008 b). Later, another four nonenolides were isolated by 
Evidente and coworkers (Evidente et al. 2008 c). Three were new compounds, named 
stagonolides G, H, and I, the fourth was identified as modiolide A, known from the 
fungus Paraphaeosphaeria sp., living on the horse mussel Modiolus auriculatus (Tsuda 
et al. 2003). Stagonolide G showed no toxic activity, whereas stagonolide H was most 
toxic to C. arvense leaves, causing necrotic lesions. Also other plant species tested 
showed necrotic lesions after inoculation with stagonolide H, but were less sensitive. 
The authors concluded that this phytotoxin is highly phytotoxic and selective and 
recommend it as a potential natural herbicide. However, as the fungus is highly infec-
tious on seedlings of various plants and its extracted toxins are not specific and also 
not that selective as mentioned by the authors, we question the potential of S. cirsii 
as a biocontrol agent of C. arvense.

Septoria cirsii

Septoria cirsii Niessl causes leaf spot on Canada thistle. Because of its host specificity 
and effective control of Canada thistle in the field, it had been proposed as a biocon-
trol agent (Leth 1985). Cultures of S. cirsii produce copious amounts of a phytotoxin 
which was identified as beta-nitropropionic acid. The toxin inhibits seed germination, 
root elongation and causes chlorosis and necrosis of the leaves of Canada thistle (Her-
shenhorn et al. 1993). S. cirsii is considered to be specific to the genus Cirsium, though 
infections were also found on artichoke (Cynara scolymus), another Asteraceae. Accord-
ing to susceptibility tests, no signs of infection were found in plants outside the tribe 
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Cardueae of Asteraceae (Leth 1985). Active components of the fungus were suggested 
as a mycoherbicide and their application seemed to be rather promising.

The application of Septoria cirsii and Phomopsis cirsii as mycoherbicide had been 
covered by the patent of Leth (1985, 1990). This patent looked interesting but so far 
never reached the market. At that time, Leth worked for Novo Industri A/S, Denmark. 
In the 1990’s, Novo Industri sold its plant protection division to Abbott including 
most of the patent rights, but not the Phomopsis patent. However, around 1999 Novo 
Industri abandoned the case due to lack of interest and eventually, all patents on bioher-
bicides were abandoned. If no other party showed interest in the meantime, the patents 
would have expired in 2004-2005 (personal communication Bo Hammer Jensen).

Phyllosticta cirsii

The fungus Phyllosticta cirsii Desm. has been evaluated as another possible biocon-
trol agent of Canada thistle (Berestetskiy et al. 2005). Since the genus Phyllosticta 
is known to produce bioactive metabolites, studies concentrated on the isolation 
of different phytotoxins. Evidente et al. (2007) identified the four phyllostictines 
A to D, and later isolated phyllostoxin and phyllostin as further compounds (Evi-
dente et al. 2008 a), with phyllostoxin being highly phytotoxic and phyllostin 
not being toxic. Phyllostoxin was proposed as a potential natural herbicide but 
its toxicity against other plant species was not tested and thus its specificity is 
unknown. Evidente et al. (2008 a) also investigated potential side-effects of this 
substance and concluded that antimicrobial or zootoxic activities were lacking. 
However, these results base on only limited tests with three bacteria species, one 
fungus species and one crustacean species and cannot be generalised. Until further 
data become available phyllostoxin or P. cirsii itself cannot be regarded as suitable 
biocontrol agents of Canada thistle.

Fusarium species

The genus Fusarium includes many species that are pathogenic to C. arvense, for example F. 
equiseti (Corda) Sacc. (Gasich and Berestetskiy 2007). Species that occur on seeds can cause 
the death of the seedlings, e.g. F. solani (Mart.) Sacc. and F. oxysporum E.F. Sm. and Swingle 
(Fischl et al. 2004). Isolates of different Fusarium species reduced the emergence of new 
shoots by 45-70% and shortened root growth by 25-52% when applied as a suspension on 
the surface of root cuts (Bailey et al. 2000). Nep 1, an extracellular protein produced by F. 
oxysporum f. sp. erythroxyli (Bailey 1995, Bailey et al. 1997 a), can cause necrosis of leaves of 
dicotyledonous plants after foliar application (Bailey et al. 1997b, 2000a, 2000b, Jennings 
et al. 2000). Gronwald et al. (2004) showed rapid desiccation and necrosis of leaves. The 
greatest effect was observed in recent, fully expanded leaves, with 60 to 80% of the leaves 
being necrotic after a few hours of foliar application. Two weeks after application the dry 
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weight of the shoots was reduced by 30 to 41%. Similar results were obtained by a foliar 
application of Nep 1 in combination with the bacterium Pseudomonas syringae pv. tagetis. 
However, as neither the Fusarium spp. nor the extracted protein Nep1 are species specific, 
they cannot be regarded as biocontrol agents.

Bacteria as biocontrol agents

The bacterium Pseudomonas syringae pv. tagetis (Pst), first found on Tagetes erecta (Hellmers 
1955), is able to cause leaf spot and apical chlorosis on a number of Asteraceae, including 
C. arvense (Johnson and Wyse 1991, Johnson et al. 1996, Rhodehamel and Durbin 1985, 
Styer and Durbin 1982). The apical chlorosis is due to the production of the unspecific 
compound tagetitoxin (Lukens and Durbin 1985, Durbin 1990). This toxin causes de-
creased vigour, inhibition of flowering and increased winter mortality (Johnson et al. 1996) 
and it led to study Pst as a potential biological weed control agent. Bacteria have many 
advantages compared to fungi: they grow very fast in liquid culture, can be stored frozen 
or dried and are suited for genetic manipulation and selection (Johnson et al. 1996). Nev-
ertheless, they were ignored for a long time as possible biocontrol agents mainly because 
of their inability to penetrate intact plants (Templeton 1982). Field studies with a spray 
application of Pst and a surfactant resulted in 100% disease incidence and greater severity 
of disease symptoms than observed in natural infections. This led to a mortality of 57% of 
the plants meaning a significant reduction of the thistle population (Johnson et al. 1996). 
Another field study by Hoeft et al. (2001) showed similar results.

Application of Pst resulted in reduced survival of C. arvense, less height growth 
and seed production. Less seed production leads to a reduced soil seed bank and less 
regrowth of the thistle. Gronwald et al. (2002) tested different application methods 
and effects of repeated applications. The authors found apical chlorosis in 67% of the 
plants, resulting in a 31% reduction of plant height; they counted 81% fewer flower 
heads and a survival rate reduced by 20% after two applications. Tichich and Doll 
(2006) also found repeated applications to be more effective than a single one, as a 
single application causes chlorosis but no loss of dry weight (Bailey 2000). In a growth 
chamber experiment with foliar application of Pst, Gronwald et al. (2002) showed 
a loss of dry weight of 52% and a loss of chlorophyll content of emerging leaves of 
92%. Tagetitoxin inhibits plastidic RNA polymerase III, thus preventing chloroplast 
biogenesis, so that infected plants produce new cells without chloroplasts and incapa-
ble of photosynthesis (Lukens and Durbin 1985, Lukens et al. 1987, Mathews and 
Durbin 1990, Steinberg et al. 1990). To target the photosynthetic activity of above-
ground plant parts appears to be a much better strategy than to try to deplete the roots’ 
reserves, followed by mechanical methods such as mowing (Tichich and Doll 2006).

However, also the repeated foliar application of the sap from naturally infected thistles 
led only to a 50% incidence of disease, still not sufficient to effectively suppress thistle 
growth (Tichich and Doll 2006). Further possibilities to increase the effectiveness of Pst as 
a biocontrol agent include a strict selection for humid application periods to ameliorate the 



Plant pathogens as biocontrol agents of Cirsium arvense – an overestimated approach? 13

initial conditions for the plant pathogen (Tichich and Doll 2006, Tichich et al. 2006), se-
lecting strains that produce more toxin (Gronwald et al. 2002, Tichich and Doll 2006), or 
increase toxin production by optimal environmental and nutritional conditions (Bender et 
al. 1999, Li et al. 1998), especially a high nitrogen supply during cultivation (Styer 1982).

These studies succeeded due to the combined application of Pst with Silwet L-77 
or a similar organosilicone surfactant that facilitated the entry of bacteria into leaves 
(Zidack et al. 1992, Zidack and Backman 1996) via the stomata and hydathodes, be-
cause of their property to lower surface tension (Neumann and Prinz 1974, Field and 
Bishop 1988, Stevens et al. 1991). A combination of Pst with a chemical herbicide 
such as glyphosate further increased disease symptoms and reduction of fresh and dry 
weight significantly (Bailey et al. 2000). This suggests synergistic effects between the 
bacterial agent and the herbicide (Christy et al. 1993).

Host specificity tests showed that tagetitoxin acts on a variety of Asteraceae (John-
son and Wyse 1991, Johnson et al. 1996, Rhodehamel and Durbin 1985, Styer and 
Durbin 1982). Durban et al. (1989) described that wheat seedlings, after a first con-
tact with tagetitoxin, completely lacked chlorophyll and Durbin (1990) designated 
tagetitoxin a “non-host selective” compound. Obviously this substance is suitable as a 
non-selective herbicide but not as a highly selective biocontrol agent.

Conclusion

Mycoherbicides have been praised since decades to solve problems of weeds in a 
variety of habitats and as an upcoming strategy in organic farming but today re-
sults are still disappointing: only eleven products seem to have made it to the mar-
ket worldwide (Charudattan and Dinoor 2000, Khetan 2001, Ash 2010). A recent 
search among patents yielded 71 citations (Ash 2010) but this does not necessarily 
indicate a huge product pipeline but rather underlines that most of them never will 
be realised. On a global level, the reasons for this situation are multiple and het-
erogeneous but may be similar to those outlined for C. arvense and its pathogens. 
The primary reason for the failure of most of the tested plant pathogens against 
C. arvense is the missing host specificity (among the here presented pathogens, 
this refers, e.g., to Alternaria cirsinoxia, Sclerotinia sclerotiorum, Phoma exigua, and 
Pseudomonas syringae). A useful and safe biocontrol agent has to be as specific as 
possible. Species-specificity would be ideal but is obviously very difficult to find. 
Genus specificity may be acceptable quite often but has to be tested very carefully. 
Less pronounced specificity, e.g. on family level, usually cannot be accepted. Also 
the varying and low virulence of the pathogens pose a problem (e.g., Alternaria 
cirsinoxia, Sclerotinia sclerotiorum, Phomopsis cirsii) as constant levels of virulence 
must be ensured for a successful inhibition of the growth of the target weed. None 
of the proposed fungi is able to kill a thistle clone, thus confirming the conclusion 
in Charudattan’s (2005) review that weeds with a robust capacity for vegetative 
regeneration are more difficult to control with pathogens. Another restriction en-



Esther Müller & Wolfgang Nentwig  /  NeoBiota 11: 1–24 (2011)14

countered is the obligate biotrophic nature of the rust Puccinia punctiformis which 
poses the problem that this fungus cannot be cultivated in the laboratory to pro-
duce the necessary amount of inoculum.

This review shows for C. arvense, one of the single most important weeds of the 
world, that despite nearly 100 years of research it was so far not possible to use fungi and 
other pathogens as biocontrol agents. While it is generally undoubted that pathogens are 
important regulators of plant populations (e.g., Mitchell and Power 2003), the specific 
situation in a highly disturbed agricultural landscape is different since natural regulation 
mechanisms are not strongly developed against C. arvense. At least for Canada thistles, 
one could conclude that the potential of fungi as biocontrol agents has been overesti-
mated even if Charudattan (2005) would state that this approach is still underdeveloped. 
There is always a chance to find new and suitable biocontrol agents when increasing 
the search effort. Nevertheless, for us it is today very difficult, to advice on suitable and 
promising future research approaches for a biological control of Canada thistles.

The current regulatory situation where microbial products need to go through the 
same registration procedure as conventional pesticides certainly represents a huge bar-
rier for potential applicants. This may explain the considerable number of dead patents. 
Size and diversity of a research consortium and the financial power of the industrial 
partners may be further decisive parameters (Ash 2010, Bailey et al. 2010). Another 
problem is target selectivity. Good biocontrol praxis demands an as high target specific-
ity as possible. Economically speaking, however, such a small application basis is not 
interesting at all. Therefore one could propose to accept agents of only medium target 
selectivity since most applications would only occur in monocultures. While this even 
may be correct for C. arvense, further candidate habitats would certainly include more 
diverse landscapes and even natural habitats of conservational value. Since Canada this-
tles are invasive in most parts of the world, related, endemic thistle species, though pro-
tected and non-targets, suddenly could be affected by such an agent of low specificity.

In the case of C. arvense the research development of the last years, however, 
points into the direction of applying secondary plant compounds. Such substances 
quite often are structurally modified and can be produced synthetically. By this, 
unspecific but powerful herbicides may come up. Though sometimes the term 
“bioherbicide” is still used to indicate the biotic origin of such compounds they 
are as good or bad as chemical herbicides with the classic problems of effectivity, 
selectivity, degradability and potential side effects.
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